355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Ляпунов » Химия завтра » Текст книги (страница 6)
Химия завтра
  • Текст добавлен: 4 апреля 2017, 07:00

Текст книги "Химия завтра"


Автор книги: Борис Ляпунов


Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 6 (всего у книги 12 страниц)

ЧАСТЬ II
В ШКОЛЕ ВЕЛИКОГО ХИМИКА

Заглядывая вперед, химик-технолог не сможет пройти мимо опыта живой природы – этого поистине Великого Химика, искуснейшего из искусных.

Что дало бы нам овладение секретами живой химии?

Если мы сможем, подобно ей, обойтись без высоких давлений и температур, значит, не понадобятся дорогие материалы, Стекло, вероятно, заняло бы на химических заводах место стали.

Высочайшая надежность? Пока она недостижима, говорят ученые. Надо еще разобраться во всех тонкостях природной кибернетики. Они не сомневаются, что со временем это удастся сделать. У нас часто пользуются выражением «умные машины», Но только природа поможет сделать их по-настоящему умными.

Наши катализаторы в сотни и тысячи раз менее активны, чем ферменты животного и растительного мира – катализаторы природные. Они еще не обладают столь высокой избирательностью – способностью ускорять только одну реакцию из многих сотен.

А ведь те же самые реакции, в которых участвуют ферменты, мы встретим и на наших химических заводах.

Мы не будем, конечно, слепо копировать природу. В сложных молекулах ферментов лишь частичка, лишь активный центр служит всему причиной. Выходит, можно создать упрощенную постройку. Биохимики выделяют ферменты из живых тканей. Химикам же придется из большого ассортимента молекул неживой материи создать искусственно подобие живого фермента. Думают даже, что в искусственных ферментах обойдутся… без белка.

Спрашивается: сравняется ли по силе действия биокатализатор искусственный с природным? Да и будет ли годиться для наших целей ферментный осколок, только одна его активная часть? И, наконец, выполнят ли свою роль так, как нужно, катализаторы, устроенные проще, чем белки?

Опыты дали утвердительный ответ. Правда, не всегда удается догнать природу, получить столь же энергичный фермент. Но ведь это сейчас, а в будущем, может быть, будет иначе! Есть к тому же случаи, когда создавали даже более активные биологические вещества, чем природные.

Сегодняшняя практика подтверждает, что соревноваться в создании ферментов с природой вполне возможно. В то же время эти успехи таят в себе загадку для теории.

Если работоспособны более простые вещества, то зачем природе понадобились такие сложности? И только ли в одной активности дело? Не выполняют ли ферменты еще какую-то роль? Не могла же искусница-природа допустить столь неоправданные излишества или какие-то просчеты!

Большинство ферментов в клетке, оказывается, сосредоточено в митохондриях – особых тельцах, разделенных перегородками. Такая конструкция непроизвольна: недаром же, если митохондрии постепенно разрушаются, они вновь восстанавливаются, и опять с теми же перегородками. По-видимому, все эти сложные сооружения составляют часть химического завода клетки.

Чтобы создать химический завод, столь же совершенный, как клеточный, биохимикам предстоит немало поработать.

Ферменты возникли в первом же живом комочке белка. С тех пор несметное число тысячелетий природа совершенствовала это свое создание, как и другие детали белковых молекул. А если создать модель химической системы, которая станет само-развиваться подобно живому белку?

Разумеется, такую эволюцию надо сжать во времени. Ее можно направить и необязательно по проторенному пути, а выбрать другой вариант, не только более короткий, но и чем-то более интересный. У природы, как мастера эволюции, тоже бывали в запасе разные варианты.

Клетка устроена одинаково у людей и животных. Но люди и животные суши не могут пить морскую воду, а обитатели моря и одна-единственная птица – альбатрос – могут. У альбатроса имеется солевая железа, клетки которой работают несколько иначе. Сложная система клеточных «насосов» опресняет воду и выбрасывает соли.

Если уж природа придумала такое хитроумное приспособление, то почему бы и человеку, создав саморазвивающуюся химическую систему, не попробовать вести искусственную эволюцию по-своему?

Сине-зеленые водоросли работают, строят белок не только на свету, но и в темноте, если к питательному раствору добавлять глюкозу. Химическое производство в них легко переналаживается. И это тоже показатель высокого совершенства. Перевести же химзавод с одного вида топлива на другой – для нас целая реконструкция.

Учителями химиков должны стать и бактерии. Как много дала бы химии будущего разгадка секретов их химического «производства»! С помощью своих ферментных систем они могут делать удивительные вещи.

Есть бактерии, которые синтезируют белки, питаясь окисью углерода, а она смертельна для человека даже в самой малой дозе. Есть бактерии, окисляющие железо, превращающие серу в серную кислоту, использующие гремучий газ, который не взрывается при этом.

Невидимки легко и просто связывают атмосферный азот в разные соединения: тот самый азот, который химики долго не могли заставить вступать в реакции и успеха добились лишь с помощью высоких давлений и температур. То, что происходит в клубеньковых бактериях, живущих на корнях бобовых растений и связывающих азот, будет воспроизведено искусственно. Тогда покажутся анахронизмом дорогие, громоздкие, огромные машины и аппараты современной химической индустрии.

Катализаторы бактериальных клеток весьма совершенны. Мы не умеем иногда получать нужный нам продукт в чистом виде, без «спутников». А бактерии способны на это.

Мы еще не умеем получать кое-какие вещества, которые легко вырабатываются бактериями. Уже тысячи химических реакций, самых разнообразных, проводят для нас микроорганизмы. В будущем мы научимся управлять, руководить их работой.

Мы наладим в широких масштабах синтез всевозможных соединений – антибиотиков и витаминов, углеводов, белков и жиров, стимуляторов роста, добычу полезного нам всюду, где оно есть. И, что очень важно, мы выведем новые виды бактерий, заставим их синтезировать именно то, что нужно нам. Новые поколения, выведенные искусственным путем, могут оказаться намного производительнее своих предков: отличий здесь не меньше, чем у домашних животных и культурных растений от диких.

Совершенно необычное применение в биохимии уже нашла вычислительная техника. Электронные машины рассчитывают рацион питания для бактерий: первый опыт, который поможет воспользоваться электроникой для управления микробиологическим синтезом. Большие биохимические заводы, производящие корма и пищу, будут управляться кибернетически.

Вполне серьезно геологи говорят уже теперь о возможности создавать месторождения руд – не за миллионы лет, как в природе, а гораздо быстрее. Бактерии в этом помогут, ибо они работники и в подземных кладовых.

Пример неожиданной проблемы, которую химия выдвигает и которую она же должна решить. Тару изготовляют из негорючей пластмассы. Поэтому уничтожить ее невозможно. Но если ввести в нее уже при изготовлении бактерии, то они потом съедят пластик.

Какой откроется простор, когда разгадают многие загадки живого!

Вот один из первых примеров удачной учебы химиков у природы.

Из крови осьминога извлекли вещество, способное собирать медь, растворенную в морской воде. Затем создали подобное вещество искусственно. Оно задерживало не только медь, но и уран, и притом полностью.

Тогда пошли еще дальше: появился еще один химический «аккумулятор» – для золота. Собрали его вроде бы очень мало – меньше полуторамиллионной доли грамма из ста литров. Но Океан велик, а технология чрезвычайно проста. Если пропускать морскую воду через небольшие плотины, поставив на ее пути химический аккумулятор, то можно добыть немало драгоценного металла.

Химики могут поучиться у природы секретам растительных конструкций. Они узнали, что растения состоят в основном из углеводов или похожих на них веществ. Эти вещества особенно подходят для создания прочных и своеобразных архитектурных сооружений. Природа умело распределила материал, применила армировку, – волокна, составляющие остов, выдерживают наибольшую нагрузку, они не менее прочны, чем сталь.

Измельчая и затем уплотняя вещества, готовя из них материал – строительный, конструкционный, – мы, по существу, берем урок у природы.

Кости и мышцы животных, стволы, стебли растений состоят из множества волокон, зерен, пленок. Поэтому материал надо, подражая природе, строить из мельчайших частичек. Сначала надо его раздробить, а потом сблизить между собой частицы, избегая опасных крупных пор и пустот.

Химическое формование тоже заимствовано у природы. Кожа, мышцы, сосуды, все живые ткани образуются не из заготовок, а получаются из первичного сырья сразу как готовое изделие. Этот способ станет одним из важнейших в химической технологии будущего.

Паутина, оказывается, изготовляется пауком точно по заказу. Для разных своих надобностей наук делает и разную нить: эластичную – для ловчей сети, прочную – для подвески, объемную, похожую на шерсть – для кокона, хранилища яиц.

Мы стремимся подражать пауку, создавая искусственные волокна, но нам это удается пока что хуже. И в поисках путей к синтетическим волокнам с заранее заданными свойствами нам стоит внимательнее присмотреться к работе паука. Он, как и шелкопряд, проделывает совсем просто то, что нам дается с большим трудом.

Возможно, химикам в будущем удастся создать искусственный белок, в котором искусственные же молекулы с заложенной в них наследственной информацией будут управлять синтезом, выращивать волокнообразные полимеры с заранее заданными свойствами. Искусственно воссоздадут происходящее в живых тканях, где молекулы, обладая наследственной памятью, руководят «строительством» белков.

Присмотревшись к шелкопряду, химики-технологи поняли, что совершали ошибку. Он не продавливает жидкую заготовку сквозь отверстие, как делают наши машины, – он приклеивает капельку к чему-либо и вытягивает нить.

Мы портим материал, ломаем молекулы, наше волокно непрочно. А шелкопряд предоставляет молекулам самим укладываться наилучшим образом – вдоль волокна, и оно становится очень прочным. Верх совершенства в таком живом химическом производстве!

Материал у него одновременно и машина. Он сам придает себе нужную структуру. И ключ ко всему этому скрыт в молекулярном механизме. Разгадав его, мы перенесем технологические принципы природы в технику. Не появятся ли тогда химические фабрики волокон без машин?

Но выяснить, что происходит в органическом мире, если смотреть на него с химической точки зрения, – далеко не все. У природы химия будет учиться создавать заменители, не уступающие оригиналам, а может быть, и превосходящие их. Паук и шелкопряд – не единственный пример. Мы уже делаем искусственную кожу и будем делать ее еще лучше.

Не удивительно ли это? Человек проникает в тайны далеких звезд и галактик, исследует глубочайшие земные недра, изучает атом. А живая природа для него до сих пор полна загадок. Птиц, насекомых и других животных и растений наберется, вероятно, миллионы видов. Работы хватит, по-видимому, не на одно поколение ученых и инженеров.

Но нас здесь интересуют лишь химики и химики-технологи. Какие уроки им может преподать мир живого?

Бабочка тутового шелкопряда может улавливать запахи, если пахучего вещества в кубометре воздуха хотя бы одна молекула! Ученые заинтересовались этой замечательной способностью и синтезировали то самое вещество, которое привлекает бабочек.

Вещество, однако, оказалось в четырех лицах, и лишь один из изомеров[1]1
  Изомеры – вещества, имеющие одинаковый элементарный состав, то есть одну н ту же химическую формулу, но отличающиеся по своим физическим и химическим свойствам вследствие различного расположения атомов в молекуле.


[Закрыть]
в точности соответствовал природному. Бабочка безошибочно его отличала, люди же сделать этого не могли. Вот насколько бывает развито обоняние у живых существ!

Химики не преминули воспользоваться своим открытием. Искусственно созданное ими вещество уже пробуют применять для приманивания и уничтожения вредителей лесов. Задача чрезвычайно важная: ведь те ядохимикаты, которые до сих пор создавала химия, становятся бессильными, ибо насекомым удается к ним приспособиться, и новые их поколения уже не так-то просто истребить. Кроме того, ядохимикаты порой уничтожают не только вредных, но и полезных насекомых. Яды попадают в овощи, фрукты, даже в молоко и мясо.

Положение очень серьезно. Химия ищет выход и, несомненно, найдет его. Она уже пробует создавать препараты, которые помешали бы вредным насекомым размножаться, делая их бесплодными.

Что еще мы могли бы позаимствовать у «живой химии»?

Сотни запахов различает лягушка, собака – уже до миллиона, кролик – несколько миллионов. Кролика и лягушку, правда, не заставишь работать, зато собачий нюх верой и правдой служит человеку. Если бы собака попала в цех, она по запаху смогла бы определить, не начался ли износ инструмента, найти место, где протекает трубопровод.

И пытаются даже приспособить мух в качестве индикаторов – они покажут, где протекает жидкость в какой-либо гидросистеме. Говорят, что «мушиным» способом американцы испытывают надежность топливного оборудования ракет. Каковы их успехи – об этом, правда, ничего не известно…

Но важно другое. Несомненно, природа подскажет, как устроить тончайший, распознающий запахи прибор.

Любопытно, что разных запахов – десятки миллионов, Надо иметь опытный «нюх» парфюмера, чтобы различать хотя бы сотни. Распознать сложные пахучие вещества химик теперь может далеко не сразу. А что было бы, если обострить обоняние химика, дать ему в помощь искусственный нос?

Он станет контролером на парфюмерном заводе. Криминалистам заменит ищейку. На пищевом комбинате определит, свежие ли продукты. Такой «нос» следил бы за чистотой воздуха в городах и на производстве.

Запах – своего рода химический сигнал, на расстоянии рассказывающий о веществе. И попади искусственный нос в атмосферу другой планеты, он быстро определит ее состав. Этот экспресс-анализ по запаху можно передать в зашифрованном виде по радио.

Да и вообще обостренное обоняние раскрыло бы перед нами целый мир и вне Земли, и на Земле.

Разве не помог бы совершенный прибор по самым незначительным изменениям «спектра» запахов просигналить, что человек заболел? Разве не предупредили бы такие приборы о приближении опасного износа деталей, особенно там, где работают автоматы? Разве не пригодился бы опыт природы, чтобы вообще предупреждать об опасности где бы то ни было – в шахте, на химическом заводе, в кабине космического или подводного корабля?

Рыбы тоже чувствительны к запахам; они замечают в кубометре воды даже миллионную долю грамма примеси. Только поэтому лососевые за тысячи километров находят путь к местам нереста. Как они улавливают запах, мы пока не знаем. Когда же узнаем, сможем, вероятно, построить прибор для своего рода химической связи под водой.

Пусть современный электронный «нос» способен отличить всего несколько химических соединений. Его «потомки» постепенно догонят природу.

Воспользовавшись опытом природы, мы построим приборы, которые по чувствительности во много раз превзойдут современные. Тогда измерению и наблюдению станут доступны такие расстояния, колебания, количества вещества, света и тепла, которые сейчас ускользают от нас.

Подобно тому, как сверхскоростная киносъемка – лупа времени – позволила понять, сколь велико мгновение, сколь богато оно событиями, проникновение за пределы сегодняшней чувствительности приборов, видимо, приоткроет дверь в сверхмалое.

А из малого вырастает большое. Ведь только тогда, когда научились обращаться с невообразимо малыми количествами вещества, смогли открыть и изучить свойства новых элементов, получить вещество сверхвысокой чистоты, применять «меченые» атомы, разделять изотопы.

Когда научились принимать и усиливать слабые сигналы, слабые токи и свет, тем самым распахнули окно во Вселенную. Увеличилась познанная ее часть, более того: она предстала иной – Радиовселенной, Вселенной ультрафиолетового и инфракрасного излучений. И были открыты тогда темные, невидимые радиозвезды и радиогалактики, звезды, которые в обычный телескоп не обнаружить.

Так почему же не предположить, что мир живого не поможет нам приоткрыть завесу скрытого сейчас?

Химик, например, сможет точно определить, какие элементы растворены в морской воде и сколько их там. Сейчас обнаружено сорок четыре. И, несомненно, должны быть остальные. Ведь обнаруживаются же в телах морских животных те из них, какие еще не найдены в воде. Просто нет еще столь сверхтонких методов анализа, просто мы не умеем замечать и обращаться со столь слабоконцентрированными растворами.

Если вспомнить про гигантский объем Мирового океана, малое опять обернется большим. Узнав все о воде, мы сумеем тогда полностью использовать эту «жидкую руду». Она будет поставлять все элементы менделеевской таблицы.

Очень интересным органом обладают киты. Чувствительности этого живого прибора может позавидовать техника. Усатый кит питается планктоном и находит его скопления в толще вод, всегда двигаясь к нему по кратчайшему пути. Но китовая пища скапливается не всюду, а лишь в определенных местах, с определенной соленостью. Кит, очевидно, определяет с высокой точностью (до сотых долей процента!), насколько насыщена солями морская вода, а потому и находит быстро дороге к своему «пастбищу». Может быть, н «опыт» китов пригодится тем, кто изучает океанские богатства?

Поговорим теперь о другом – о хлебе насущном, о пище. В этом разговоре химия будет принимать самое активное участие. Но начнем с вещей известных и даже таких, где химия явно не выступает или выступает в своей старой роли.

Сейчас голодает либо испытывает недостаток в пище особенно белковой – более половины населения Земли.

Если бы всюду, а не только о отдельных местах разумно, по всем правилам науки, вести сельское хозяйство, то урожаи повысились бы в четыре-пять раз. В масштабе всего земного шара – резерв гигантский.

Если бы использовать под земледелие всю площадь, какую только можно занять, то продуктов питания хватило бы на 65 миллиардов человек!

А теперь, если объединить и то и другое, если на всех этих землях еще и снимать наивысшие урожаи, то Земля прокормит самое меньшее 260 и самое большее 325 миллиардов человек!

Искусственный фотосинтез – дальняя перспектива, а более близкая – управление фотосинтезом природным. Если бы мы смогли заставить растения еще лучше использовать солнечный свет, урожаи увеличились бы в несколько раз! Один процент – таков примерно к. п. д. фотосинтеза. Ученые считают, что его можно было бы увеличить, по крайней мере, впятеро!

Несколько десятков химических элементов нужны растению, чтобы оно нормально росло и развивалось. Не думайте, однако, что «несколько» – всего два или три. Точное число – больше 70, почти вся природная часть менделеевской таблицы.

Химия издавна служит поставщиком пищи растениям. Она поставляет удобрения миллионами тонн. Но все равно этого мало. Если бы, например, азотных удобрений она давала вдвое больше, то и пищи дополнительно получилось бы столько, сколько нужно на год четверти миллиарда человек!

Бактерии делают то, что пока людям недоступно – приготовляют кормовой белок, причем очень быстро и просто. Одна клеточка перерабатывает в десятки раз больше пищи, чем весит сама! Разгадав, как она усваивает атмосферный азот, мы сможем в огромных масштабах готовить удобрения из воздуха. Связывать азот воздуха помогут и ферменты, выделенные из растений.

Электрический разряд дробит молекулы, и из осколков создаются новые соединения. Причем осколки эти очень активны, легко вступают в реакцию. Так из воды и воздуха – иначе говоря, из молекул водорода, кислорода и азота – с помощью электричества можно будет получать азотные удобрения. Вода, которая идет для полива, одновременно станет и удобрять почву. Может быть, окисью азота, возникающей в воздухе при разряде искусственной молнии, можно будет насыщать поля. И, наконец, радиационная химия поможет добывать удобрения из воздуха и воды.

Возможности химии в борьбе за урожай не ограничиваются одними удобрениями.

На нас надвигается грозная опасность, и угрозу чувствует все сильнее уже современное поколение людей. Вредители и сорняки, многие бесполезные пока растения и животные мешают жить полезным. Мешают им болезнетворные бактерии и грибки. Вред, который приносят всевозможные паразиты, хищники и прочая «нечисть», созданная природой, просто неисчислим!

Только потому, что мы еще не умеем с ними бороться, мир теряет ежегодно миллиард пудов зерна.

Мы можем еще кое-как прикинуть убытки в земледелии и животноводстве. Колоссальный вред наносится не только полям, огородам и садам, но и всему растительному миру Земли. Помимо всего прочего, это ведь еще один наш пищевой резерв.

Сколько ныне диких растений станут культурными! Сколько пищи и всевозможного сырья смогут они дать!

Сейчас только единицы приручены нами: из семи тысяч злаковых растений используются только рожь и пшеница, овес и ячмень, рис и кукуруза, ну и разве что еще несколько, включая кормовые травы. И надо беречь всю флору, люди и так нанесли ей существенный урон. Грядущим поколениям придется поправить дело.

Казалось бы, борьба с вредителями идет, и успешно. В чем же причина беспокойства, в чем же опасность? В том, что яд скоро перестает быть ядом. Вредные насекомые приспосабливаются к нему, у них вырабатывается защита. И, в конце концов, как мы уже говорили, появляется потомство, которое совсем не боится нашего химического оружия. Все время должны создаваться новые и новые яды. Вот над чем придется подумать – и этим занимаются сейчас, не говоря уже о будущем.

Начав считать убытки, быстро не остановишься. Продукты портятся, и мы только еще учимся их сохранять. Сливочное масло, чтобы оно не желтело от времени, не пахло, не горчило, мы уже знаем, как защитить. Научила нас этому химия, дав вещества, предохраняющие от окисления, – антиоксиданты. Научит она защищать и другие продукты.

Преждевременное прорастание и перезревание плодов и овощей тоже наносит огромный ущерб. И здесь есть скрытый резерв, воспользоваться которым поможет химия.

Химия помогает сохранять лук и картофель так, чтобы они не прорастали. Получаются своеобразные овощные консервы. Консервировать можно будет и мясо: остановить в нем процессы разложения, и тогда оно будет свежим сколь угодно долго.

Будем искать еще резервы. Стимуляторы роста растений, вещества, помогающие снимать высокие урожаи. Безусловно, от них можно ждать многого. Количественной оценки тут пока не сделаешь. Но то, что прибавка окажется существенной, известно уже и сегодня.

Человек еще не перешел на химическую пищу, а растения пользуются ею уже давно.

Между тем, хотя испытаны многие тысячи препаратов, удобрений пока применяется несколько десятков, а ядохимикатов – несколько сот.

Химикам предстоит усовершенствовать пищу для растений. Удобрения будущего должны быть комплексными, концентрированными и, разумеется, безвредными для человека. Они одновременно и подкормят растения, и ускорят его рост, и защитят от сорняков, и предохранят от болезней.

Кроме того, будут созданы вещества, приносящие пользу иным путем. Они изменят структуру почвы, и земля станет лучше удерживать влагу и те же самые удобрения. Для растения такая помощь не менее важна, чем от самой химической пищи!

Стимуляторы роста животных, добавки, улучшающие корм, дадут дополнительно много мяса, молока, яиц.

Выведут новые микроорганизмы и кормовые растения, создадут такие, белковые препараты, которые резко повысят стойкость к заболеваниям.

Вирусы станут изготовлять по заказу для борьбы с микробами. Эти борцы с болезнями, конечно, будут безвредны для человека. А против тех вирусов, которые, наоборот, вызывают болезни, найдут необходимые лекарства – куда более сильные, чем до сих пор.

Сумеют убыстрить чередование реакций, связанных с обменом веществ, чтобы ускорить рост. Думают, что животное будет вырастать в два-три раза быстрее, а растение – в десятки раз.

Но это будущее все же далекое, а мы продолжим пока поиски в химии и биологии современной.

Вот как ученые представляют себе биохимическую фабрику кормов.

Сырье: кукурузные кочерыжки и другие растительные остатки, карбамид (азотистый продукт с химической фабрики), немного мясных отходов в качестве своего рода дрожжей (поставщиков микробов – работников этой биохимической фабрики), углекислый газ. Автоматика поддерживает нужную температуру, кислотность, перемешивает массу. И микробы принимаются за работу. Они питаются углеводами и азотом, приготовляя белковый корм. Его остается разлить в формы, высушить и, если нужно, размолоть.

Иметь корм, даже самый лучший, – еще не все. Надо, чтобы животные хорошо его усваивали, и здесь скрыт еще один химический резерв.

Оказывается, поверхностно-активные вещества помогают переваривать пищу – она лучше смачивается желудочным соком и, в свою очередь, лучше смачиваются стенки желудка и кишок. Кажется, это пустяк, но разве пустяк – прирост живого веса у кур чуть ли не на треть! Это куда больше, чем дают сейчас добавки антибиотиков.

Что, казалось бы, мог дать синтетический, искусственный запах? Только ли аромат духов? Сейчас – да, а в будущем – эффективный способ борьбы с вредными насекомыми: химическая приманка привлечет насекомых, чтобы химии же могла их уничтожить.

Здесь мы Америку не открываем, здесь, в общем, все уже известно. Дело только за тем, чтобы идти по уже проторенным путям. По самым осторожным подсчетам, опираясь только на современный уровень знаний, на современную химию и современное сельское хозяйство, можно сказать: от 60 до 85 миллиардов человек способна прокормить наша планета.

Пусть не сотни, а всего десятки миллиардов, но это не фантазия, это вполне реально. Это не потребует никаких революций. Просто за счет того, чем мы уже располагаем, удалось бы накормить население почти тридцати таких планет, как наша сегодняшняя Земля!

Надо иметь в виду и далеко идущие связи. Они не бросаются в глаза, тем более что все это необычно и химия держится здесь словно за кулисами.

Мы пользуемся уже сейчас химическими удобрениями, вводим в почву микроэлементы, даем растениям ускорители роста, в теплицах и оранжереях подкармливаем их углекислотой. Путь прямой и многообещающий, потому что удастся искуснее и шире применять его.

Но есть путь, па котором мы до сих пор не ожидали помощи от химии, – воздействие на погоду. Разве не поможет оно получать еще большие урожаи? Ведь зачастую труд людей гибнет от капризов погоды. Справиться с ними – значит обеспечить наверняка урожай.

Человечество сделает, бесспорно, из своей Земли зеленую планету. Оно освоит всю сушу, какую только можно освоить, оно по единому великому плану реконструирует Землю. Без химии, без сельскохозяйственной химии, и тут не обойтись.

Только ли удобрений, только ли микроэлементов ждет земледелие от нее? Нет, на нее возлагают большие надежды и в другом.

Химия – это земледелие без почвы, гидро– или аэропоника, как сейчас говорят. К корням растений подводят питательные вещества. Вот и все, что нужно для необычной плантации.

И можно снимать очень высокий урожай, притом не только в теплицах. Можно растения размещать в несколько ярусов, чего не сделаешь на простом огороде. Удобрения используются тогда полностью, и не приходится бояться ни сорняков, ни вредных почвенных бактерий. А уж механизации и автоматике здесь открывается широкий простор.

Всюду, где мало хорошей земли, где позволяют климат и погода (а ведь в будущем и они окажутся в наших руках), возникнут «беспочвенные» сады и огороды. Возникнет подземное земледелие, что сейчас звучит совсем уж, казалось бы, нелепо.

В пещерах – естественных и устроенных человеком – создадут подходящий искусственный климат. Температуру, влажность, даже состав воздуха – все это можно будет регулировать по заказу. Солнце заменят лампы дневного света.

Такой маленький мирок независим от того, что творится на поверхности. Где бы его ни оборудовать – нам обеспечены два-три урожая в год! И в развитии подземного сельского хозяйства химия сыграет решающую роль. Там-то и пригодятся гидро– и аэропоника. Они пригодятся и в городах под крышей, которые возникнут в полярных районах, а быть может, и в иных, малопригодных для жилья краях Земли.

Вероятно, в дополнение к солнечному станут все шире использовать для целей живой фотохимии искусственный свет. Спектральный состав его, условия освещения подберут по заказу – тогда фотосинтезом легче будет управлять – и получат наивысшие урожаи. Бесспорно, в оранжереях, на плантациях водорослей, в садах и парниках под синтетической крышей освещение будет искусственное, а энергию для этого дадут, например, атомные батареи.

Химия сделала возможным земледелие без земли, Но земледелие без воды – даже химия здесь бессильна. Между тем водоснабжение в природе далеко от совершенства.

Облака возникают часто не там, где надо, и не тогда, когда надо, Снег тает слишком быстро, и земля не получает нужной влаги. Вода испаряется с поверхности водоемов и просачивается сквозь стенки каналов, теряясь бесполезно. А близ морей воды, хотя и много, но толку от нее мало – она соленая.

С помощью химии можно будет поправить природу.

Дождь по заказу, облака, несущие воду от побережий в глубь материков, – это сделает химия. Она даст вещества, частички которых способны притягивать влагу из воздуха, иначе говоря, образовывать дождевые облака.

Она даст пленки, способные задержать таяние снега и испарение воды. Она же создаст надежные покрытия для стенок каналов и водохранилищ.

Она даст «сита», освобождающие морскую воду от солей.

Пленки понадобятся не только для того, чтобы удерживать влагу. Ими уже закрывают теплицы. Они неизмеримо удобнее обычного стекла: лучше сохраняется под ними тепло, лучше проникают сквозь них солнечные лучи.

Установлено даже, что полимерные покрытия помогают растениям развиваться, причем разные растения предпочитают и разные пленки. И, вероятно, химические укрытия позволят создавать – вместе с приборами-автоматами, конечно, – наилучший микроклимат для каждого вида растений.

Вторгаясь в биологию, химия поможет ей. Биологи переделывают растения, чтобы они были выносливее, давали больший урожай. Химики же будут подгонять природу к требованиям растений, вернее, помогут создавать для них искусственно свой маленький мирок, как можно лучше приспособленный. Одно не мешает другому, и союз химии и биологии даст новые пути, ведущие к одной цели – невиданно высоким урожаям.

Пленки пригодятся для того, чтобы разумно наладить подкормку растений. Частички, гранулы удобрений будут упаковывать в пластмассовую оболочку. Тогда вода не сможет их так быстро размывать, и растения получат свою химическую пищу не сразу, а постепенно. Так химия поможет рационально распределить ею же предоставленный растениям паек.


    Ваша оценка произведения:

Популярные книги за неделю