Текст книги "Как были открыты химические элементы"
Автор книги: Дмитрий Трифонов
Соавторы: Валерий Трифонов
сообщить о нарушении
Текущая страница: 17 (всего у книги 22 страниц)
Менделеевский экатантал едва ли не единственный пример в истории радиоактивных элементов, когда их новый представитель в действительности был открыт раньше, чем об этом говорит официальная дата его обнаружения. Речь идет об элементе с порядковым номером 91, располагающемся между торием и ураном. Его долгоживущий изотоп имеет солидный период полураспада (34 300 лет) и, следовательно, должен накапливаться в урановых рудах, да к тому же он является α-излучателем. Если взять за основу общепринятую дату его обнаружения (1918), то резонно задать вопрос: почему же он был открыт столь поздно? Ответ на вопрос в свое время последует. Пока же обратимся к таблице 1 и схемам радиоактивных семейств (см. с. 159), а именно к схеме семейства урана-238.
Знаменитый UX В. Крукса, с открытия которого, собственно, все и началось, обозначен в таблице 1 как «уран-Х1». Эта единица внизу была поставлена гораздо позже, когда был открыт радиоэлемент, помеченный как «уран-Х2».
Так вот в феврале 1913 г. Ф. Содди высказал предположение, что между круксовским UХ и открытым в 1911 г. U-II в семействе урана должен располагаться неизвестный радиоэлемент. Его свойства, по словам Ф. Содди, должны были отвечать свойствам экатантала. Этот гипотетический радиоэлемент как бы просился в пятую группу периодической системы, где, по странной прихоти природы, еще не было ни одного радиоэлемента. Строго говоря, странного здесь ничего нет. Родоначальник семейства уран-238 (или U-I) и член этого семейства U-II суть изотопы урана, причем оба являются настоящими долгожителями по своим периодам полураспада на фоне прочих радиоэлементов. Оказалось нелегким делом разглядеть уран-II на фоне урана-I. И столь же непросто было заметить предшественника U-II – гипотетический экатантал UХ2.
Наблюдение это было сделано в середине марта 1913 г. К. Фаянсом и его молодым сотрудником О. Гёрингом. Они зафиксировали новый радиоэлемент – β-излучатель с периодом полураспада 1,17 мин и свойствами, соответствующими свойствам тантала. В октябре того же года ученые четко высказались, что UX2 является новым радиоактивным элементом между торием и ураном, и предложили назвать его бревием (от греческого слова, означающего «короткоживущий»).
Символ UX2 занял место в урановом радиоактивном семействе, а символ Bv отнюдь не разместился в клетке № 91 периодической системы, хотя подтверждения его открытия поступали из Германии и Англии, и его интенсивно изучали во многих лабораториях.
Во всяком случае, нет никакого противоречия в утверждении, что элемент № 91 был открыт в 1913 г. Даже становится немного обидно за экатантал. Почему его история начинается не этой датой?
Возможно, если бы не первая мировая война, бревию повезло бы больше. Но радиохимические исследования на несколько лет прекратились, обмен информацией резко снизился. Экатанталу предстояло быть открытым вторично.
Среди трех радиоактивных семейств самым непонятным долгое время представлялось актиниевое. Какой радиоэлемент является его родоначальником? Здесь не было ясности. Если главой семейства считать актиний, то его период полураспада должен был бы быть того же порядка, как у тория и урана. Это предположение казалось маловероятным, хотя живучесть актиния никак не поддавалась точной оценке. Но, во всяком случае, по сравнению с возрастом Земли она была ничтожной.
Поскольку актиний рассматривался как родоначальник семейства, то вопрос о предшествующих ему радиоэлементах терял смысл. Это обстоятельство повлияло на задержку открытия экатантала. Существовала и другая идея: актиниевое семейство не является самостоятельным. Оно как бы отпочковывается от уранового, словно ветвь от ствола дерева. Эту версию радиохимики стали разрабатывать еще в 1913–1914 гг., в то время, когда на свет уже появился бревий. Разумных выводов не последовало, актиний продолжал возглавлять свое семейство, хотя (теперь в этом мало, кто сомневался) не по праву.
Ключом к дальнейшему развитию событий оказался открытый еще в 1911 г. (русским радиохимиком Г. Н. Антоновым в лаборатории Э. Резерфорда) радиоэлемент UY, который является изотопом тория. В урановом семействе UX1 (тоже изотоп тория), испуская β-частицы, порождает бревий (UX2).
Французский ученый А. Пикар в 1917 г. предположил, что сходная картина должна иметь место в начале семейства, именуемого пока актиниевым. Он высказал мысль, надолго опередившую свое подтверждение, что родоначальником данного семейства служит третий, еще неизвестный изотоп урана (в добавлении к U-I и U-II). Его А. Пикар назвал актиноураном. Испуская α-частицу, он превращается в UY, а этот последний в актиний. Но промежуточным продуктом здесь будет радиоэлемент, принадлежащий к пятой группе периодической системы. Иными словами, вот какую цепочку превращений видел мысленным взором А. Пикар:

Параллельно решался вопрос и с UY, место которого в радиоактивном семействе оставалось неопределенным. Столь четкая, хотя и довольно дерзкая программа напрашивалась к реализации.
В Англии очередными поисками экатантала занялись Ф. Содди и его ассистент А. Кранстон. Удача им сопутствовала, и в декабре 1917 г. они отправили в печать статью, излагавшую сведения об открытии экатантала как продукта β-распада урана-Y. Правда, данная ими характеристика экатантала была скудной в отличие от той, которая содержалась в работе немецких химиков О. Гана и Л. Мейтнер.
Случилось так, что их статью опубликовали раньше английской, хотя она и была сдана в печать позже. Но дело не в сроке публикации. О. Ган и Л. Мейтнер не только выделили новый радиоэлемент, но, насколько это было возможно, изучили его свойства, оценили величину периода полураспада и измерили длину пробега α-частиц. Немецкие и английские ученые и считаются соавторами открытия элемента № 91, хотя вклад первых, несомненно, был более весом. История его открытия завершилась благородным поступком. К. Фаянс, ничуть не претендуя на приоритет открытия экатантала (хотя имел на это все права), лишь предложил изменить название «бревий» на «протактиний» (по-гречески – «предшествующий актинию»), поскольку последний радиоэлемент являлся гораздо более долгоживущим изотопом.
Так символ Ра занял свое место в периодической системе. Самый долгоживущий его изотоп имеет массовое число 231. В 1927 г. удалось выделить несколько миллиграммов чистого Pa2O5.
Элемент № 87 в истории открытия радиоактивных элементов занимает особое место. Хотя его природное содержание исчезающе мало, он все-таки первоначально был открыт именно в природных объектах. Но рассказ о нем мы продолжим в разделе, посвященном синтезированным элементам. Это оправдано по многим причинам.
И тем самым мы заканчиваем первую часть нашей книги.
ЧАСТЬ ВТОРАЯ.
СИНТЕЗИРОВАННЫЕ ЭЛЕМЕНТЫ

…Еще в очень давние времена возникла идея о трансмутации (превращении) элементов. Ее носителями были алхимики, которые преследовали, однако, конкретную цель. Все попытки трансмутации оказались тщетными. По мере того как химия обретала черты самостоятельной науки и развивались здравые суждения о строении и свойствах вещества, возможность превращения элементов вообще была поставлена под вопрос. И в конце XIX в. ученые уже всерьез не обсуждали эту проблему, хотя и не решались отвергнуть ее бесповоротно.
Но в конце столетия произошло событие, которое привело к парадоксальному выводу. В природе постоянно происходят процессы трансмутации элементов. Это событие – открытие радиоактивности. Но проявление естественной трансмутации ограничивается лишь сравнительно небольшой областью мира химических элементов, той областью, которая занимает самый конец периодической системы.
Радиоактивные превращения происходят независимо от воли человека. Все попытки искусственно повлиять на протекание природных радиоактивных процессов оказались неудачными. Когда была разработана ядерная модель строения атома, стало ясно, что радиоактивность является ядерным свойством. Способность к радиоактивному распаду определяется особенностями и закономерностями строения ядер.
Величина Z является важнейшей, определяющей характеристикой химического элемента. При испускании ядром α– или β-частиц его заряд изменяется, и тем самым изменяется природа химического элемента. Один элемент превращается в другой. Если же в нашем распоряжении имеется стабильный химический элемент, то величина его Z сама по себе никак не может измениться. Она изменится, если удастся каким-либо способом перестроить структуру его ядра, увеличить или уменьшить число протонов, содержащихся в ядре. Только тогда изменится величина его заряда, а тем самым произойдет искусственная трансмутация химического элемента.
Впервые реакцию искусственного превращения элементов осуществил в 1919 г. Э. Резерфорд.

Э. Резерфорд
Он бомбардировал азот α-частицами, в результате чего образовывались атомы кислорода. Эта первая в истории науки искусственная ядерная реакция может быть записана следующим уравнением:

или короче:

Долгое время α-частица оставалась единственным ядерным снарядом. Энергия природных α-частиц невелика, поэтому они могли проникать в ядра сравнительно небольшого числа элементов, и события эти были чрезвычайно редкими. Поэтому и были ограничены возможности искусственной трансмутации элементов. Дело существенно изменилось благодаря двум открытиям в 30-х годах нашего столетия. В 1932 г. английский ученый Дж. Чэдвик открыл нейтрон, элементарную частицу, не несущую заряда. В силу своей электронейтральности нейтрон оказался универсальным снарядом для осуществления ядерных превращений: ведь он не отталкивался положительно заряженным ядром. Спустя два года Ирен и Фредерик Жолио-Кюри во Франции обнаружили явление искусственной радиоактивности и зафиксировали новый вид радиоактивных превращений – позитронный распад, т. е. испускание позитрона. Стало ясно, что для многих стабильных элементов искусственным путем, с помощью ядерных реакций, могут быть получены радиоактивные изотопы.
Что же позволило ученым осуществить массовое получение искусственных радиоактивных изотопов? То, что физики-экспериментаторы создали точнейшую измерительную аппаратуру, разработали разнообразные методы проведения и изучения ядерных реакций и совместно с химиками научились выделять ничтожные следы полученных радиоактивных веществ. То, что арсенал бомбардирующих частиц значительно обогатился. К α-частицам, протонам и нейтронам добавились дейтроны – ядра тяжелого изотопа водорода, а уже потом многозарядные ионы таких элементов, как бор, углерод, азот, кислород, неон и т. д. Наконец, то, что ученые создали мощные ускорители ядерных снарядов, позволяющие разгонять заряженные частицы до очень высоких скоростей. Все это поставило на повестку дня искусственный синтез новых элементов.
ГЛАВА XII.
ОТКРЫТИЕ СИНТЕЗИРОВАННЫХ ЭЛЕМЕНТОВ В СТАРЫХ ГРАНИЦАХ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ

Эту главу можно было бы назвать и так: «Синтез недостающих элементов периодической системы». После того как был открыт последний из стабильных элементов – рений, в таблице между водородом и ураном недоставало лишь четырех элементов с порядковыми номерами 43, 61, 85, 87. Все они были синтезированы до второй мировой войны (либо делались целенаправленные попытки их синтеза). Во всяком случае, именно они открывают историю синтезированных элементов.
ТЕХНЕЦИЙВерхняя часть периодической системы вплоть до шестого периода (где размещается семейство редкоземельных элементов) всегда представлялась относительно благополучной, особенно после того, как была открыта группа благородных газов, столь гармонично замкнувшая систему элементов с ее правого края. Благополучной в том смысле, что здесь едва ли можно было ожидать каких-либо сенсационных открытий. Споры возникали лишь по поводу возможного существования элементов легче водорода и между водородом и гелием. В целом же, говоря языком математиков, эта часть периодической системы представляла собой упорядоченное множество химических элементов.
И тем досаднее и непонятнее казался трудно объяснимый пробел, расположенный в пятом периоде и седьмой группе, в клетке таблицы с порядковым номером 43.
Д. И. Менделеев называл этот элемент экамарганец и пытался предсказать его важнейшие свойства. Время от времени казалось, что пробел заполнен, но вскоре обнаруживалась ошибка. Так было в случае ильмения, якобы открытого русским химиком Р. Германном еще в 1846 г. Одно время даже Д. И. Менделеев склонен был считать ильмений экамарганцем. Некоторые исследователи думали, что в промежутке между молибденом и рутением следует поставить дэвий (см. с. 144). Немецкий химик А. Ранг даже помещал символ Dv в соответствующее место таблицы. В 1896 г. мелькнул на горизонте люций, будто бы найденный П. Баррьером, и сгорел, подобно метеору.
Д. И. Менделеев так и не дожил до того счастливого момента, когда экамарганец должен был обрести, наконец, свое настоящее имя. Через год после его смерти, в 1908 г., пришла весть из Японии. М. Огава сообщил ученому миру, что в редком минерале молибдените ему удалось обнаружить долгожданный элемент. Ученый дал ему звучное имя «ниппоний» (в честь древнего названия Японии). Увы, и на сей раз Азия не смогла подарить периодической системе нового представителя. М. Огава, по всей вероятности, имел дело с гафнием (также открытым позже).
И химики, привыкшие к тому, что научные журналы каждый год сообщают об открытии нескольких химических элементов, оказались в растерянности. Химики все больше и больше начинают задумываться, не допустил ли Д. И. Менделеев ошибки в своей системе. Вдруг аналогов марганца вообще не существует.
В 1913 г. Г. Мозли решительно опроверг подобный скепсис. Он четко доказал, что для них есть места в ряду элементов.
В статье, датированной 5 сентября 1925 г., В. Ноддак, И. Такке и О. Берг объявили, что вместе с элементом № 75 – рением ими открыт также и его более легкий аналог по седьмой группе периодической системы – мазурий с порядковым номером 43. Два новых символа Ма и Re появились в таблице Д. И. Менделеева, появились на страницах учебников, замелькали в многочисленных научных журналах. Авторы открытия не видели ничего удивительного в том, что мазурий и рений не удалось обнаружить раньше. По мнению ученых, эти элементы отнюдь не были самыми редкими в земной коре. Дело заключалось в другом. Геохимики выделяют обширную группу рассеянных элементов. Это те, которые почти или совсем не образуют своих собственных минералов, а рассеяны в разных количествах по чужим, словно природа разбрызгала их по горным породам из гигантского пульверизатора. Именно благодаря своей рассеянности мазурий и рений так долго скрывались. И только всевидящий глаз рентгеноспектрального анализа как будто бы разглядел присутствие новых элементов на обширном фоне посторонних веществ. Существует древняя пословица: «Если двое делают одно и то же, это не значит, что получится одно и то же». Если двое начинают свой путь одновременно, то судьбы их обычно складываются по-разному. Из одной точки потянулись две биографии – сорок третьего и семьдесят пятого элементов, но одна из них переросла в широкий торный проселок, а другая затерялась в буреломе недоразумений, противоречий и загадок. Это была тропа мазурия.
В. Прандтль отнесся к судьбе пробелов в седьмой группе таблицы небезучастно. Он попытался взглянуть на проблему с другой стороны и высказал оригинальное мнение по поводу устройства периодической системы. В. Прандтль не предложил нового варианта таблицы. В его построении редкоземельные элементы размещались каждый в одной группе, хотя от такого варианта большинство химиков к тому времени уже отказались. И вот что ученый обнаружил: при такой структуре таблицы в седьмой группе под марганцем появляются сразу четыре пробела, которые соответствуют еще не открытым (это было в 1924 г.) элементам с порядковыми номерами 43, 61, 75 и 93. Прандтль считал, что это не случайно. Видимо, существует какая-то общая причина, которая объясняет отсутствие четырех элементов. Немецкий ученый сгустил краски. Его вариант таблицы оказался слишком искусственным, чтобы завоевать право на существование. Окончательное открытие рения внесло первое опровержение в его идею, а об элементе № 93, первом трансуране, в то время мало кто думал. Но в одном интуиция не подвела В. Прандтля: он верно предчувствовал, что сорок третий и шестьдесят первый чем-то тесно связаны друг с другом.
Чем дальше, тем меньше верили ученые в существование мазурия. Упорствовали лишь авторы открытия. Уже в начале 30-х годов И. Ноддак продолжала утверждать, что со временем сорок третий элемент можно будет приобретать у химических фирм без особого труда, так же как стало возможным покупать рений. Но время шло и, какие бы образцы земных пород ни подвергали химики испытаниям на мазурий, они убеждались, что И. Ноддак была права лишь наполовину, только лишь в отношении рения. Искать мазурий пытались в самых что ни на есть редкостных образцах. Более того, говорили, что мазурий образует свои, совершенно неведомые, свойственные лишь ему природные соединения. И это вызывало протест со стороны геохимиков. Фантазия шла дальше, и возникало предположение о радиоактивности мазурия. Эта фантазия встречала скептическое отношение. Но именно она и оказалась реальностью.
Обратимся к некоторым важным понятиям ядерной физики. Наряду с термином «изотопы» существует термин «изобары». В переводе с греческого он означает «равнотяжелые», т. е. «имеющие одинаковую массу». Изобарами будут два изотопа различных химических элементов с различными зарядами ядер, но с одинаковыми массовыми числами. Например, калий-40 и аргон-40. Их заряды ядер отличаются (соответственно 19 и 20). Но у этих разновидностей атомов одно и то же массовое число. В их ядрах содержится разное число протонов и нейтронов, а сумма их одинакова: у калия 19 протонов и 21 нейтрон, а у аргона по 20 протонов и нейтронов.
Так вот понятие «изобары» в конечном счете оказалось неожиданным ключом к решению проблемы мазурия.
Когда у большинства стабильных химических элементов были экспериментально обнаружены изотопы, причем у некоторых до десяти различных разновидностей атомов, ученые начали поиск закономерностей, царящих в мире изотопов. Одну из подобных закономерностей в начале 30-х годов подметил немецкий физик-теоретик И. Маттаух[16]16
Идею этого правила высказал еще в 1924 г. советский химия С. А. Щукарев.
[Закрыть]. Если заряды ядер двух изобаров, считал ученый, различаются на единицу, то один из них обязательно должен быть радиоактивным. Вот, например, в паре изобаров 40K–40Ar первый проявляет слабую естественную радиоактивность, испытывает так называемый K-захват, превращаясь при этом во второй.
Далее И. Маттаух сопоставил друг с другом массовые числа изотопов элементов, соседних с мазурием, т. е. молибдена (Z=42) и рутения (Z=44).

Какой вывод следовал из этого сопоставления? А такой, что весь обширный интервал массовых чисел от 94 до 102 является запрещенным для изотопов элемента № 43. Иными словами, по И. Маттауху, получалось, что стабильных изотопов мазурия вообще быть не может.
Если это так, то с порядковым номером 43 в периодической системе элементов оказывалась связанной странная аномалия. Все разновидности атомов с Z=43 должны были обладать свойством радиоактивности, словно бы появлялся своеобразный нестабильный островок в море стабильности химических элементов. Этого никогда не удалось бы предвидеть в рамках представлений одной лишь химии. Предсказывая экамарганец, Д. И. Менделеев, конечно, не мог предполагать, что этот представитель седьмой группы периодической системы элементов не должен существовать на Земле.
Разумеется, по тем временам (начало 30-х годов) подмеченная И. Маттаухом закономерность выглядела не более чем гипотезой. Но гипотезой, которая имела все основания стать строгим теоретическим правилом. Так это впоследствии и произошло. Химикам же, вконец разочаровавшимся в попытках обнаружить элемент № 43, идея немецкого физика позволяла увидеть первопричину неудач. Однако символ Ма тем не менее не исчез из сорок третьей клетки системы, это произошло лишь несколько лет спустя. И здесь есть своя закономерность. Что из того, что все изотопы мазурия радиоактивны? Разве нет на Земле радиоактивных изотопов, которые существуют на нашей планете? Возьмите уран-238, торий-232 и, наконец, калий-40. Они существуют до сих пор потому, что имеют очень большие периоды полураспада. А кто мог поручиться, что и изотопы мазурия не являются столь же долгоживущими? А раз так, то поиски сорок третьего элемента в природе отнюдь не следовало объявлять бессмысленными.
Многолетняя проблема оставалась нерешенной. Кто знает, как сложилась бы дальнейшая судьба мазурия, если бы в науке не сверкнула зарница новой эры – эры искусственного синтеза элементов?
Осуществление ядерного синтеза стало реальным после изобретения циклотрона, открытия нейтрона и искусственной радиоактивности. В начале 30-х годов удалось синтезировать несколько искусственных радиоизотопов известных элементов. Появились даже сообщения о синтезе элементов тяжелее урана. Но посягнуть на пустовавшие клетки внутри периодической системы физики никак не решались. Разные на то были причины. Главная же состояла в огромных технических трудностях синтеза. В какой-то мере сыграл роль случай. В конце 1936 г. молодой итальянский физик Э. Сегре стажировался в Беркли (США), где в то время успешно работал один из первых в мире циклотронов. В сложной конструкции циклотрона одним из необходимых элементов была маленькая, но немаловажная деталь. Ее назначение состояло в том, чтобы направлять поток заряженных ускоренных частиц на бомбардируемую мишень. При этом часть частиц поглощалась деталью, которая сильно накалялась. Понятно, что ее необходимо было изготовлять из тугоплавкого материала, например из молибдена.
Заряженные частицы, поглощаясь молибденом, вызывали в нем ядерные реакции. Ядра молибдена могли превращаться в ядра других элементов. Молибден – сосед элемента № 43 по периодической системе. Если же в качестве ускоряемых частиц выступали дейтроны, то не исключалось такое событие, как превращение ядер молибдена в ядра мазурия.
Такая мысль и мелькнула у Э. Сегре. Будучи хорошим радиохимиком, ученый понимал, что если мазурий действительно образуется, то в количествах совершенно ничтожных. И отделение его от молибдена потребует немало ухищрений. Поэтому он попросил дать ему необходимый образец молибденовой детали для такого исследования и возвратился в Италию, где работал в Палермском университете. Помощником Э. Сегре стал сотрудник того же университета – химик К. Перрье.
Прошло около полугода, прежде чем исследователи сумели сделать определенные выводы и послали короткую заметку с изложением их сути в лондонский журнал «Природа». Вот краткое изложение сообщения о первом в мире искусственном синтезе нового химического элемента с порядковым номером 43, который так долго и так безуспешно искали в земной коре ученые разных стран. Профессор Э. Лоуренс из Калифорнийского университета подарил исследователям молибденовую пластинку, которая была облучена дейтронами на циклотроне в Беркли. Пластинка обнаружила сильную радиоактивность, причем едва ли она вызывалась каким-нибудь одним веществом. Период полураспада имел такую величину, что исключались радиоактивные изотопы циркония, ниобия, молибдена и рутения. Наиболее вероятно, эта активность относилась к изотопам атомного номера 43.
Хотя химические свойства этого элемента были практически неизвестны, К. Перрье и Э. Сегре исследовали активность, чтобы собрать информацию о химии элемента 43. Этот элемент обнаружил близкое сходство с рением и показал те же самые аналитические реакции, как рений. Но он мог быть отделен от рения тем же методом, который употреблялся для разделения молибдена и рения.
Эта заметка была написана в Палермо и датирована 13 июня 1937 г. Сказать, что она произвела сенсацию, было бы, пожалуй, неправильно. Ученый мир лишь принял ее к сведению. Слишком мало сведений она содержала, а необходимы были именно подробности, четкие результаты радиохимических исследований.
Только впоследствии выяснилось, что К. Перрье и Э. Сегре совершили подвиг, ибо выделили из облученного молибдена невесомое количество нового элемента – всего 10-10 г. Никогда ранее радиохимии не доводилось оперировать с такими ничтожными количествами вещества. Для нового элемента авторы предложили название «технеций» – от греческого слова, означающего «искусственный». Так в названии первого синтезированного элемента отразился способ его открытия. Но в научный обиход это название вошло лишь 10 лет спустя.
Получив новые образцы облученного молибдена, К. Перрье и Э. Сегре продолжили свои работы. Их открытие получило подтверждение со стороны других ученых. К 1939 г. стало ясно, что при бомбардировке молибдена дейтронами или нейтронами образуются по крайней мере пять изотопов технеция. Некоторые из них были настолько долгоживущими, что позволяли провести основательные химические исследования нового элемента. «Химия сорок третьего элемента» – это словосочетание не казалось уже фантастическим. Но никак еще не удавалось точно определить периоды полураспада изотопов технеция. Были лишь предположения, разноречивые оценки. Они не утешали, ибо оттуда следовало, что наибольшие значения не превышали 90 дней. А это только накладывало запрет на надежды обнаружить элемент в земной коре.
Чем был технеций на рубеже 30-х и 40-х годов? Не более, как дорогостоящей игрушкой в руках любознательных исследователей. Перспективы накопить его в осязаемых количествах, пожалуй, отсутствовали полностью. Коренной перелом в судьбе технеция (и далеко не его одного) произошел тогда, когда было открыто удивительное явление ядерной физики – процесс деления урана под действием медленных нейтронов.
Когда медленный нейтрон попадает в ядро изотопа уран-235, он как бы разбивает его на два осколка. Каждый из них – ядро какого-либо элемента середины периодической системы. И среди этих осколков могут быть изотопы технеция. Не зря поэтому ядерный реактор (где в промышленном масштабе осуществляется процесс деления урана с целью получения ядерной энергии) называют фабрикой изотопов.
Если циклотрон позволил впервые осуществить синтез технеция, то ядерный реактор дал способ получать его в количествах, измеряемых килограммами. Но еще до того, как первый ядерный реактор начал работать, Э. Сегре в 1940 г. в лабораторных условиях обнаружил в продуктах деления урана изотоп технеция с массовым числом 99. Вторично рожденный в реакторе, технеций стал превращаться в обыденный (как ни парадоксально звучит это слово) химический элемент. В самом деле, ведь при делении 1 г урана-235 образуется 26 мг технеция-99.
Как только технеций перестал быть редкостью, прояснилось многое, что столь долго волновало ученых. И прежде всего это касалось точного определения периодов его полураспада. Уже в начале 50-х годов стало ясно, что три изотопа технеция резко выделяются по своей долгоживучести не только среди остальных его изотопов, но и среди многих существующих в природе изотопов других радиоактивных элементов. Технеций-99 имеет период полураспада в 212 000 лет, технеций-98 – полтора миллиона лет, а технеций-97 и того больше – 2 600 000 лет. Большие числа, но недостаточные для того, чтобы первичный технеций мог сохраниться на Земле со времен ее образования. Гарантия присутствия земного технеция существовала бы, если бы период полураспада достигал как минимум ста пятидесяти миллионов лет. В этом ракурсе все предыдущие поиски технеция явно представляются безнадежными.
Но ведь технеций может и поныне образовываться в результате природных ядерных реакций, например при облучении молибдена нейтронами. Откуда на Земле берутся свободные нейтроны? Они могут возникать при спонтанном делении урана. Этот процесс имеет тот же механизм, что и описанный выше, только ядра разваливаются спонтанно, самопроизвольно. И кроме двух больших осколков – ядер средних элементов в периодической системе, одновременно выбрасывается несколько нейтронов.
Поиски технеция в молибденовых рудах были тщетными, и ученые всерьез занялись изучением другой возможности. Если изотопы технеция образуются в ядерных реакторах, то почему они не могут рождаться в природных процессах спонтанного деления урана?
Если принять во внимание земные ресурсы урана (его средняя распространенность в 20-километровой толще земной коры), допустить, что процент образования технеция такой же, как и в случае искусственного деления, то, проделав соответствующие расчеты, получим: технеция на Земле всего-навсего около 1,5 кг. Столь малое количество (не то еще будет, когда речь пойдет о других синтезированных элементах!) едва ли стоит принимать всерьез. И тем не менее исследователи решили попытаться выделить земной технеций из урановых минералов. Это удалось сделать в 1961 г. американским химикам Б. Кенне и П. Куроде. Так, технеций словно обрел еще одну дату своего рождения – дату обнаружения в природе. Даже если были бы неизвестны способы искусственного синтеза технеция, все равно рано или поздно он был бы извлечен из недр земных.
Но десятью годами раньше в судьбе элемента № 43 произошло событие, которое произвело сенсацию. Американский астроном Ш. Мур в 1951 г., изучая спектр Солнца, обнаружила в нем линии, характерные для спектра технеция. Спектр технеция был изучен сразу же, как только это стало возможно, т. е. когда удалось синтезировать минимально необходимое для получения спектра количество элемента. Полученные результаты сравнили с теми данными, которые в свое время были опубликованы И. и В. Ноддак и О. Бергом для мазурия. Ничего общего в спектрах технеция и мазурия не обнаружилось, и тем самым окончательно была подтверждена ошибочность открытия мазурия. Спектр солнечного технеция целиком и полностью соответствовал спектру технеция земного. Тут прямо-таки напрашивалась аналогия с гелием: прежде чем объявиться на Земле, технеций тоже сигнализировал о своем существовании с Солнца. Правда, некоторые астрономы подвергали сомнению результаты Ш. Мур. Однако в 1952 г. космический технеций снова дал знать о себе: английский астрофизик П. Меррил нашел линии технеция в спектрах двух звезд с поэтическими названиями R Андромеды и Мира Кита. Интенсивность спектральных линий свидетельствовала о том, что на этих звездах технеция столько же, сколько и его соседей по периодической системе элементов: циркония, ниобия, молибдена, рутения, родия и палладия. Но эти элементы стабильны, тогда как технеций радиоактивен. Хотя его период полураспада довольно велик, он все же ничтожен по космическим меркам. В таком случае присутствие технеция на звездах может означать лишь одно: он и поныне образуется там в ходе различных ядерных реакций. В звездах и в настоящее время идет гигантский процесс образования химических элементов. Один астрофизик очень метко окрестил технеций пробным камнем космогонических теорий. Теперь всякая теория происхождения элементов, чтобы привести аргументы в свою пользу, должна объяснить ту последовательность ядерных реакций в звездах, которая приводит к образованию технеция.








