Текст книги "Химия завтра"
Автор книги: Борис Ляпунов
Жанр:
Химия
сообщить о нарушении
Текущая страница: 1 (всего у книги 12 страниц)
Борис Ляпунов
ХИМИЯ ЗАВТРА
Издательство «Детская литература»
Москва 1967
Л97
Оформление В. Зуйкова
Каждый из нас знает, что мы живем в век химии. Химия помогает обувать и одевать нас, кормить и лечить. Она помогает обставлять наши жилища, украшать нашу жизнь. Она незримо сопутствует всему, с чем мы сталкиваемся ежесекундно, ежечасно.
Проявляете ли вы отснятую фотопленку или пишете авторучкой, смотрите передачу по телевизору или моете руки – так или иначе, прямо либо косвенно вы всегда имеете дело с химией.
По улицам мчатся автомашины, в небе рокочут двигатели самолетов и вертолетов, стремительно разрезают воду теплоходы на подводных крыльях. Здесь тоже немало потрудилась химия, для того чтобы человек мог ездить, летать, плавать.
И в космос человек не попал бы без химии. Он не смог бы одержать даже самой скромной победы над земным притяжением, Без химии не было бы спутников, космических ракет, межпланетных станций, не смог бы человек полететь вокруг Земли, послать автоматы к Луне, Венере и Марсу, посмотреть на лунную поверхность «глазами» телекамеры и создать искусственную луну Луны. Он не смог бы проникать в недра Земли и опускаться в глубины морей и океанов.
А о том, что сулит нам химия завтра, знает далеко не каждый. Да это и понятно: горизонты завтрашней химии необъятны.
Если окинуть взглядом достижения созидающей химии наших дней, да к тому же взглядом, устремленным в будущее, то рисуется захватывающая картина.
В полимерные молекулы могут входить почти все элементы Менделеевской таблицы. Сколько же их, полимеров, сотворенных человеком, даст химия завтра!
Химия и сегодня дает нам вместо дерева пластмассы, вместо меха, шерсти и кожи животных – их искусственные заменители, Вместо льна, шерсти, шелка – синтетические волокна. Каковы же будут ее успехи завтра! Она положит конец истреблению животного и растительного мира Земли.
Обратимся теперь еще к одному вопросу: что будет означать полная разгадка тайн белка?
Предупреждение болезней, так как знание всех деталей белковых построек поможет предвидеть и избежать появления их возможных дефектов.
Наследственность по заказу: люди научатся менять, улучшать организм в последующих его поколениях. Не случайно эту задачу по значению сравнивают с овладением термоядерной энергией.
Когда ферменты окажутся в наших руках, мы сможем управлять ростом организмов. Тогда «пища богов» из фантастического романа Уэллса станет былью.
Искусственная мышца – совершенный химический двигатель, когда создадут полимеры, подобные биологическим, составляющим живую мышечную ткань.
И еще одна задача – искусственный фотосинтез. Если его удастся воспроизвести, то в нашем распоряжении будет искусственная пища, созданная из минерального сырья, воды и солнечного света. Химия будущего найдет и другие пути для получения искусственной пищи. И химия тем самым как бы умножит поголовье скота и птицы, расширит наши поля, сады и огороды, она как бы увеличит нашу планету, подарит людям новые земли.
«Среди многочисленных проблем науки есть проблемы совершенно особого порядка. К ним, пожалуй, применимо слово «величественные»… Это величественные загадки природы, и решение каждой из них открывает окно в совершенно иной мир.
Назовем для примера три такие загадки. Первая – это загадка космоса. Вторая – загадка строения атомного ядра. Третья – загадка сущности жизни», – говорит член-корреспондент Академии наук СССР Глеб Михайлович Франк.
И всюду здесь, в разгадке этих тайн природы, будет участвовать – прямо или косвенно – химия.
Да, действительно, горизонты завтрашней химии необъятны…
Но мы с вами попытаемся все же совершить небольшое путешествие и пройти по главным путям, которые открываются перед химией в будущем. Многое здесь будет звучать как сказка. Научная сказка… Как фантазия – однако такая, какой суждено сбыться. Я расскажу об открытиях, уже сделанных и обещающих удивительные вещи, расскажу о том, о чем думают и над чем работают ученые, чтобы сделать химию еще более могущественной помощницей во всей нашей жизни. Вместе с ними мы побываем в Мире Мечты, где химии принадлежит главная роль.
И вы убедитесь, что зачастую эта мечта бывает интереснее того, что придумывали фантасты. Мы и им дадим слово: посмотрим, куда вело их воображение; сравним вымысел с жизнью, поговорим с учеными и помечтаем сами. А для мечты у нас будет широкий простор – ведь химия и сейчас всюду, а потом она вместе с физикой и биологией завоюет новые высоты.
Не стоит сразу раскрывать все, о чем говорит эта книга. Коротко и сказать об этом трудно, да и не надо забегать вперед. Одно только хочется заметить: химия Завтра корнями своими глубоко уходит в химию сегодняшнюю. В ней заложены семена того, что должно вырасти и дать свои плоды. Она, по существу, вся устремлена в завтрашний день. Вы узнаете о том, о чем и не подозревали, потому что не всегда по робкому ростку можно угадать, какой вырастет из него цветок. Не пугайтесь «химических премудростей»: в книге вы найдете рассказ, прежде всего, о вещах практических; для их понимания знаний у вас хватит, да и мы позаботились дать, где надо, небольшие справки. Основное же – наше путешествие в Неизведанное. Туда, куда можно пока проникнуть лишь мыслью, но что непременно свершится, и притом на ваших глазах. Возможно, и с вашим участием… Того, кто заинтересуется будущими делами химии, ждет увлекательная работа. Какая же? Куда ведут дороги, прокладываемые теперь? О них и рассказывается в книге. У нее короткое название – «Химия завтра». Но, как вы убедитесь, за ним кроется и обычное и необычное; и то, что осуществится сравнительно скоро, и то, что предстоит осуществить в конце нашего и даже в следующем веке; и замыслы, казалось бы, далекие от химии, однако, связанные с нею; и надежды, которые сбудутся благодаря ей.
Физика, химия и биология вместе создают сейчас новую картину мира. Этот триумвират главенствует среди наук второй половины XX века. Вместе с ними химия идет в наступление: она продолжает стирать «белые пятна» на карте знаний, она ставит свои достижения и открытия на службу практике. И, не преувеличивая, можно сказать: у химии великое настоящее, но еще более великое будущее. Будущее, ради которого стоит потрудиться.
Итак, в путь – в Завтра!
ЧАСТЬ I
ХИМИЯ – ЛЮДЯМ
Когда смотришь на здание химии сегодня, то невольно бросается в глаза: сколько же новых этажей и пристроек, переходов и комнат появилось в нем! Сколько химий – самых разных – рождается на наших глазах! Пожалуй, никогда еще слово «химия» не было таким емким.
В то же время кое-где убираются капитальные, казалось бы, перегородки, рушатся когда-то незыблемые стены.
Органика и неорганика, например, – между ними сейчас уже нет такой четкой, безоговорочной грани.
Открываются все новые и новые соединения, новые типы химических связей. За сложными формулами, в которых неспециалисту очень трудно разобраться, нередко скрываются удивительные перспективы для практики.
Химия делает такие открытия, что иногда кажется непонятным, почему их не сделали раньше? Ведь благодарный материал вроде бы в изобилии поставляет природа. В действительности, если вести хронологию от истоков, то они уводят довольно далеко от сегодняшних дней.
Сначала придется сказать несколько слов не о будущем, а о прошлом.
«Органическая химия может в настоящее время кого угодно свести с ума, Она представляется дремучим лесом, полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть».
Слова эти, написанные одним из известных химиков XIX века, проникнуты черным пессимизмом.
Органическая молекула казалась химикам того времени столь сложной постройкой, что разгадать ее секреты они даже и не помышляли.
Как располагаются в ней атомы? Как они ведут себя, встречаясь с другими атомно-молекулярными постройками? Все было для химиков действительно дремучим лесом.
Свет забрезжил лишь тогда, когда появилась теория химического строения. Начали вырисовываться основные законы, повинуясь которым и происходят соединения атомов, возникают сложные молекулы.
Непонятое раньше сразу получило объяснение. Химия вооружилась путеводителем, указавшим дорогу в дебрях.
Теория предсказывала возможность получения нового вещества. Практика создавала его. Полный триумф! Впервые химик стал архитектором мира молекул. Он уже не шел вслепую. Он смог составить план, прежде чем возводить постройку.
Дальнейшее известно. Меньше чем за столетие, прошедшее с той поры, органический синтез вырвался на широчайший простор. Одних только искусственных химических построек появилось великое множество. Каждый день в лабораториях мира создается полторы сотни новых веществ, – утверждает статистика. Каждый день! Сколько же в год, сколько за годы? Миллионы!
Если так пойдет и дальше, то природное отступит перед синтетическим.
Что ж, оправдаются предсказания тех, кто одевает будущее человечество в искусственную одежду, поселяет его в дома из искусственных стройматериалов и потчует искусственной пищей.
Что ж, если и лишится когда-нибудь человек всего, что дает ему природа, он создаст свою природу, вероятно, даже лучшую. Ведь, в сущности, многие планы грядущей жизни в космосе имеют химическую основу во всем – от сооружений внеземных поселков до получения кислорода, воды и пищи лабораторным путем.
Прокладывая дорогу химику, теория не довольствовалась тем, что было открыто ею на первых порах. Вскоре стала ясной удивительная сложность микроархитектуры вещества.
Молекулы создаются, живут и действуют в пространстве. Пространственное расположение атомов строго определено. Из одного и того же количества одних и тех же атомов природа возводит разные здания. Раньше этого не знали, а петому не могли разгадать многие загадки.
Самое незначительное различие – и вещество уже получается иным. Достаточно одному атому оказаться не на месте, и молекула уже не та.
Такая «игра природы» отнюдь не всегда безобидна. В химии живого, например, это имеет наиважнейшее значение. Живой организм поразительно чувствителен к тому, как расположены атомы в его молекулах. Стоит чуточку измениться кислородно-водородно-углеродной постройке – и вместо одного вида сахара перед нами другой. Один крайне нужен человеку и животным, другой для них непригоден.
И уж конечно, создавая новые вещества, химики должны были теперь считаться с тончайшими особенностями пространственной структуры будущих молекул. Различия, о которых не подозревали раньше, ярко и отчетливо выступили на первый план. Это понятно: молекула трехмерна, ее изучать должна была бы с геометрической точки зрения не планиметрия, а стереометрия. Потому и появилась стереохимия, «пространственная» химия, и она стала компасом для синтеза новых соединений.
Направленное получение стереоизомеров – нужных нам разновидностей одного и того же молекулярного здания – вот едва ли не генеральная задача в создании второй природы теперь, во второй половине XX века.
Всего две разновидности атомов в углеводородных соединениях – углерод и водород. Чем больше «кирпичиков» в постройке, тем больше возможных вариантов-изомеров. Их может оказаться сотни тысяч, миллионы и даже триллионы. Когда соединение еще более сложное, как у белков, например, то изомерия так велика, что может быть выражена только очень большими числами. Здесь приходится прибегать уже к степеням.
А сколько все же получается изомеров? Оказывается, и показатель-то степени будет не двух– и не трех-, а четырехзначный.
Химик – архитектор своеобразный, он «кирпичиков» своих не видит и о здании может судить, лишь когда оно уже готово, когда реакция уже завершена. Он может только управлять ходом превращений, меняя те или иные условия, разрушая и образуя вновь химические связи. Добавим к этому, что и расположение атомов в молекулах, увы, совсем уж не просто. Будь бы иначе – умей мы получать именно тот стереоизомер, какой нужен, мы давно бы уже имели сахар из угля и воды.
Уже полученные стереоизомеры позволяют говорить об открытии новых резервов мира искусственных веществ. Чем дальше, тем их будет больше.
Для такой уверенности есть и иные основания. Они связаны с еще более глубоким проникновением в самые сокровенные секреты материи. Тут химия встречается с физикой, и надо говорить о всевластии не только химических, но и физических законов в недалеком будущем.
Знание структуры, хотя бы и самое глубокое, – далеко не всё. Если бы дело сводилось только к форме постройки, если бы молекулы походили на свои модели, которые иногда можно видеть на выставках или картинках, то задачи химического конструирования похожи были бы на любые другие инженерные задачи.
Но подлинная молекула не походит на сооружение из шариков и палочек, как не походит шарик на настоящий атом и как палочка не заменяет истинную химическую связь.
В дело вмешивается энергетика молекулы. В ней – атомы, состоящие из ядер и электронов, и потому проблема переводится не только на атомно-молекулярный, но и на ядерно-электронный уровень.
И ядра, и электроны, и группы атомов, возникающие либо распадающиеся в ходе реакции, – все эти «строительные детали» химии обладают энергией. При перестройках происходит своего рода энергетический обмен, происходят сложные, уже чисто энергетические процессы.
Исходные молекулы дают заготовки, из них собираются новые молекулы, в новых молекулах возникают опять-таки новые энергетические связи (я чуть было не сказал – химические, что было бы не так уж далеко от истины).
Именно энергия оказывается тем связующим звеном, которое удерживает детали в постройке. А энергия электронов и ядер находится уже в ведении физики, точнее – атомной физики. Ее можно подсчитать, и архитектура молекулы действительно становится похожей на инженерное сооружение, ибо поддается расчету.
Итак, воспользовавшись опытом физики и прибегнув к помощи математики, казалось бы, уже нетрудно вести синтез – во всяком случае, на бумаге. Возможности здесь открываются самые грандиозные.
Инженер-строитель, зная, чем располагает, проектирует будущее здание. Он может поступить и так: задавшись проектом, подобрать затем нужные для его исполнения материалы. Не сумеет ли химик сравняться с инженером, когда у него будут все данные для возведения молекулярной постройки?
Он ведь сумеет определить и размеры будущей молекулы, и прочность ее, и способность вступать в реакции. Короче говоря, в его распоряжении благодаря теории окажется полный химический паспорт будущего синтетического продукта.
Это ли не на грани фантастики? Даже не проводя никаких опытов, только вычисляя, химик-теоретик станет создавать фактически любое вещество. Более того, если он пойдет «с конца», руководствуясь свойствами будущего соединения, то на бумаге определит, какое для этого понадобится сырье и как его следует переработать.
Вы чувствуете, что здесь мы уже добрались до практики? Химический расчет мог бы стать путеводной звездой для химика-технолога. Блужданию в потемках, которое, увы, еще сопровождает поиски нового, пришел бы конец. Тогда-то химики обрели бы действительно полную власть над веществом.
– Но позвольте, – скажет каждый, кто хоть чуточку знаком с обыкновенной химией, той самой химией, которая буквально на наших глазах творит чудеса превращений, создает разнообразие форм и красок. Той самой химией, которая заставляет исследователя переживать в лаборатории волнующие минуты поиска неизведанного. – Позвольте!
«…Химик что-то кипятит, процеживает, помешивает, то и дело моет посуду, зажигает и тушит огонь под какими-то снадобьями, которые он варит в своей кухне.
Но химику не скучно. Даже когда в лаборатории нет никого, с кем он мог бы перемолвиться словом, он не один. Он ведет разговор с самым интересным, хотя и молчаливым собеседником – с природой, Он задает вопросы, а она отвечает, и отвечает только в том случае, если вопрос правильно поставлен…
Каждому понятно, что увлекает геолога, когда он разыскивает в горах прячущиеся от человеческих глаз руды. Снежные вершины над головой, темные пропасти под ногами – как тут не почувствовать себя лицом к лицу с природой!
Увлекательность работы химика, романтика химии не так бросается в глаза. Немного жидкости за стеклом колбы или нежный осадок кристаллов в пробирке – это не горный пейзаж, поражающий воображение, не ширь океана, не усеянное звездами ночное небо. Но химик видит и здесь природу во всем ее величии, во всей ее мощи. Он знает: в одной капле заключена целая Вселенная, бесчисленные миры атомов.
Краски, звуки, глина, мрамор принимают такие формы, образуют такие сочетания, какие мог создать лишь человеческий разум. Мы называем все это словом «творчество». И это слово одинаково подходит и к труду резчика по дереву, и к труду скульптора, и к тому, чем живет музыкант, и к тому, что заставляет химика проводить долгие часы в лаборатории».
Так писал М. Ильин, сам инженер-химик и писатель, о работе химика.
– Позвольте, – скажет каждый, кто пусть в маленькой школьной лаборатории на уроке химии хоть на минутку становился экспериментатором, творцом нового, – как же с опытом? Если все будет происходить на бумаге, то во что же превратится искусство химика?
Да, именно искусство! Писал же известный химик-органик Р. Вудворд: «Органический синтез увлекателен, полон приключений и опасностей, он часто требует высокого искусства». Так неужели химическая лаборатория будущего превратится в вычислительное бюро? Где же тут романтика поиска, «приключения и опасности»?
Колбы и пробирки потеснятся, чтобы дать место электронно-вычислительным машинам, интуицию и чутье заменит строгий расчет. Не через одни лишь бесчисленные опыты, а и через математические формулы и расчеты будет идти дорога к новому веществу…
Ответ: нет, до такой степени математизации химии дело, вероятно, никогда не дойдет. Опыт проверяет теорию, только сравнение с ним и дает уверенность, что описанное математикой соответствует истине.
Потому нельзя скидывать со счетов тот опытный багаж, который уже накоплен химией. Наоборот, он будет еще расти. Факты будут и впредь давать пищу теории.
Кстати, именно опыты не раз позволяли химикам сделать ряд выдающихся открытий.
О периодической системе нечего и говорить. Она возникла из обобщения огромного фактического материала. Практика дала примеры и иного рода.
Когда пытались улавливать закономерности в строении какой-либо группы веществ, то нередко встречались с отклонениями. Тогда теория приходила на помощь, объясняя причину непонятного поведения молекул. И подобно тому, как Д. И. Менделеев предсказал неизвестные элементы и описал их свойства, так химики-органики предугадали кое-какие новые соединения, новые реакции. Но это удалось сделать, лишь глубже проникнув в существо атомно-молекулярной архитектуры.
В химии будущего счастливо объединятся теория и опыт. За опытом по-прежнему останется роль неустанного накопителя фактов, теория возьмет на себя объяснение, обобщение, вывод закономерностей. Органический синтез из науки чисто опытной станет превращаться в науку все более точную.
В то же время простор для искусства безусловно сохранится. Владея расчетом, химик сможет возводить еще более изящные молекулярные сооружения и проводить более эффектные реакции.
Впрочем, к чему, спрашивается, красота, если в конечном счете формулу получит производственник, которому важно совсем другое?
Здесь мы подходим к еще одной стороне химического творчества – его связи с жизнью.
Человек настоящего, а будущего тем более, стремится к красоте во всем. Он хочет красиво одеваться, окружить себя красивыми вещами, работать в красивой обстановке. Недаром родилась техническая эстетика, задачи которой сочетать удобство, целесообразность и красоту на производстве.
Химия призвана помочь искусству и эстетике. Она позволяет воплотить самые смелые и неожиданные инженерные замыслы. Она дает большую свободу в выборе формы и цвета. Химические волокна и пластмассы уже меняют внешний вид многого, что нас окружает, включая и облик городов.
А заводы? Само понятие современной архитектуры уже включает в себя «химический элемент». Что-то от химии, от арсенала ее индустрии, в высоких башнях, ажурных переплетах труб, шарах и колоннах… Невольно вспоминается здание Атомиума на Международной выставке в Брюсселе, который имел вид кристаллической решетки молекулы железа, увеличенной в 165 миллиардов раз.
В первую очередь химизация архитектуры относится к заводам самой химии. Они как бы перекидывают мостик к промышленному пейзажу будущего, вносят необычное, которое воспринимается порой как дело рук разумных существ какого-то иного мира. Вероятно, такие формы постепенно разовьются и дальше.
Фантастические рисунки художников переносят нас в обстановку грядущей эпохи, и воплотятся они наяву не без участия химии. Химия обеспечит архитектора материалами. Химия, быть может, подскажет ему новые сочетания линий и красок, новые формы. Когда развернется строительство в космосе, то «небесные архитекторы» смогут кое-что позаимствовать из опыта молекулярных построек природы и химии.
Часто, создавая новое вещество, идут поначалу длинным и сложным путем. Но бывает и так, что сама структурная формула подсказывает возможность усовершенствовать, упростить синтез. Рассматривая ее как постройку, удается подметить те лишние звенья, которые можно устранить, придав сооружению простоту, законченность и стройность. Отсюда и сокращение хода синтеза – результат для практики немаловажный.
И выяснилось, что природа, ведя свой синтез – в растениях например, – тоже строит по принципу наибольшего совершенства молекулярных форм. За многие миллиарды лет она отточила свое мастерство химика – архитектора молекул.
Человек, соединив свои разум, фантазию и изобретательность с математическими способностями электронной машины, будет свободно конструировать новые соединения.
Без помощи машинной математики химия уже не сможет обойтись. Слишком сложными получаются уравнения даже для самых простых молекул, слишком велик объем вычислений даже для самых простых реакций.
Обычно приводится такой любопытный пример. Чтобы провести расчеты для атома урана, понадобилось бы такое количество бумаги, на изготовление которой не хватило бы сырья во всей Солнечной системе!
Поэтому, с одной стороны, пользуются приближенными методами. А с другой стороны, прогресс электронно-вычислительной техники и математики вселяет новые надежды. Совершенно очевидно, что в будущем такая связь химии и счетно-решающих устройств станет основой для движения вперед.
Математика сказала свое слово, она внесла в химию свежую струю, помогла привлечь новейшую физику для объяснения многих «каверз» органики. Теперь «приключения и опасности», а значит, и искусство органического синтеза неразрывно связаны с ультрамикроструктурой вещества. Пришлось заглянуть в самые глубочайшие недра микромира, куда раньше химики не заглядывали.
Это – уже настоящее. Машина получает сведения о свойствах атомов разных сортов. Всего несколько секунд – и она выдает ответ, предсказывая, какие вещества и с какими свойствами можно из заданных атомов создать!
Пока что машина-химик имеет дело лишь с несколькими видами атомного сырья, но и тут экономятся годы человеческого труда. Пока что она предсказывает вещества, но ведь она сможет и конструировать их по заданным ей, нужным нам свойствам, скажет, из каких атомов и как синтезировать.
Сюда надо добавить еще и физику: то, что происходит с атомами и молекулами, это и в ее ведении.
Ход реакции физика вместе с химией опишет математическим языком. Химические формулы будут выражены математически. А отсюда уже один шаг до электронной автоматики.
Математика моделирует великое множество самых различных явлений – от движения спутников до какого-либо заводского процесса.
Техника умеет создавать «электрическую картину» многих явлений, преобразуя изменения разных величин в разные электрические токи.
Она может создавать и «электрические модели» различных процессов. На языке математики многие не похожие друг на друга явления описываются совершенно одинаково.
Вместо «настоящего» явления, скажем, действия сил на летящую ракету, составляется электрическая цепь, где токи, напряжения и другие величины, с какими имеет дело электротехника, заменят определенные силы, скорости, нагрузки. То и другое явления описываются совершенно одинаковыми формулами.
А для математики безразлично, что именно мы решаем. Формулы-то ведь одни и те же. Поэтому по изменению электрических величин можно судить о других, их «заменителях», о том, что делается с ракетой, когда меняются условия полета.
Как, например, узнать, что сделать, чтобы точно выдержать заданный режим – температуру, давление, плотность? Меняются одни величины, какими же будут другие? Опять уравнение, и языком математики можно описать технологические процессы – хотя бы получения материала. И электромодель дает ответ с поразительной быстротой.
Перебрав все варианты, машина остановится на наилучшем. Она подскажет, как устроить химический реактор, как наладить его работу.
Какую же, в конце концов, ставит цель это вторжение математики и физики в химию?
Проверяя себя опытом, теория должна добыть как можно больше сведений о строении молекул. Она должна выяснить, какая существует связь между молекулярной архитектурой и свойствами самих молекул – физическими, химическими, биологическими. В далекой перспективе физика, химия, биология должны вместе нарисовать единую картину мира.
Однако молекул – и тех, что уже созданы, и тех, какие еще создадут, – фактически бесконечное множество. Если каждую из них изучать отдельно, работа окажется невыполнимой. Но для соединений удастся, вероятно, построить какую-то классификацию, установить какой-то порядок, систему. Тогда и появится возможность разобраться в безумной сложности органики и предсказать, какие новые ее детища могут появиться.
Уже сейчас раздвинулись рамки «синтетического» творчества. А потом они раздвинутся еще шире. Будут создаваться разнообразные материалы с наперед заданными свойствами, какие потребуются людям.
Творец новых веществ, химия прокладывает дорогу к неведомым сейчас тайникам превращений. Раскрываются секреты химических реакций, механизмов химических связей и всего того, что происходит с молекулами, атомами, группами атомов, ионами, электронами. И открытия, уже сделанные сегодня, прокладывают пути в будущее иной раз неожиданные и очень важные для химической практики завтрашнего дня.
Мы привыкли считать, что молекулы состоят из атомов. Но возможно ли, чтобы не атомы, а целые молекулы или ионы послужили стройматериалом тоже для молекулярного здания, только более сложной кладки?
Оказалось, что в природе существует множество таких сложных построек – комплексов. В центре – атом или ион, комплексообразователь. Это может быть и металл, и почти любой из элементов периодической системы. Вокруг него находятся связанные с ним группы атомов или ионы. Это – лиганды. Они могут располагаться в вершинах невидимых многоугольников или многогранников – квадрата или тетраэдра, куба или октаэдра и других. Связи от центрального атома могут расходиться как клешни краба или щупальца осьминога.
К комплексам неприменимы обычные представления о химических связях. Поэтому говорят, что они – настоящее чудо химического мира. И в чем тут дело, какие силы удерживают лиганды вокруг комплексообразователи, до конца не выяснено.
«Комплексное соединение – очень сложное «содружество», в нем каждый из «союзников» испытывает влияние своего соседа… Все составные части комплекса перестраиваются, приспосабливаясь к совместному существованию… Комбинируя атомы металлов с разными атомами, нонами, молекулами, способными выступать в роли лигандов, можно получать необычные, иногда очень денные вещества, и число таких комбинаций может быть как угодно большим», – пишет член-корреспондент Академии наук УССР К. Яцимирский.
Комплексы мы найдем в солях морской воды и минералах, в крови и хлорофилле – в природе живой и неживой. Более того, усложненные молекулы – комплексы – неизбежный спутник множества реакций. Можно сказать, что и мы построены из комплексов и с комплексами имеем дело на каждом шагу.
Стоит заменить какую-либо из частей, его образующих, и резко меняются свойства. Нерастворимое становится растворимым, появляется другая окраска, меняются электрические и магнитные свойства. Потому-то, имея дело с комплексами, легко получать совершенно необычные вещества.
Связывая в комплекс ионы, можно удалить соли и из жесткой воды сделать мягкую. Комплексные соединения – иониты – легко притягивают и задерживают и золото из морской воды, и любой другой драгоценный металл, где бы он ни находился. Чистый уран стали извлекать из руд именно с помощью комплексов. Мы не познакомились бы ни с редкоземельными, ни с трансурановыми элементами, не приди нам на подмогу комплексы.
Теперь – мостик в будущее. Где химия комплексов найдет себе место? Всюду, где будут добывать рассеянные, редкие элементы. Полем деятельности для нее станут океан и земные недра.
Но это далеко не все. Она уже сейчас дает самые разные и притом необыкновенно полезные вещества – от антистарителей для полимеров до катализаторов, от присадок к бензину против детонации до консервантов, сохраняющих масло, фрукты, мясо и даже кровь. Среди комплексов – наилучшие красители, яркие и стойкие. И, конечно, комплексы найдут широкое применение в малой, бытовой химии и в медицине. Они способны, например, удалять из организма сильнейшие яды. Комплексы станут орудием тонкого химического анализа.
Из газа этилена, не прибегая к сильному нагреву и давлениям – этим обычным орудиям химиков, заставляющим молекулы вступать в реакции, можно получить твердый полиэтилен. Такое удивительное превращение происходит в присутствии катализатора-комплекса. Кто знает, быть может, среди комплексов найдутся ускорители и для других реакций полимеризации?
Оказалось, что в многообразном мире всевозможных искусственных соединений существуют удивительные молекулярные постройки без химических связей.
Впервые, впрочем, о них узнали полтора века назад, но как-то даже не поверили, что такое может быть. А факты накапливались. Наконец, уже специально синтезировали соединение, которого в природе никогда еще не встречали и которое построено иначе, чем все другие.
Оно образовалось не под действием обычных химических сил. Молекулы в нем соединены, как звенья цепочки. Можно все сооружение сделать из колец, причем сцеплять их по-разному, например закручивая и переплетая цепи в узлы.