Текст книги "Как были открыты химические элементы"
Автор книги: Дмитрий Трифонов
Соавторы: Валерий Трифонов
сообщить о нарушении
Текущая страница: 6 (всего у книги 22 страниц)
Оксид циркония имеет немало сходства с оксидом алюминия, глиноземом. Долгое время второй надежно маскировал присутствие первого. Никто не подозревал существования в циркониевых минералах (известных еще в средние века) неизвестного элемента. Так, цирконий, один из наиболее распространенных металлов на Земле (0,02%), оставался «невидимым» вплоть до конца XVIII столетия. Теперь основной источник циркония – минерал циркон, встречающийся в двух разновидностях: гиацинт и яргон. Гиацинт еще в древности был известен как драгоценный камень, переливавшийся разными цветовыми оттенками: от желто-коричневого до дымчато-зеленого.
Думали, что по своему составу гиацинт подобен другим драгоценным камням – рубину и топазу.
Анализ циркона производили не раз и всякий раз ошибались. В 1787 г. немецкий химик И. Виглеб обнаружил в цейлонском цирконе лишь кремнезем с небольшими добавками извести, магнезии и железа. Еще раньше такой искусный химик, как Т. Бергман, нашел, что гиацинт, привезенный с Цейлона, содержит 25% кремнезема, 40% оксида алюминия, 13% оксида железа и 20% извести. Будущий цирконий надежно спрятался у Т. Бергмана в оксиде алюминия.
Эту природную маскировку раскрыл в 1789 г. М. Клапрот. Он нагревал в серебряном тигле порошок циркона (тот же образец, что и у Т. Бергмана) со щелочью. Сплав растворялся в серной кислоте, и из раствора М. Клапрот выделил новую землю, названную им циркониевая. Вот данные анализа немецкого аналитика: 25% кремнезема, 0,5% оксида железа, 70% циркониевой земли. Как видите, ничего общего с анализом Т. Бергмана. В том же году результаты М. Клапрота подтвердил А. Гитон де Морво. Причем он выделил цирконий из гиацинта, найденного во Франции.
Получить металлический цирконий оказалось непросто. В 1808 г. Г. Дэви тщетно пытался разложить циркониевую землю с помощью электрического тока. Лишь в 1824 г. И. Берцелиус получил загрязненный металл, нагревая сухую смесь калия и фторида калия и циркония в платиновом тигле. Свое имя элемент получил по названию минерала.
УРАНТрудно привести другой пример химического элемента, который столь долго был обделен вниманием, а затем «в один прекрасный день» удивил всех и заставил уважать себя по-настоящему. Таков уран, занимающий девяносто вторую клетку в таблице Д. И. Менделеева. Открытый в 1789 г., он длительное время мало интересовал химиков, даже атомная масса его была определена неверно. А на практике его использование ограничивалось лишь окраской стекол. Но в 1906 г. в восьмом издании «Основ химии» Д. И. Менделеев обратился с призывом к тем, кто ищет предметы для новых исследований, особо тщательно заниматься урановыми соединениями. Потому, пояснял ученый, что с ураном связаны два важнейших события в науке, которые произошли в конце XIX столетия: открытие гелия и открытие явления радиоактивности. И наконец, случайно ли то, что на уране обрывается естественный ряд химических элементов, – уран оказывается верхней границей их системы?
Кто-то из ученых назвал девяносто второй элементом № 1 нашего столетия.
…А состоявшееся – уже скоро как двести лет назад – открытие урана не было окрашено в цвета необычности. То было открытие, каких совершалось немало в период становления методов аналитической химии. И имя автора открытия не вызывает никаких споров – немецкий химик М. Клапрот. Правда, затем – и мы скажем об этом – действительное выделение урана стали связывать с именем другого ученого.
Уже давно был известен минерал, называвшийся смоляной обманкой. Пока химический анализ делал первые свои шаги, считали, что обманка является рудой, содержащей железо и цинк. Более точных данных о ее составе не существовало.
Образец смоляной обманки попал в руки М. Клапрота. Кусочек минерала он растворил в азотной кислоте. К раствору добавил поташ. При этом выпал желтый осадок, растворимый в избытке поташа. Этот осадок состоял из красивых зеленовато-желтых кристалликов в виде шестигранных призмочек. Не сразу М. Клапрот пришел к выводу, что имеет дело с солью нового элемента. Получив оксид, ученый пытался выделить чистый металл. И когда на дне тигля образовался блестящий черный порошок, немецкий химик решил, что цель достигнута. Но М. Клапрот заблуждался. В лучшем случае он держал в руках смесь оксида с небольшим количеством металла. В действительности химикам еще предстояло убедиться, насколько непросто добыть его в свободном виде.
Уверенный в удаче, М. Клапрот предложил название «уран» для открытого им элемента. «Ранее признавалось существование лишь семи планет, которые соответствовали семи металлам, – писал Клапрот, – поэтому по традиции следует назвать новый металл именем недавно открытой планеты»[6]6
Цит. по кн.: Фигуровский Н. А. Открытие элементов и происхождение их названий. М., 1970, с. 132–133.
[Закрыть]. Такой планетой был Уран, открытый в 1781 г. астрономом В. Гершелем. С этого времени появилась мода давать вновь открытым химическим элементам имена в честь разных космических тел. Уран уже был включен в списки простых тел, уже учебники химии уделяли ему место на своих страницах, но его металлическое состояние, вопреки мнению М. Клапрота, оставалось недоступным. И кое-кто из ученых сомневался в правоте немецкого химика. Через шесть лет после смерти М. Клапрота (1817) ученик И. Берцелиуса – И. Арфведсон (возможно, по совету своего учителя) решил устранить существовавшие сомнения. Взяв темно-зеленый оксид урана, он пытался восстановить его водородом. И. Арфведсон думал, что исходный продукт является низшим оксидом (теперь известно, что шведский ученый имел дело с U3O8). В ходе реакции получился коричневый порошок UO2. И. Арфведсон же думал, что ему удалось выделить металлический уран.
Лишь в 1841 г. успеха добился французский химик Э. Пелиго, который применил новый способ восстановления. Он нагревал безводный хлорид урана, смешанный с металлическим калием в закрытом платиновом тигле. В итоге получился черный металлический порошок. Его свойства заметно отличались от тех, которые обычно приписывал М. Клапрот металлическому урану. Поэтому некоторые историки науки связывают действительное открытие урана с именем Э. Пелиго.
В сплавленном виде компактный металл приготовил французский химик А. Муассан. Он воспользовался изобретенной им электрической печью, дававшей очень высокую температуру. Первый слиток урана ученый выплавил в мае 1896 г. и передал его А. Беккерелю. Именно благодаря подаренному образцу А. Беккерель установил, что радиоактивность есть свойство, присущее элементу урану. Этим уран впервые привлек к себе всеобщее внимание.
В свое время уран доставил немало хлопот Д. И. Менделееву, когда ученый разрабатывал периодическую систему. Атомная масса урана считалась равной 120, и потому элемент мог быть помещенным в третью группу как тяжелый аналог алюминия. Но подобное размещение ни в коей мере не соответствовало свойствам урана. Тогда Д. И. Менделеев предположил, что атомный вес определен неверно, и предложил увеличить его значение в 2 раза. Новое место урана оказалось в шестой группе, ниже вольфрама. И тем самым уран стал последним элементом периодической системы.
ТИТАНХимия отнюдь не была профессией английского пастора В. Грегора. Но иногда ему приходилось заниматься химическими операциями, потому что его светским увлечением была минералогия. Время от времени В. Грегор исследовал состав различных минералов и достиг в этом таких успехов, что впоследствии И. Берцелиус относился к нему как к видному минералогу.
Однажды В. Грегор заинтересовался составом черного песка, залежи которого он обнаружил в долине Менакин, расположенной на территории его церковного прихода. Черный песок, чрезвычайно похожий по внешнему виду на порох, смешанный с песком другого сорта, грязно-белого цвета, – вот природный объект, заинтересовавший В. Грегора. Отделив черные песчинки, он провел их химический анализ; насколько тщательным было это исследование, вы сами убедитесь, взглянув на числа, характеризующие содержание отдельных компонентов.
По В. Грегору, 409/16% (особенно трогают эти 9/16!) выпадает на долю оксидов железа; 3½% – содержание кремнезема, 45% принадлежат веществу, описываемому В. Грегором как красновато-коричневая известь. И 415/16% составляют потери при анализе. В этом реестре обращает на себя внимание красновато-коричневая известь. Она растворялась в серной кислоте, образуя желтый раствор. При действии цинка, олова или железа раствор становился пурпуровым. В. Грегор написал специальную статью с изложением результатов анализа. Со свойственной ему скромностью он считал, что его исследование не является завершенным. Он лишь излагал отдельные факты, объяснить которые – удел более просвещенных ученых.
Его друг – минералог Д. Хавкинс убедил В. Грегора, что черный песок представляет собой новый, неизвестный ранее минерал. Это мнение человека, не хуже В. Грегора разбиравшегося в минералогии, позволило последнему предположить, что черный песок содержит новое металлическое вещество. В. Грегор предложил назвать его менакином, в честь того места, где был найден песок, а сам песок менакитом (или менаконитом). Теперь этот черный песок именуется минералом ильменитом и имеет формулу FeTiO3. Все это свидетельствует о том, что элемент титан был открыт в 1791 г. В. Грегором.
Но многие историки науки выдвигают в качестве первооткрывателя элемента М. Клапрота, хотя достоинства работы В. Грегора несомненны. Но уж слишком нечестолюбивым оказался английский пастор в отстаивании своего приоритета. М. Клапрот шел другим путем. Сообщение В. Грегора он, безусловно, читал, но оценил его суть не сразу. В 1795 г. ему удалось выделить оксид нового элемента из образца минерала, привезенного из Венгрии. Теперь этот минерал известен как рутил (ТiO2). Оксид, выделенный М. Клапротом, оказался чрезвычайно похожим на грегоровскую менакиновую землю. Вскоре М. Клапрот четко установил, что он открыл тот же самый элемент, что и В. Грегор.
Немецкий химик назвал этот элемент титаном (в честь мифологических титанов, сыновей Земли). В виде чистого металла титан удалось получить только в 1910 г.
ХРОМСвоеобразной родиной хрома оказалась Сибирь; там в XVIII в. был найден минерал крокоит, который в то время называли красной свинцовой рудой. Гораздо раньше были известны некоторые другие хромовые руды. И это не столь удивительно, ибо хром принадлежит к числу элементов, распространенных в природе (0,02% от всей земной коры). Но выделить его хотя бы в виде оксида не такая уж простая задача, и до поры до времени химикам она была не под силу. Соединения хрома окрашены в различные цвета. Но даже этот факт не обострил внимания исследователей к хромовым минералам.
Исключение составил крокоит. Впервые анализ его сделал в 1766 г. немецкий химик И. Леман, в то время проживавший в Петербурге. Растворяя образец минерала в соляной кислоте, И. Леман наблюдал прекрасный изумрудно-зеленый цвет раствора. Но вывод был таков: в крокоите содержится свинец, загрязненный примесями. Эти примеси не могли быть чем-либо иным, нежели хромом. Ведь крокоит – это хромат свинца PbCrО4. И. Леману не суждено было установить состав минерала.
Вторично с крокоитом столкнулся в 1770 г. петербургский академик П. С. Паллас, описавший его месторождения на Урале (Березовском руднике).
«Эта свинцовая руда, – писал Паллас, – бывает разного цвета, но чаще имеет цвет киновари. Кристаллы этого тяжелого минерала, имеющие форму неправильных пирамид, вкраплены в кварц, словно маленькие рубины…»
П. С. Паллас был путешественником, географом, минералогом – только не химиком. Но именно благодаря ему минерал крокоит стал доступным для исследований в лабораториях Западной Европы. Так он попал в лабораторию одного из крупнейших химиков-аналитиков того времени Л. Воклена.
С тех пор, как И. Леман изучал крокоит, прошло три десятилетия. За это время ученые не раз пытались выяснить его состав, но не обнаруживали в нем новых элементов. Сведения были самые разноречивые. Например, один аналитик даже сообщил, что свинцовая руда содержит молибденовую кислоту, никель, кобальт, железо и медь. Но и Л. Воклен в своих первых опытах не избежал ошибки, найдя в крокоите диоксид свинца, железо и глинозем.
В 1797 г. французский химик решил провести исследование крокоита более тщательно. Он продвигался шаг за шагом, убеждаясь, что минерал не содержит ни мышьяка, ни молибденовой кислоты и трех или четырех известных металлов, ни железа и глинозема. Шаг за шагом опровергал Л. Воклен результаты всех предыдущих анализов. И заключил в итоге: крокоит содержит новый металл, свойства которого отличаются от свойств других металлов.
Л. Воклен кипятил мелко размельченный минерал с карбонатом калия. Желтый раствор, оставшийся после отделения карбоната свинца, содержал, по мнению ученого, калиевую соль неизвестной кислоты. Чуть ли не во все цвета радуги окрашивался этот раствор при добавлении в него различных реактивов: ртутные соли давали красный осадок; соли свинца – желтый; хлорид олова вызывал появление зеленой окраски. Все эти манипуляции убеждали Л. Воклена в том, что он действительно имеет дело с новым элементом. Выделить его теперь в форме оксида оказалось сравнительно простой задачей.
Спустя много лет Д. И. Менделеев писал в «Основах химии», что уральская красная хромовая руда, или хромово-свинцовая соль, оказалась для Л. Воклена источником для открытия хрома, которому он дал название, происходящее от греческого слова, означающего «крашу» (по причине ярких цветов, свойственных соединениям этого элемента). Справедливости ради, нужно сказать, что название хром для нового металла предложили соотечественники Л. Воклена – А. Фуркруа и Р. Аюи. Независимо от Л. Воклена и почти одновременно с ним существование нового металла в крокоите доказал М. Клапрот, но не сделал этого с той же очевидностью, как его французский коллега.
Металлический хром долго не удавалось получить. Пытался это сделать и сам Л. Воклен, но, скорее всего, он приготовил карбид хрома.
БЕРИЛЛИЙВидный советский геохимик академик А. Е. Ферсман назвал однажды этот металлический элемент одним из самых замечательных элементов огромного теоретического и практического значения. Но какое бы из качеств бериллия мы ни взяли, оно не будет чем-то из ряда вон выходящим. Бериллий среди других металлов – типичный середняк. Замечательное же состоит в удивительно удачном, словно нарочно придуманном природой, сочетании различных качеств. На примере бериллия отчетливо видно, как история химического элемента зависит от его специфических свойств. По своему химическому поведению бериллий больше похож на алюминий – своего соседа по диагонали в таблице Менделеева, чем на магний – непосредственного аналога по группе. Вот почему алюминий столь долго маскировал присутствие бериллия (так же, как и циркония) в природных минералах.
Из-за четко выраженной амфотерности элемента много лет не удавалось приготовить различные соединения бериллия в достаточно чистом виде. Отсюда следовали разноречивые результаты определения многих свойств элемента, особенно его валентности и атомной массы. Тем самым длительное время не могли окончательно решить вопрос о месте бериллия в периодической системе. Только после того, как было твердо доказано, что его валентность равна двум, формула оксида есть ВеО, а атомная масса составляет 9,01, бериллий раз и навсегда занял самую верхнюю клетку во второй группе менделеевской таблицы. Важную роль здесь сыграли работы русского ученого И. В. Авдеева.
История бериллиевых минералов начинается с очень отдаленных времен. В глубокой древности были известны драгоценные камни – бериллы и изумруды.
Одним из первых занялся изучением бериллов в 1779 г. профессор химии в Берлинской Академии наук Ф. Ахард (до тех пор он прославился лишь разработкой промышленного получения сахара из сахарной свеклы). Шесть анализов провел немецкий химик. Если пересчитать его результаты на современный лад, то они покажут, что в бериллах содержалось: 21,7% кремнезема (оксида кремния), 60,05% глинозема (оксида алюминия), 5,02% оксида железа, 8,3% известковой земли (оксида кальция). В сумме получалось 95,07% (пяти процентов до ста не хватало!), но Ф. Ахард не сделал отсюда никаких выводов.
Похожую «арифметику» получил в 1785 г. соотечественник Ф. Ахарда – И. Биндхейм, в данном случае сумма составных частей равнялась уже 101%. Итак, ничего особенного в бериллах не наблюдалось.
В 1797 г. М. Клапрот, который к тому времени уже успел открыть уран, титан и цирконий и зарекомендовать себя как крупнейший химик-аналитик, получил от русского дипломата и писателя Д. Голицына образцы перуанских изумрудов и их исследовал. Но и М. Клапрот «не добрал» до 100% (66,25% кремнезема, 31,25% глинозема, 0,5% оксида железа, итого 98%). Куда исчезли 2%, ученый не знал и объяснить не пытался. И записать в свой послужной список открытие еще одного, четвертого по счету элемента ему не довелось.
Тем временем во Франции работал другой аналитик, искусный в своем деле ничуть не менее М. Клапрота, Л. Воклен. Начиная с 1793 г. он постоянно изучал бериллы и изумруды. Но и Л. Воклен, кроме уже привычных компонентов – кремнезема, глинозема, извести, оксида железа, ничего другого не обнаружил. Позднее Л. Воклен вспоминал, насколько было трудно осознать существование нового вещества, в особенности когда оно обладало некоторыми свойствами, сходными со свойствами уже известных веществ. Здесь ученый подразумевал близкое химическое сходство оксидов алюминия и будущего бериллия.
Опережая события, назовем Л. Воклена действительным автором открытия бериллия. Логика открытия оказалась не очень-то простой, и она, несомненно, делает честь Л. Воклену. Он рассуждал так: берилл и изумруд весьма похожи и по составу, и по форме своих кристаллов. То есть кристаллическая форма совсем одна и та же, а состав? Предшественники Л. Воклена находили в обоих минералах одинаковые составные части (глинозем, кремнезем, известь), только пропорции их колебались.
После первых неудачных экспериментов Л. Воклен решил четко разобраться в том, почему же так скачет содержание составных частей. Быть может, содержится еще «нечто», которое либо теряется в ходе реакций, либо, образно говоря, прячется за спину одного из компонентов (например, глинозема).
Было у Л. Воклена определенное психологическое преимущество. Он в 1797 г. открыл хром, придающий зеленоватую окраску изумруду и отсутствующий в берилле. Следовательно, отличие берилла и изумруда налицо. Но ведь они могли отличаться не только содержанием хрома. Днем рождения бериллия следует считать 14 февраля 1798 г., когда Л. Воклен в Парижской Академии наук произнес доклад «Об аквамарине, или берилле, и открытии новой земли в этом минерале». Он рассказал, как провел пять последовательных анализов и как от анализа к анализу крепло его убеждение в существовании новой земли. Сначала данные были такие:
Берилл: 69 частей кремнезема, 21 часть глинозема, 8–9 частей извести и 1½ части оксида железа.
Изумруд: 64 части кремнезема, 29 частей глинозема, 2 части извести, 3–4 части оксида хрома и 1–2 части воды.
Была ли то интуиция или что-то другое, но Л. Воклен заподозрил, что в обоих случаях в глиноземе содержится какая-то примесь. Она очень похожа на глинозем, поэтому ее никак не удавалось обнаружить ранее. Л. Воклену помогло его великолепное чутье аналитика. Ученый обнаружил, что примесь (новая земля) не образует квасцов, подобно глинозему. Потом он нашел и другие отличия. Но признаков сходства все же было больше, и именно благодаря им бериллий так долго как бы прятался за алюминий.
Если бериллиевая земля не глинозем (считал Л. Воклен), то она не является ни одной из известных земель, потому что она отличается от них еще больше, чем сам глинозем.
За сладкий вкус его солей Л. Воклен предложил назвать новый элемент глюцином (символ Gl) от греческого слова, означающего «сладкий». Название же «бериллий», которое и закрепилось, было предложено М. Клапротом, справедливо заметившим, что сладкий вкус имеют некоторые соединения других элементов.
В качестве любопытного исторического момента отметим, что Л. Воклен анализировал алтайские бериллы, которые ему подарил французский минералог и путешественник Э. Патрен.
Открытие Л. Воклена с полной достоверностью подтвердил немецкий химик, профессор химии в Геттингене И. Гмелин. Он анализировал сибирские бериллы из Нерчинска и пришел к тем же выводам, что и Л. Воклен. В виде металла бериллий впервые получили в Германии Ф. Вёлер и Е. Бюсси, действуя на хлорид бериллия металлическим калием. Это случилось в 1828 г., тридцать лет спустя после официальной даты открытия бериллия.








