355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Ляпунов » Химия завтра » Текст книги (страница 5)
Химия завтра
  • Текст добавлен: 4 апреля 2017, 07:00

Текст книги "Химия завтра"


Автор книги: Борис Ляпунов


Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 5 (всего у книги 12 страниц)

ТОПЛИВНЫЕ ЭЛЕМЕНТЫ

Прямое превращение химической энергии в электричество совершается в обычных электрохимических источниках тока. Они применяются в тех случаях, когда все другие генераторы непригодны, а даже не раз летали в космос вместе с солнечными батареями.

Сейчас пришло время вернуться к старой идее, но воплотив ее по-иному. Подобных примеров можно было бы найти в технике немало. То же случилось и в электрохимии.

Гальванический элемент в прежнем его виде не может конкурировать с другими генераторами тока.

Для него нужны дорогие дефицитные цветные металлы, электролит и электроды приходится часто менять. Потому обычные батареи недолговечны и неэкономичны. На подводной лодке или на спутнике с этим приходится мириться. Но электрохимия занимает скромное место даже в «малой» энергетике, а о большой уже нечего и говорить.

Появился новый генератор тока – топливный элемент. В нем тоже есть ванна с электролитом и электроды. Только все вещества – участники реакции – непрерывно подводятся, а отходы удаляются. Объем элемента уже роли не играет, и запас исходных веществ практически неограничен, а потому неограничен и срок службы.

По-другому устроены и электроды. Теперь они не участвуют в реакции и не разрушаются, они только служат для подвода горючего и окислителя. Их делают пористыми, покрывают катализаторами и продувают через них газ либо прогоняют под давлением жидкость.

Теперь назовем действующих лиц. Газ – это водород, пли окись углерода, или природный углеводород. Можно воспользоваться продуктами перегонки угля, газами, которые сопутствуют нефти или получают из нее. Годится и жидкое углеводородное топливо.

Главным действующим лицом все же будет водород. Это его молекулы распадаются на атомы, ионизируются, идут к другому электроду, снова претерпевают ряд превращений, пока на другом электроде не появится вода. Между электродами возникает ток.

Если использовать углеродистое топливо, то тоже будут идти сложные электрохимические процессы с участием электролита, которого, правда, расходуются очень немного. Словом, здесь и открывается дорога для того, чтобы химическую энергию, скрытую в виде топлива в недрах Земли, пустить в дело, и притом куда выгоднее, чем до сих пор.

Отработавшие в элементе вещества можно восстанавливать, чтобы снова пускать в работу. Это, вероятно, удастся сделать химическим же путем, либо воспользоваться излучениями ядерного реактора, либо, наконец, энергией Солнца.

Если топливом будет служить, например, окись азота и хлор, то в топливном элементе образуется хлористый нитрозил. Под действием солнечного света он вновь распадается, обеспечивая элемент топливом.

Инженеры предполагают, что со временем, когда научатся получать дешевое электрохимическое горючее и повысят мощность топливных батарей, топливными элементами заменят бензиновый двигатель. Мечта об электромобиле станет, наконец, явью. Тогда легковые автомобили, автобусы, грузовики не будут загрязнять воздух. Автотранспорт станет бесшумным.

Топливные элементы преобразят сам автомобиль. «Химической» автомашине не понадобятся обычные системы питания топливом, смазки, зажигания. Не нужна будет н обычная коробка передач.

Более полно использовать топливо, перестать выбрасывать тепло с выхлопными газами – вот что обещает в будущем электрохимия. А затем постепенно, начав с малого – с установок на сотни и тысячи киловатт, – новые источники тока начнут завоевывать прочные позиции и в большой энергетике. И электроток, который они будут давать, обойдется намного дешевле.

Топливные элементы для большой энергетики потребуют от химии новых поисков. Надо добиться, чтобы химические реакции в них протекали как можно быстрее. Только тогда они дадут достаточную мощность. Надо избежать коррозии электродов да и самих сосудов, в которых хранится электролит, – для них придется разработать новые материалы, например керамические.

Возникла еще одна мысль: скомбинировать топливный элемент с ядерным реактором, Может быть, частицы, которые образуются при атомном распаде, смогут стать поставщиками горючего для топливного элемента, разлагая воду на водород и кислород? Ведь эти частицы способны разрушать молекулы, перегруппировывать атомы. Проблема питания новой энергоустановки была бы решена. Конечно, такая комбинация потребуется не всюду, а лишь там, где трудно добыть другое топливо.

Топливные элементы уже получили первое крещение в космосе – они работали на кораблях-спутниках «Джеминай».

Электролитом может послужить и морская вода, Не потому ли думают оборудовать подводные лодки топливными элементами?

Нельзя все наши топливные ресурсы отдать энергетике, но и нельзя все их отдать химии. Топливо должно стать энергохимическим сырьем, И вместо теплоэлектроцентралей появятся энерготехнологические комбинаты. Кстати сказать, они будут работать совершенно без отходов, дадут не только множество химических продуктов, но и обеспечат горючим новейшие преобразователи энергии – топливные элементы.

Стоит подумать и над тем, как аккумулировать энергию. Электрохимические аккумуляторы дороги и несовершенны, но электрохимия, создавая топливные элементы, осваивает прямое преобразование химической энергии в электрическую. А ведь возможно и обратное превращение. Не будет ли топливный элемент служить и как аккумулятор?

Аккумулирование энергии особенно важно для солнечных станций, работающих только днем. Выдвигается идея использовать вместе водородно-кислородный топливный элемент и электролизер, разлагающий воду на водород и кислород. Солнечные батареи будут днем давать ток в сеть и для электролиза, обеспечивая элемент на ночь топливом.

Предлагают использовать в топливном элементе и бактерии. Для этого их вместе с питательной средой надо подать к одному из электродов, а к другому подвести кислород. Разлагая и окисляя органические вещества, они выделяют водород, который и служит топливом в элементе.

Такие бактерии есть в океане; там для них в придонных слоях изобилие пищи. Есть они я в желудке человека, и, может быть, этим воспользуются, чтобы обеспечить электроэнергией космонавтов. И вообще биохимическая энергетика разовьется всюду, где получаются отходы органических веществ – например, на пищевых комбинатах, на животноводческих фермах.

ХИМИЯ РАДИАЦИОННАЯ

Нагрев и давление «сшивают» из молекул-одиночек длинные молекулярные цепочки, исходный мономер превращают в нужный полимер.

Все это выглядит заманчиво и, главное, просто. На деле же оказывается иное. Нужен еще помощник – катализатор. К тому же нередко мешают примеси, от которых избавиться сложно. Не надо думать, конечно, что трудности вообще непреодолимы. Иначе не было бы всего огромного семейства пластмасс.

Но можно сделать и так: подвести к молекулам энергию другим путем – обстрелять их частицами, тогда высокие температура и давление уже не понадобятся, как не понадобится и катализатор.

Химик, создающий полимеры, отчасти чем-то напоминает садовника. Он выращивает большие молекулы и простые цепочки, короткие или длинные, и кустики с боковыми ветвями; и соединяет одно с другим, получая все более и более сложные химические «деревья». Он может сделать прививку: к молекуле одного полимера «привить» молекулу другого и получить гибрид.

И тогда из полимера жаростойкого, но портящегося в бензине или масле и полимера бензомаслостойкого, но не переносящего жары возникает материал, которому не страшны ни нагрев, ни масло, ни бензин.

Прививка на растении приживается сама по себе. Химику же приходится «пришивать» молекулы, и он может здесь воспользоваться радиацией. Излучения помогут возводить новые молекулярные постройки. Они полимеризуют вещества, которые иначе больших молекул не образуют.

Вот перед нами маленькое озеро жидкого мономера. Облучим эту заготовку. И что же? Жидкость сразу застынет, превратится в прозрачный кусок плексигласа – органического стекла. Теперь перед нами не жидкий мономер, а твердый, кристаллический полимер. Никаких операций с ним не надо производить: ни греть, ни растворять, ни перемалывать.

Можно превратить жидкий мономер и в волокно. А отсюда уже недалеко и до готовой ткани.

Радиационная химия могла бы решить и другую задачу; энергией излучений заставить соединиться азот и кислород воздуха. Тогда мы получили бы возможность готовить удобрения прямо из атмосферы, потому что двуокись азота – превосходное сырье. Давний этот замысел осуществится сравнительно простым путем благодаря радиационной химии.

Ядерный реактор станет и химическим заводом. Ведь радиоактивные осколки – это носители энергии, которая может перестраивать вещество. Из воды в нем получат водород – заготовку для многих химических реакций. Водород в нем же соединится с углеродом, причем произойдет это проще, чем обычно, без повышенного давления. В конечном итоге, в реакторе синтезируются аммиак и спирты, углеводороды и фтороуглероды.

Радиационная химия – это преодоление невозможного. Те превращения, которые она вызывает, недоступны обычной химии. И пусть многое, о чем мы здесь рассказали, пока еще рождено лишь в лаборатории. От лаборатории до производства – один шаг, и он будет сделан в ближайшее время.

ЧИСТОЕ ВЕЩЕСТВО

Наш век по-прежнему остался веком железа. Точнее было бы сказать – веком стали, то есть железа с добавками углерода и других элементов. Загрязняя железо, мы его облагораживаем. Только сталь, а отнюдь не чистое железо и служит основным материалом техники наших дней.

О том, что чистое железо таит в себе неожиданные свойства, могли раньше лишь подозревать. Ведь наводила же на эту мысль знаменитая колонна в Индии, которая, не изменяясь, не окисляясь, стоит уже много веков. Но химия до недавнего времени не умела получать очень чистые вещества. Когда же она научилась это делать, то многие вещества предстали в новом виде, Отсюда произошло их второе рождение, отсюда их широкое вторжение в жизнь.

Германий, например, так бы и остался где-то на задворках, если бы не оказалось, что в чистом виде он отличный полупроводник.

Придется, вероятно, пересмотреть прежние представления об элементах главных и второстепенных. Придется пересмотреть и заявки, которые сделает химия будущего на сырье.

Чистота откроет истинные свойства вещества. Неизвестно, какие неожиданности преподнесет вещество, в котором не будет почти ни одного постороннего атома или молекулы. Само понятие о чистоте со временем будет меняться, один посторонний атом будет приходиться уже не на миллионы, а на триллионы атомов.

А достижим ли верхний предел, можно ли изгнать все примеси, получить идеально чистое вещество? Оказывается, на практике этот идеал недостижим. Чем меньше остается «грязи», тем труднее ее удалять, труднее вылавливать оставшиеся одиночные атомы. Кроме того, вещество невозможно изолировать, оно всегда будет соседствовать с чем-то – даже если поместить его в вакуум. Ведь и идеальный вакуум тоже недостижим. В итоге произойдет обмен, взаимодействие, и какое-то, хотя бы ничтожно малое, загрязнение все же остается.

Достигнуть как можно более высокой чистоты – задача заманчивая. Тогда выявляются подлинные свойства вещества, и зачастую совершенно неожиданные. Химики говорят, что чистота – уже современная – представила им знакомое в новом свете. Металлы хрупкие и ржавеющие оказались эластичными и стойкими, а твердые – мягкими.

Уже теперь можно обнаружить один посторонний атом среди миллиарда основных. И такой точности добиваются не ради рекорда. Столь высокая степень чистоты необходима, чтобы, например, полупроводник германий был полупроводником.

Обычные методы непригодны для контроля качества в ультрачистой металлургии. Разрабатываются новые методы анализа. В будущем химия сможет обнаружить один атом среди сотни триллионов других.

За сверхчистыми веществами стоят сверхжаростойкие сплавы.

Атомная техника требует материалов наивысшей чистоты. Даже миллионная доля процента примесей бора к урану сделает работу реактора невозможной.

Их потребует термоядерная энергетика, основа которой – плазма, нагретая до миллионов градусов.

Что еще обещает химия ультрачистых веществ?

Материалы, побывавшие в ядерном реакторе, загрязнены радиоактивными осколками. Эти примеси надо удалить, остаться должны лишь самые ничтожные их количества. Если бы можно было добиться такой очистки, то произошел бы переворот в технике и быту.

«Его не могут представить себе даже авторы фантастических романов», – замечает академик И, И. Черняев. И он набрасывает действительно сверхфантастическую картинку.

Суда, летательные аппараты, электростанции могли бы использовать энергию распада ядер активных элементов почти полностью. Применение в быту атомной энергии возросло бы настолько, что способы ее использования оказались бы совершенно несравнимыми по своему многообразию с использованием пара и электричества в настоящее время. Наступила бы эра полной перестройки бытовых приборов, а также орудий и приемов техники и сельского хозяйства.

Сверхочистка нужна и для целей химического синтеза. Например, техника уже сейчас требует материалов с различными магнитными и электрическими свойствами. Для того чтобы их создать, химики должны дать сверхчистые вещества, ввести в них специальные добавки – столько, сколько требуется, и так, как требуется.

Судьба всех новых способов прямого превращения тепловой энергии в электрическую связана с созданием дешевых полупроводниковых материалов высокой степени чистоты. Один процент примесей – и полупроводник перестает быть полупроводником. А потому «загрязненность» допускается не более миллионной или даже миллиардной доли процента. Иногда требования бывают и еще жестче. И судьба всех проектов, вроде солнечных батарей на крышах домов, либо мощной электростанции на космическом корабле, или внеземной станции, оказывается в руках химиков. Можно было бы уже сейчас устроить домовую солнечную электростанцию на полупроводниках, если бы она не стоила свыше миллиона рублей и не занимала бы огромную площадь.

Когда появятся высокоэкономичные полупроводниковые термобатареи и фотоэлементы, гелиотехника начнет свое победное шествие по нашей планете.

Солнечные батареи разместились бы на крышах зданий, и заводы, животноводческие фермы, дома получили бы дешевый электроток. Для них хватило бы места даже на крышах автомашин.

Быть может, стоило бы занять батареями хотя бы небольшую часть пустынь. Это поможет добыть воду из подземных пресных озер, даст жизнь заводам и городам, возникшим в пустынных районах.

Полупроводниковыми батареями можно было бы покрыть склоны гор и любые другие пространства, где достаточно солнца и которые нельзя никак использовать по-другому. Наконец, и на искусственно созданных в океане островах найдется место для гелиостанций.

И даже если мы не займем солнечными батареями ни пустыни, ни склоны гор, ни поверхность океанов, ни даже Луну – как это иногда предлагают, все равно Солнце даст нам немало для наших повседневных нужд, для того, что зовется «малой» энергетикой.

Повышенные требования к чистоте материалов предъявляют химикам все новые и новые отрасли техники. В будущем эти требования намного расширятся.

Вероятно, самым подходящим местом для получения сверхчистых веществ было бы межзвездное пространство. На Луне и внеземных станциях в будущем разместят химические заводы.

ПОМОЩНИКИ ХИМИКОВ

У химиков есть чудесные ускорители – катализаторы. Не меняясь сами, они заставляют взаимодействовать другие вещества. Если реакция идет недостаточно быстро, они ее ускоряют. Если она идет слишком бурно – замедляют. Правда, тогда это будут «катализаторы наоборот» – ингибиторы.

Размах скоростей различных превращений необычайно широк. Миллионные доли секунды длится взрыв, топливо сгорает за тысячные доли секунды, а ржавчина на влажном железе появляется через несколько часов, И быстрые, и медленные процессы совершаются повседневно и вне нас, и в нас самих. Ибо ведь и человек – «химическая фабрика», перерабатывающая пищу и кислород.

Иногда химия выступает в роли «ускорителя времени». Она изменяет счет на геологических часах, сжимает тысячелетия чуть ли не до мгновения.

Природе потребовались миллиарды лет, чтобы превратить растения в каменный уголь. Современные химики повторили примерно то же самое за восемнадцать дней. Они обработали полуфабрикат, извлеченный из древесных опилок. Результат: бурый уголь. Продолжили опыт, и еще через несколько суток был готов настоящий каменный уголь.

Сама жизнь поставила перед химиками проблему научиться замедлять или ускорять реакции.

Потому и понадобилось найти вещества, способные решить такую задачу.

Впереди – улучшение старых и создание новых химических ускорителей. Надо добиваться более сильного их действия и, что очень важно, при невысоких температурах. Иначе появятся примеси, нужного вещества получится меньше и оно не будет чистым.

Как ни велик выбор, его надо расширять. Разве все возможные реакции уже осуществлены? Разве всегда химическое производство идет самым дешевым и коротким путем? И разве всегда химик, перестраивая молекулы, делает это именно так, как лучше всего? Здесь и должны помочь катализаторы – и старые и новые.

Если бы удалось составить каталог катализаторов, то можно было бы сразу, а не вслепую воспользоваться единственно необходимым.

Катализаторам мы будем обязаны тем, что дешевое сырье – уголь и древесина, известь и вода – даст изобилие синтетики (от каучука и топлива до медикаментов и пластмасс).

Фантасты предлагают чудодейственный катализатор, легко разлагающий воду: водородно-кисло-родное топливо получается без всякого электролиза, самым наипростейшим путем. Автомашины вместо бензина можно заправлять обычной водой. Удобно, не правда ли?

Инженеры строят двигатели на газообразном горючем – уже не прежние газогенераторы, работающие на деревянных чурках. Вместо бензина – аммиак. И, быть может, из воды и воздуха с помощью небольшого ядерного реактора станут получать горючее для автомашин. Особенно удобным это было бы для вездеходов, которые смогли бы заправляться водой из любого водоема. Так химия с помощью атомной энергетики воплотит в жизнь мечту фантастов о превращении воды в топливо.

Новые катализаторы позволят из простых веществ получать сложнейшие. Они помогут брать из воздуха азот, вовлекая его в различные химические соединения, использовать экономично солнечную энергию в фотохимических преобразователях, заставить работать искусственные мышцы. Полимеры – жаростойкие и высокопрочные – тоже окажутся «делом их рук».

И, вероятно, катализаторы будущего позволят найти путь к превращению угля и воды в пищевые и технические жиры, над чем уже долго бьются химики.

Чрезвычайно активные катализаторы помогут преобразовывать солнечную радиацию – и, возможно, не только видимый свет – в другие виды энергии. Появятся фото-и термоэлементы столь совершенные, что они станут промышленными источниками тока. Когда-то их к.п.д. не превышал доли процента, потом он возрос до семи – десяти. Повышение еще в несколько раз вполне реально.

А ингибиторы – замедлители реакций – смогут предотвращать гибель металла от коррозии, старение пластмасс, порчу пищевых продуктов, быть может, даже помогут бороться с лучевой болезнью и злокачественными опухолями.

Очень многому здесь может химия научиться у природы.

Уникальному, идеально налаженному производству, которое существует в клетке, могли бы позавидовать инженеры-химики. То, что на заводах совершается при высоких температурах и давлениях, в ней происходит при комнатной температуре и давлении ровно в одну атмосферу, и притом намного быстрее.

В чем же дело? Да в том, что природа расчленяет химический процесс на многие этапы, и каждый шаг уже не требует столь большой затраты энергии. На каждом этапе работают свои ускорители-ферменты.

Здесь-то и скрыт секрет того совершенства, с каким мы сталкиваемся в живой клетке. Командуют в ней ферменты – достаточно сложно устроенные белковые молекулы.

Эти биологические ускорители заставляют протекать химические реакции в организме в десятки и сотпи тысяч раз быстрее. Именно от них зависит обмен веществ. О необычайной химической активности ферментов говорит такой факт. Под действием воды крахмал превращается в сахар. И ферменты ускоряют эту реакцию в десятки тысяч раз. Иначе пища в желудке переваривалась бы месяцами…

Ферменты – ключи жизни. Ими обладают все существа – от самых простейших и мельчайших до человека. Они есть в растениях, и не будь их – не было бы фотосинтеза. Вот почему академик Н. Д. Зелинский говорил, что ферменты перебрасывают мост между живым и неживым, помогают создавать живое, органическое тело.

Природные ускорители куда сложнее наших искусственных, но зато они и намного энергичнее. Их действие неизмеримо сильнее, чем у тех, которые создаются в лабораториях.

Ферментов известно несколько сот. Однако строение многих из них остается загадкой, и разгадать ее очень важно.

Во-первых, потому, что ферменты не только катализаторы, которые разлагают, обезвреживают вредные вещества, ускоряют окисление веществ полезных, но и переносят атомы или группы атомов от молекулы к молекуле, когда это бывает нужно организму.

Во-вторых, они служат защитниками от неожиданных химических опасностей: стоит появиться в организме яду, как ферменты тотчас начинают его разрушать. И ведь любопытно, что борьба с вредными насекомыми сильно осложнилась благодаря ферментам. В организме насекомых выработались противоядия, и уничтожать насекомых стало куда труднее.

В-третьих, и потому, что среди ферментов есть химические аккумуляторы энергии. Энергия требуется и для создания белков, и для работы мышц, для сохранения постоянной температуры тела – словом, для любого проявления нормальной жизни организма.


    Ваша оценка произведения:

Популярные книги за неделю