Текст книги "Как были открыты химические элементы"
Автор книги: Дмитрий Трифонов
Соавторы: Валерий Трифонов
сообщить о нарушении
Текущая страница: 11 (всего у книги 22 страниц)
Открытие второго по счету «спектрального элемента» связано с изучением редкого минерала лепидолита (его называли также лилалит из-за лилового цвета). Впервые детальный химический анализ лепидолита осуществил еще в конце XVIII в. М. Клапрот. Этот искусный аналитик не сумел обнаружить в нем присутствие щелочей. Усомнившись в результатах, М. Клапрот решил повторить анализ и на сей раз (1797) нашел в лепидолите следующие составные части: 54,5% оксида кремния, 38,25% оксида алюминия, 4% оксида калия и 0,75% оксида марганца. Исчезнувший (2,5%) остаток М. Клапрот отнес за счет потерь главным образом содержащейся в минерале воды. Но лепидолит все же оказался нераспознанным до конца. Сколь изобретательным ни был М. Клапрот, он не сумел установить содержание двух важных составляющих: лития (в то время он еще не был открыт) и фтора.
В начале 1861 г. в руки Р. Бунзена и Г. Кирхгофа попал образец этого минерала, найденного в Саксонии. Ученые выделили из него щелочные компоненты и осадили калий в виде хлороплатината. После тщательного промывания осадок был подвергнут спектральному анализу, и 23 февраля 1861 г. на заседании Берлинской Академии наук изобретатели спектроскопического метода объявили о существовании нового щелочного металла в лепидолите. «Великолепный темно-красный цвет линии нового щелочного металла позволяет нам дать этому элементу название „рубидий“ и символ Rb – от слова rubidus, которое в старинные времена служило для обозначения глубокого красного цвета», – говорили ученые. Затем Р. Бунзен и Г. Кирхгоф обнаружили рубидий в тех же минеральных водах, которые годом раньше послужили природным источником цезия. Содержание рубидия оказалось лишь немногим выше. Металл был приготовлен Р. Бунзеном в 1863 г.
ТАЛЛИЙТретьим элементом, чье присутствие в земных минералах было установлено спектроскопическим методом, стал таллий. По некоторым своим свойствам он оказался похожим на щелочные металлы. И были ученые, отказывавшие таллию в праве считаться самостоятельным химическим элементом. Они полагали, что в действительности он является смесью щелочных металлов, неизвестных еще тяжелых аналогов рубидия и цезия. Потребовалось время, чтобы развеять подобное заблуждение. В то время как Р. Бунзен и Г. Кирхгоф продолжали исследования только что обнаруженных ими элементов, метод спектрального анализа привлек внимание английского химика и физика В. Крукса. К этому моменту он был известен научному миру главным образом как издатель-редактор журнала «Химические новости» (Chemical News). Свой путь к открытию таллия В. Крукс начал весьма обыденно. Еще в 1850 г. он получил десять фунтов ила, остававшегося в свинцовых камерах после производства серной кислоты. Этим приобретением В. Крукс был обязан заводу в Тилькероде (Германия). Ученый выделял из ила селен, который был нужен ему для лабораторных исследований соединений, называемых селеноцианидами (им была посвящена первая печатная работа В. Крукса). После извлечения селена и его очистки оставалось некоторое количество вещества, причем имелись основания подозревать, что в нем содержится теллур – непосредственный аналог селена по химическим свойствам. Однако примененные В. Круксом методы не привели к выделению теллура. Работы были прекращены, и лишь по удачному стечению обстоятельств ученый сохранил остатки от переработки ила. И пожалуй, еще уверенность, что в остатках содержится теллур.
Обнаружение цезия и рубидия произвело огромное впечатление на В. Крукса. Будучи не только впечатлительным человеком, но и трезвым практиком, он сразу понял, насколько перспективным для анализа оказывался спектральный метод. Получив в свое распоряжение спектроскоп, ученый тут же решил испытать его в деле. Объектом исследования послужили хранившиеся более десяти лет образцы сернокислотного ила (точнее, остатки после удаления из него селена). И вот образчик ила внесен в пламя горелки. В. Крукса сначала ждет разочарование: в спектре нет никакого намека на линии теллура. Линии селена, возникавшие вроде бы в первый момент, постепенно блекли. Однако на смену им появлялась великолепная зеленая линия, которую ранее В. Крукс никогда не наблюдал. Как было не приписать ее появление присутствию в иле нового химического элемента. Ученый так и сделал, дав ему имя «таллий», которое производится от греческого слова таллос, означающего «молодая зеленая ветвь».
Первую публикацию об открытии В. Крукс поместил в выпуске «Химических новостей» от 30 марта 1861 г. под названием «О существовании нового элемента, вероятно из группы серы». Здесь была ошибка, так как известно, что таллий не имеет никакого отношения к сере и ее аналогам. Спустя год В. Крукс признал ее и свою новую работу назвал: «Таллий, новый металлический элемент», где аналогия с серой уже не рассматривалась.
Так был открыт таллий (слово «открыт» относится к факту констатации существования нового химического элемента спектроскопическим методом). Но В. Крукс не выделил металлического таллия, не приготовил даже его соединения сразу после того, как обнаружил спектр элемента. Это сделал французский химик К. Лами, и ему часто приписывают честь независимого открытия таллия.
Впервые К. Лами наблюдал зеленую линию таллия в образце селена, выделенного предварительно из илов сернокислотных производств (т. е. того же исходного сырья, с которым имел дело В. Крукс). Это произошло в марте 1862 г. – год спустя после наблюдений В. Крукса. Уже 23 июня К. Лами представил Парижской Академии наук образец металлического таллия массой около 14 г. В. Круксу, по-видимому, тоже удалось изготовить металлический таллий, но в виде порошка. К. Лами, однако, заявил, что круксовский таллий есть не что иное, как сульфид металла. Началась полемика. В. Крукс заявил, что металл в порошке ему удалось получить до 1 мая 1862 г., но из-за летучести он не отважился сплавить порошок, чтобы получить слиток. Специальная комиссия, созданная Парижской Академией (в нее входили такие видные ученые, как А. Сент-Клер Девилль, Т. Пелуз, Ж. Дюма), признала приоритет К. Лами в получении металла.
Французский ученый, бесспорно, сделал гораздо больше В. Крукса в изучении химии таллия. Он доказал, что металл образует трехвалентные и одновалентные соединения. Одновалентный таллий очень похож на щелочные металлы, трехвалентный – на алюминий. Ж. Дюма назвал его парадоксальным металлом. Сходство с натрием и калием и навело на мысль, что таллий на самом деле является смесью неизвестных щелочных металлов с большими атомными массами. Между тем, к сожалению, действительные заслуги французского химика в истории открытия таллия нередко остаются на заднем плане, и честь этого открытия безраздельно приписывается В. Круксу.
В 1866 г. известный путешественник и минералог Э. Норденшельд, один из исследователей Гренландии, обнаружил новый минерал, содержащий серебро, медь, селен и таллий. Он предложил назвать его крукезитом (в честь В. Крукса). Этот минерал долгое время считался единственным, содержащим заметную концентрацию таллия.
ИНДИЙВ истории элементов бывало много случаев, когда открытие нового химического элемента самым непосредственным образом влияло на обнаружение другого. Таллий оказался своего рода катализатором, существенно ускорившим процесс открытия индия – последнего из классической четверки элементов, опознанных с помощью спектрального анализа.
Местом действия оказался немецкий город Фрейберг, а главными действующими лицами – профессор физики в Горной академии Ф. Рейх и его ассистент И. Рихтер. Время действия – 1863 г. Заинтересовавшись некоторыми свойствами открытого за два года до этого таллия, Ф. Рейх решил приготовить достаточное для исследований количество металла. Прежде всего он позаботился о природных источниках для выделения таллия и с этой целью стал анализировать образцы цинковых руд, добытых из шахт Химмельсфюрста. Было известно, что руды, помимо цинка, содержали серу, мышьяк, свинец, кремний, марганец, медь, олово и кадмий – словом, солидный набор различных химических элементов. Ф. Рейх предложил добавить к ним и таллий. Но в ходе долгих химических операций ему так и не удалось выделить искомый элемент, однако он получил в итоге соломенно-желтый осадок неизвестного состава. Сохранился рассказ о том, что в его лабораторию зашел как-то раз К. Винклер (будущий автор открытия германия) и Ф. Рейх сказал ему, показав пробирку с осадком, что это сульфид нового элемента.
Было бы удивительно, если бы Ф. Рейх не использовал для доказательства своего предположения спектроскопический метод. Конечно, он так и сделал, но здесь выяснилось досадное обстоятельство. Ф. Рейх страдал дальтонизмом (он не мог различать цвета). Поэтому для спектральных исследований он привлек своего ассистента И. Рихтера.
И. Рихтер достиг успеха буквально с первой попытки: в спектре исследуемого образца он увидел исключительно яркую синюю линию, ее нельзя было спутать ни с какими другими, она не совпадала с голубой линией цезия. Словом, всякая конкуренция исключалась. И. Рихтер рассказал о своих наблюдениях Ф. Рейху, и ученые пришли к выводу, что в цинковых рудах Химмельсфюрста содержится новый химический элемент. Решено было назвать его индием (по названию ярко-синей краски индиго, в которую была окрашена характерная спектральная линия элемента). Здесь любопытна деталь, очень хорошо характеризующая Ф. Рейха. Первые публикации об открытии индия были подписаны фамилиями обоих ученых. Ф. Рейх впоследствии считал это несправедливым и выдвигал И. Рихтера как единственного автора, полагая, что честь открытия индия принадлежит исключительно ему.
Вскоре, после того как благодаря спектроскопическому методу они доказали присутствие индия в природе, Ф. Рейх и И. Рихтер выделили небольшое количество элементов в материальной форме. Соединения индия скрашивают пламя бунзеновской горелки в такой яркий сине-фиолетовый цвет, что присутствие нового элемента могло быть установлено без спектроскопа. Ученым удалось изучить некоторые свойства индия, и в этом им большую поддержку оказал К. Винклер.
Впервые был приготовлен и металлический индий; правда, он содержал примеси. Образцы чистого индия И. Рихтер представил Парижской Академии наук только в 1867 г. и оценивал их в 800 фунтов стерлингов, по тем временам цена высокая.
Химическое лицо индия выявилось довольно быстро, но его атомную массу сначала определили неправильно (75,6). Д. И. Менделеев пришел к выводу, что при таком значении атомной массы индий не найдет подходящего места в периодической системе, и предложил увеличить это значение примерно в 1,5 раза. Д. И. Менделеев оказался прав, и индий занял место в третьей группе таблицы элементов.
ГЛАВА VII.
РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ

«Это было море ошибок, и истина в нем тонула», – так сказал однажды про историю редкоземельных элементов видный французский химик Ж. Урбэн. Хотя он слыл темпераментным и экспансивным человеком, в данном случае он ничуть не преувеличил. В самом деле, за 30 с небольшим лет (с 1878 по 1910 г.) появилось более ста сообщений об открытии новых редкоземельных элементов. И только десять открытий оказались достоверными. Непросто описывать их историю – настолько она сложна и запутанна.
Обычно к редкоземельным элементам относят лантан (Z=57) и следующие за ним четырнадцать лантаноидов от церия (Z=58) до лютеция (Z=71). Можно добавить сюда еще два элемента: иттрий (Z=39) и скандий (Z=21). Они похожи по свойствам на лантан и исторически связаны с редкоземельными элементами. Открытием иттрия вообще началась их история. Скандий же в этой главе упомянем лишь кратко, подробно о нем будет рассказано в главе девятой.
В целом редкоземельные элементы (РЗЭ) составляют ⅕ часть всех существующих в природе элементов, а их открытие растянулось на 113 лет – с 1794 г. (дата обнаружения иттрия) до 1907 г. (дата открытия лютеция). Один из РЗЭ, прометий, был много позже получен искусственным путем. Характерные особенности истории РЗЭ связаны с их специфическими свойствами, и прежде всего с их удивительным химическим подобием. Поэтому в минералах и рудах они встречаются все вместе, и разделить их смесь на составляющие – задача чрезвычайной трудности. Этим обстоятельством и объясняется обилие ложных открытий в редкоземельной области, когда якобы новые элементы на деле оказывались смесью уже открытых. И наоборот, даже действительные открытия не всегда отражают факт обнаружения нового РЗЭ в чистом виде; во многих случаях элемент был, как выяснялось впоследствии, смесью двух, а то и более неизвестных РЗЭ. Вот почему к общепринятым датам открытий некоторых РЗЭ нужно подходить с осторожностью.
Еще одна важная черта истории РЗЭ: все они были первоначально выделены в виде оксидов. Поэтому широко распространен термин «редкие земли». Землями химики прошлого называли оксиды, например, магния, кальция (сравните название «щелочные земли»), и этот термин применили (как потом стало ясно, ошибочно) к оксидам первых РЗЭ – иттрия и церия. Свободные металлы были приготовлены спустя много времени после открытия соответствующих элементов. Например, ряд тяжелых лантаноидов получен в виде чистых металлов только после второй мировой войны. Условимся поэтому, что дальше, приводя название того или иного РЗЭ, будем иметь в виду, что речь идет об оксиде.
КАК НАЧАЛАСЬ ИСТОРИЯ РЗЭ?В 1794 г. финский химик, профессор университета в г. Або (Турку) Ю. Гадолин выделил из минерала иттербита оксид неизвестного элемента, который он назвал иттрием. Этот минерал был найден семью годами ранее в заброшенном карьере близ шведской деревушки Иттербю. Она-то и дала имя минералу (правда, потом его переименовали в гадолинит, в честь Ю. Гадолина), а затем иттрию и еще трем РЗЭ: эрбию, тербию, иттербию.
Образцы редкого иттербита стали исследовать другие химики-аналитики того времени – француз Л. Воклен и немец М. Клапрот. Они тоже находили в нем новый оксид (землю), но по-разному определяли его содержание. Методы анализа во всех случаях были одинаковыми, и объяснить наблюдавшиеся расхождения в результатах можно было так: в минералах содержится еще один неизвестный элемент, который с трудом отделяется от иттрия.
Так и оказалось в действительности, но потом, когда предполагаемого незнакомца уже обнаружили, однако в другом минерале. Это случилось в 1803 г. И. Берцелиус и В. Хизингер, с одной стороны, и М. Клапрот – с другой, независимо выделили из него оксид нового элемента и дали ему имя «церий» (по имени астероида Цереры, открытого в 1801 г. астрономом А. Пьяцци); минерал же стали называть поэтому церитом. Вместе с гадолинитом он долгие годы был единственным источником РЗЭ.
Церий был во многом похож на иттрий, хотя кое в чем от него и отличался. Но, как известно теперь, под названием «церий» в действительности фигурировала сложная смесь цериевых РЗЭ (от Ce до Gd), а под названием «иттрий» – смесь иттриевых РЗЭ (от Tb до Lu). Таким образом, действительные иттрий и церий соответственно в 1794 и 1803 гг. открыты не были. В 1826 г. ученик И. Берцелиуса – К. Мосандер заподозрил, что выделенный из церита церий не чист, сам содержит какую-то примесь. Превратить свое подозрение в уверенность ученый сумел лишь тринадцатью годами позже.
ЛАНТАН И ДИДИМ, ТЕРБИЙ И ЭРБИЙДо того, как К. Мосандер не занялся вплотную изучением редких земель, иттрий и церий привлекали сравнительно мало внимания. Оба они были внесены в список элементов, их свойства в той или иной степени удалось изучить.
Если бы в честь вновь открытого элемента было принято высаживать деревце, то в таком воображаемом саду иттрий и церий выглядели бы как молодые, еще не окрепшие стволики. Подобная аналогия, однако, нисколько ненадуманна, ибо начиная с 1839 г. стволики эти начали интенсивно ветвиться. Так продолжалось почти семьдесят лет.
Тщательно изучая церий, К. Мосандер установил, что в нем содержатся еще два новых элемента – лантан (La) и дидим (Di). Название первого происходит от греческого слова, означающего «скрытый»; действительно, долгое время лантан ускользал от внимания исследователей. Дидим по-гречески означает «близнец», ибо оказалось, что он как две капли воды похож на лантан, и только великолепное искусство К. Мосандера позволило доказать, что лантан и дидим – это все-таки разные элементы. Вот какие побеги дал цериевый стволик:

Впоследствии на химическую индивидуальность церия и лантана покушались многие исследователи. Они хотели доказать сложность этих элементов. Однако К. Мосандер действительно получил оксиды этих элементов в относительно чистом состоянии. Другое дело дидим. В современной периодической системе вы не увидите этого символа. За ним скрывается целая история, о которой речь пойдет дальше. Здесь же заметим, что дата «1839 год» представляется более правомерной в плане действительного начала биографии церия. То же самое замечание можно сделать и в отношении иттрия. За него К. Мосандер взялся в 1843 г., вдохновленный успехами своих работ по расщеплению церия. И старый иттрий Гадолина открыл истинное лицо. Собственно, здесь было три лица: сам иттрий и два чрезвычайно на него похожих элемента: тербий и эрбий. Можно нарисовать такую схему:

Иттрий после отстоял свою индивидуальность. Имел ли К. Мосандер в своем распоряжении чистый тербий, остается загадкой до сих пор. Зато эрбий повторил судьбу дидима. Внесите еще одну поправку в официальные даты открытия элементов. Настоящий иттрий фактически выделил К. Мосандер в 1843 г. Поэтому именно Мосандера мы считаем подлинным начинателем истории РЗЭ.
После К. Мосандера список известных РЗЭ оставался неизменным на протяжении почти 40 лет. Изучая эти элементы, ученые наделали много ошибок (неправильно установили формулы оксидов, неверно определили атомные массы). В том, что «что-то здесь не так», был твердо убежден Д. И. Менделеев, который предложил изменить величины атомных масс, открытых к 1869 г. РЗЭ. Из литературы по периодическому закону известно, что он был совершенно прав. Но на дальнейшую историю РЗЭ правота Д. И. Менделеева не оказала фактически никакого влияния. Свойства этих элементов были настолько близки, что не удавалось установить надежный контроль за процессом их разделения. Тут-то и выявился парадокс: смесь элементов принималась за один элемент, и, наоборот, вновь открытый элемент оказывался смесью.
Даже спектральный анализ, так хорошо зарекомендовавший себя в открытии новых элементов, в истории редких земель наделал, пожалуй, больше ошибок, чем привел к достоверным результатам.
«ИТТЕРБИЙ», СКАНДИЙ, «ГОЛЬМИЙ», ТУЛИЙПочти четыре десятилетия после работ К. Мосандера редкоземельные деревца не давали новых побегов. Причин тому было несколько. Ученые никак не могли освоиться с капризной химией РЗЭ. Разделение этих элементов было основано на том, что их соли, хотя и в малой степени, различались по растворимости. Поэтому, чтобы более или менее надежно отделить одну редкую землю от другой, приходилось проводить многие сотни однотипных операций перекристаллизации.
Слишком мало было известно редкоземельных минералов. Гадолинит и церит являлись редкими, а остальные (общим числом около 10) вообще представляли музейный интерес.
Но так или иначе пора новых открытий наступила. И первым дало побеги иттриевое деревце. Мосандеровский эрбий давно внушал ученым сомнения, но уверенно доказать его сложность не удавалось. Лишь в 1878 г. швейцарский ученый Ш. Мариньяк отделил от эрбия новый элемент – «иттербий», в этом имени снова прозвучало название деревушки Иттербю.
И здесь, и в заголовке данного раздела мы взяли «иттербий» в кавычки. Это означает, что в действительности он не был химически индивидуальным элементом, а представлял, как выяснилось впоследствии, смесь некоторых РЗЭ. Поэтому всякий раз, когда вновь обнаруженный элемент на деле оказывался смесью, мы будем брать его название в кавычки. Значит, 1878 г. нельзя считать окончательной датой открытия «иттербия».
Что «иттербий» – смесь, установил уже в следующем году шведский химик Л. Нильсон; он открыл скандий, дав ему имя в честь Скандинавии.
Итак, эрбий минус «иттербий», минус скандий… Может, теперь эрбий следовало, наконец, считать очищенным от примесей? В 1879 г. соотечественник Л. Нильсона П. Клеве установил, что эрбий без «иттербия» и скандия все еще является смесью, и расщепил его на три составляющие: собственно эрбий, а также «гольмий» и тулий. «Гольмий» был наименован в честь старинного названия Стокгольма – Гольмиа. В имени тулия отразился миф о легендарной стране Туле, располагавшейся, по преданию, на краю света. И выделить тулий было так же трудно, как достичь далекой и загадочной Туле.
В 1879 г. была окончательно доказана химическая индивидуальность очищенного от примесей эрбия, и не 1843 г., а 1879 г. будем считать действительной датой его открытия. Чистым оказался и тулий. А «гольмию» еще приходилось ждать решения своей участи. Редкоземельное иттриевое деревце всего за два года пышно разрослось:

В истории открытия элементов существуют определенные пики. В истории РЗЭ таким пиком оказалось славное двухлетие – 1878–1879 гг. И еще одно событие произошло в это время: в Северной Америке были открыты месторождения нового редкоземельного минерала – самарскита. Любопытно, что это название имеет чисто русское происхождение. Еще в середине 60-х годов прошлого века на Урале был обнаружен минерал сложного состава, содержащий редкие земли. Его нарекли в честь горного инженера В. Е. Самарского. Американский же минерал оказался идентичным уральскому.
Значение данного события трудно переоценить. Самарскит появился во многих химических лабораториях. Он устранил былую острую нужду в редкоземельных препаратах. Когда в руках ученых оказывается больше исследовательского материала, они вправе рассчитывать на постановку более тщательных исследований. А достигнутые результаты проще проверять и воспроизводить. Самарскит оказался подлинной фабрикой новых РЗЭ.
И наконец, к концу 70-х годов ученые достаточно хорошо освоили спектроскопический метод. Он все более властно начал вмешиваться в процесс открытия РЗЭ. Но и здесь немалыми оказались «издержки производства»: ведь спектры отдельных РЗЭ также похожи друг на друга, как и химические свойства этих элементов.








