355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Борис Ляпунов » Химия завтра » Текст книги (страница 2)
Химия завтра
  • Текст добавлен: 4 апреля 2017, 07:00

Текст книги "Химия завтра"


Автор книги: Борис Ляпунов


Жанр:

   

Химия


сообщить о нарушении

Текущая страница: 2 (всего у книги 12 страниц)

Химия до сих пор такого строительного принципа не знала. Катенанами (от слова «катена» – цепь) назвали эти удивившие химиков соединения.

Здесь химия неожиданно нашла союзника в математике, в той ее области, которая казалась до сих пор весьма и весьма отвлеченной, далекой от практики, – в топологии.

Топологию интересует, каковы формы различных фигур, как они могут взаимно располагаться, как преобразовать их, не разрывая. Это похоже даже на фокус. И действительно, среди тех хитроумных геометрических построений, которыми занимается топология, часто встречаются математические головоломки. Из ленты, перекрутив ее и склеив концы, получают необыкновенное кольцо (кольцо Мебиуса). Если ленту теперь разрезать пополам вдоль, она не распадется на два кольца, а превратится в более узкое перекрученное кольцо. Если же разрезать ленту по трети ширины, получится два сцепленных кольца, подобно катенану. Кольца могут быть соединены и более сложно.

Катенаны – одно из самых молодых детищ химического синтеза. Их нужно искать в природе – они там должны быть. Их свойства нужно изучать, потому что необычное строение этих цепочек может очень многое дать и химии, и физике, и биологии.

Современная химия открывает новое даже там, где все хорошо известно, где ничего интересного, казалось бы, уже найти нельзя.

Элементы, для которых в таблице Д. И. Менделеева не было предусмотрено места и для них пришлось пристраивать к ней особую, нулевую группу. Элементы, которые не вступали ни в какие реакции. Элементы, которые за свое химическое упрямство получили прозвище инертных, или благородных. Кроме того, они на Земле еще и редкие.

Да и как могли они иметь иные свойства? Ведь внешние электронные оболочки и гелия, и аргона, и неона, и криптона, и ксенона, и радона – всех шести членов семейства инертных – полностью «укомплектованы» электронами. Поэтому они не могут ни отдавать свои электроны, ни забирать чужие.

Внешние оболочки их атомов устойчивы, и укоренилось мнение, что устойчивость эту ничем поколебать нельзя. На самом же деле она оказалась мифом.

Открыты были и гидраты аргона, криптона и ксенона – любопытные соединения. В них молекулы газов включены в кристаллическую решетку воды. Обошлось здесь без обычной химической связи.

Как-то, еще давно, вспомнили о фторе – самом агрессивном из элементов, – фторе, который соединяется решительно со всеми элементами и не может оставаться в одиночестве, повсюду выискивает себе компаньонов. Не сможет ли он расшевелить инертные атомы?

Изучая соединения фтора с платиной, химики случайно получили новое вещество. В его молекулы, кроме фтора и платины, вошел ксенон. Впервые инертность инертного была поколеблена. Произошло это несколько лет назад. Затем попытались соединить ксенон с одним фтором. И снова удача! А теперь появились окислы, фториды и другие соединения более тяжелых, инертных газов – не только ксенона, но и криптона, и радона.

Среди них – взрывчатка, она успешно может соперничать с любой другой, хотя сейчас еще слишком дорога. Среди них – будущие медицинские препараты. Наконец, новые соединения оказались очень удобны, чтобы в них сохранять и неустойчивый фтор, и устойчивый ксенон. Из такой «кладовой» легко добыть оба газа.

Легкие же газы – гелий и неон – остались пока непокоренными, и справиться с ними будет гораздо труднее. Труднее – не обязательно невозможно. Важно, что химия инертных родилась и сделала первый и, можно сказать, блестящий шаг.

Своим рождением она загадала и новые загадки.

С одной стороны, надо выяснить до конца, почему же столь странно повела себя нулевая группа, откуда взялись у нее скрытые резервы химических связей. С другой стороны, надо разобраться и в свойствах ее соседей – благородных платиновых металлов из восьмой группы. У них тоже малая химическая активность, и они тоже не зря называются благородными. А окиси галогенов (это уже седьмая группа) и кислородные соединения инертных газов оказались по свойствам похожими.

Нет ли здесь какой-либо закономерности, не понадобится ли в будущем перестроить частично периодическую систему? Пока говорят одно: инертным надо подыскать иное название, старое определенно не годится.

Сегодняшняя химия выясняет сложность того, что представлялось простым.

Реакция редко идет в одну стадию, мы же наблюдаем лишь ее начало и конец. Начало – исходные вещества, сырье. Конец – продукты, то, что намечалось получить, А все остальное, фактически все превращения, весь ход процесса, остается, говоря языком кинематографа, за кадром. Ибо от написанного на бумаге до реальности – дистанция огромного размера.

На самом деле в химическом реакторе разыгрывается «пьеса» из многих актов. Участники ее появляются и исчезают, они не доживают до финала. Но именно от них и зависит конечный результат. Если подобрать ключик, который повлияет па этих участников «спектакля» – на свободные радикалы, ионы, комплексы, – то мы получим еще одно могучее средство вмешательства в химический процесс.

Химия будущего заставит посмотреть и на сами химические процессы совершенно по-другому. Речь пойдет на этот раз не о том, что делается с молекулами, а об ином, не менее важном.

Прежде чем встретиться, молекулы должны пройти какой-то путь. Встреча порой происходит не один на один, а в присутствии третьего. Этот третий – катализатор. После встречи, после всех превращений, новые, уже преображенные молекулы должны уйти, покинуть «арену».

Главное – средняя часть «пьесы», в ней и заключен весь химизм, вся сущность происходящего. Чтобы реакция шла быстрее, чтобы обеспечить встречу молекул, которые не стоят на месте, а хаотически двигаются в потоке, и применяют нагрев, давление, используют катализаторы.

Но эта часть целиком зависит от первой и третьей. И выходит, что не только химические превращения, а и транспортировка молекул определяет успех не меньше, чем сам ход молекулярной встречи.

От явлений, разыгрывающихся в микромире, приходится поэтому переходить к событиям макроскопическим. Надо знать, что происходит с жидкостями, газами, твердыми частичками, когда они движутся с большими скоростями и смешиваются между собой.

Надо еще иметь в виду, что здесь участвует и тепло, которое выделяется либо поглощается. Особенно это трудно узнать и учесть, когда арена, где разыгрываются события, не колба и не пробирка, а огромный химический реактор.

В нем одновременно и непрерывно идут все три действия. Они поэтому переплетены между собой и влияют друг на друга. И финал будет намного успешнее, когда химики узнают все тонкости происходящего за стенками реактора.

Здесь скрыт ключ к поискам наилучшей технологии и, более того, к тому, как сами эти поиски ускорить.

Обычный путь от лаборатории до завода может занять десять-пятнадцать лет. Почему? Да потому, что, проводя испытания, мы постепенно переходим ко все более крупным масштабам – от крохотной пробирки до огромного заводского реактора.

Всякий раз нужно было бы создавать новый, увеличенный реактор, и всякий раз начинать сначала. Мы поэтому вынуждены менять всякий раз обстановку «спектакля». Движения, обмены массами и теплом, скорости, количества продуктов получаются иными.

Химия будущего сможет отказаться от этой постепенности, от дорогостоящих и затяжных опытных работ. Она проверит себя на малом – на модели, а математический расчет проделает все остальное.

Уже теперь получается выигрыш во времени, по крайней мере, раз в пять.

Колба-завод, а промежуток между ними заполняет математика. Это и есть химическая индустрия завтрашнего дня.

Мало получить новое вещество, его еще нужно сделать материалом. Нужно добиться, чтобы он обладал всеми качествами, какие потребует от него технолог. Ведь не полимер сам по себе, а изделие из него – вот конечная цель. Скорейший и лучший переход от лаборатории к заводу – одна из самых важных проблем химии сегодня.

Именно математизация даст ответ на волнующие химика-технолога вопросы. Электронная машина скажет, как перейти от завода в колбе к заводу настоящему. Она сразу выберет наивыгоднейшее решение, учтет требования «большого» и «малого», примирит физику и химию в одном компактном и высокоскоростном химическом реакторе.

Нельзя, конечно, представлять себе, что все обстоит чрезвычайно просто. Математизация химии только еще начинается, и помощь математики пока не так велика, как хотелось бы. Стоит чуть измениться условиям в реакторе, и перевод на язык формул уже осложняется. Одно дело, например, если катализатор лежит неподвижным слоем, и совсем другое, если он вскипает в газовой струе. Но и здесь можно быть уверенными, что, в конце концов, даже сложнейшие процессы поддадутся описанию.

Математика позволяет рассчитать, как лучше всего провести реакцию, какую избрать аппаратуру. Отсюда путь к автоматике на химическом заводе.

Автоматика призвана поддерживать на производстве что-либо постоянным – давление или температуру, определенный химический состав. И оказывается, для успешного хода реакции не всегда бывает выгодно сохранять все время один и тот же режим. Его нужно менять, чтобы превращения шли в наивыгоднейших условиях. Химикам нужна не просто автоматика, а программное управление, не простые автоматы, а саморегулирующиеся кибернетические устройства.

Кибернетика даст возможность проводить реакции при столь больших давлениях и скоростях, которые граничат со взрывом, при температурах в тысячи и даже десятки тысяч градусов и, наоборот, при сверхнизких температурах и высоком вакууме.

Поиски катализаторов перестанут походить на блуждание в потемках, как нередко бывало до сих пор. Тысячи опытов или иногда счастливый случай – все это отойдет в прошлое. Перебрав в своей электронной памяти свойства всех известных ей веществ, машина порекомендует ускоритель для любой реакции.

Вот почему так нужна будет кибернетика химии. Химия имеет дело с великим множеством соединений. Сведения о них – это целая библиотека, и, чтобы можно было быстро пользоваться ею, выход один – призвать на помощь электронный информатор.

Новое вторгается в жизнь властно и незаметно. К нему довольно быстро привыкаешь, столь быстро, что кажется – всегда было так. Химия вместе с физикой сделали привычным много непривычного, а невозможное – возможным.

Химия овладеет и высокими, и низкими температурами, научится использовать невидимки-радикалы и реакции, идущие в особых условиях, о каких и не подозревали раньше. Она овладеет высокими скоростями, с быстротой молнии перестраивая молекулярные постройки.

Она научится помогать производству, все больше вытесняя металлорежущие станки, все шире применяя химические методы обработки металла. Наконец, в списке ее достижений – уже не лабораторных, а промышленных – появятся новейшие, по заказу инженеров созданные, искусственные материалы множества назначений.

Металл можно сделать еще прочнее. Можно получить тончайшую проволоку, которая будет сверхпрочной. И можно, наконец, рассчитывать, что в будущем металлурги добьются многократного увеличения прочности, использовав все резервы, скрытые в атомно-молекулярной структуре вещества.

Перспективы открываются самые радужные: легчайшие, почти невесомые мосты, облегченные до предела машины, изящные сооружения из металла немыслимых сейчас размеров… В технике фактически произойдет переворот. Будет достигнута наибольшая прочность при наименьшем весе, а ведь этого и добиваются сейчас инженеры.

До сих пор материалы «второй природы» большей частью заменяли металлический сплав. Они позволяли экономить дефицитный материал, давали возможность обходиться без дорогих редких металлов. В будущем же создадут такой материал, который будет обладать невероятным сочетанием свойств, какого от металла не получишь.

Такое под силу только химикам.

Невиданные нагрузки. «Равнодушие» к температуре – от сильнейшей жары до холода абсолютного нуля. Стойкость к износу. И, наконец, неизменность, сохранность всех этих качеств в течение многих лет.

Могут быть и другие претензии к материалам. В одних случаях от них потребуется упругость, в других – жесткость. Может оказаться необходимым, чтобы материал хорошо проводил электрический ток, а может понадобиться идеальная изоляция. О легкости я здесь даже не упомянул. Ясно, как важно для каждой машины избавиться от лишнего веса.

Пластмассы можно легко формовать, потому что они при нагреве размягчаются, при охлаждении же твердеют, сохраняя прочность. Из них легко выдуть пленку.

Если армировать пластмассу – укрепить ее каркасом, ввести наполнитель, – она станет еще прочнее, не потеряв эластичности. Если вспенить пластмассу, получится полимерная пена, которая тоже очень прочна и, кроме того, чрезвычайно легка. И, наконец, если сделать то и другое, получится армированный пенопласт – еще более совершенный материал.

Воздав должное полимерам, нельзя забывать и об оборотной стороне медали. Всякую вещь надо оценивать всесторонне. Есть у полимеров такой недостаток, о котором часто не упоминают.

Свет и кислород – враги полимеров. Из-за них желтеют, становятся хрупкими и, в конце концов, рассыпаются изделия из пластмасс. Поэтому нужны специальные добавки, мешающие такой порче, а сырье для пластмасс должно быть очень чистым. Тогда, например, пленка из полихлорвинила годами сможет выдержать жаркое солнце и не побоится кислорода.

То, что происходит со временем с полимерами, подобно старению или болезни. И с тем и с другим борются лекарствами. Пытаются «лечить» и полимеры, для них ищут и находят «лекарства». Полимеры будущего обретут еще одно качество – долговечность.

Мы успели привыкнуть к великому разнообразию синтетики – и технической, и бытовой. Химические новинки появляются чуть ли не каждый день – и мы воспринимаем это как должное.

Сотни их созданы, десятки прочно вошли в обиход. Произошло это как-то незаметно, и теперь даже странно представить себе, что не было когда-то капрона и нейлона, силона и поролона, и прочая, и прочая, и прочая…

И думается, когда пытаешься заглянуть в Завтра: вот так же неощутимо и неотвратимо химия еще глубже пронижет грядущую жизнь. Быть может, даже и не стоит придумывать названия потомкам всех этих орлонов и силиконов: названий не хватит, пусть просто будет синтетический материал, какой кому нужен.

Творец живого – природа создала больше миллиона разных веществ всего из нескольких элементов с углеродом во главе. Из всех остальных ею были сделаны только десятки тысяч соединений. Десятки тысяч и миллион! Неужели здесь так быстро исчерпались возможности природы?

Или, быть может, мы просто не знаем еще всего? И действительно, появились новые факты. Неорганика, оказывается, сумела кое-где вклиниться в органику. Это произошло буквально на самых жизненно важных участках.

Казалось, с химическим царем живой природы – углеродом – другим элементам соревноваться трудно. Казалось, ему одному, одним углеродистым соединениям обязано все разнообразие жизни на нашей планете.

Но попробовали заменить углерод его родственником из царства неорганики – кремнием. Возникала новая химия, перекинувшая мост между двумя старыми, – кремнийорганика.

Она дала массу нужнейших веществ, которых так много, что их невозможно даже перечислить.

Созданные кремнийорганикой полимеры обладают удивительными свойствами. Они устойчивы и к теплу, и к холоду, не пропускают воду, не проводят электроток, не боятся ни кислот, ни щелочей, они соперничают по прочности со сталью. Среди них – пластики и каучук, смазки и топлива, катализаторы, антидетонаторы и полупроводники, лекарства и ядохимикаты.

Здесь, на стыке органики и неорганики, рождаются вещества, вбирающие в себя качества обеих групп. Для синтеза здесь открываются поистине необозримые перспективы. Все элементы в той или иной степени становятся родоначальниками целых семейств соединений.

Будущее обещает совмещение, казалось бы, несовместимого. Материал теплостойкий и эластичный в то же время – это невозможно для химии «старой». А такой полимер будет создан, и он оставит далеко позади не только природные, но и современные искусственные материалы.

Открыто полимерное строение и многих неорганических веществ.

Природные полимеры – это и алмаз (вероятно, алмазный кристалл – одна гигантская молекула). Это – расплавленная и охлажденная сера, которая образует тогда длинные молекулярные цепи. Да и кое-какие другие природные элементы – вроде углерода в форме графита, селена, мышьяка и сурьмы – тоже полимеры. Если же перейти к соединениям, то придется затронуть, пожалуй, всю массу земного шара, ибо ее образуют полимерные соединения кремния, алюминия, магния, кислорода и многих других, чуть ли не всех элементов периодической системы.

И уже родилось новое, неизвестное до сих пор вещество. Предсказана была, а затем и создана еще одна разновидность чистого углерода. Ее назвали карбином. Если алмаз – полимер с пространственным строением молекул, графит – с плоским строением, то карбин – линейный полимер. В природе его не нашли. Этот неорганический полимер – дело рук человека. Он оказался превосходным полупроводником и отличным материалом для фотоэлементов.

Для неорганики открытие полимерного строения многих веществ – шаг к созданию совершенно фантастического количества новых соединений с самыми неожиданными свойствами.

Синтез неорганический возьмет лучшее из мира углеродных молекул и придаст им качества, для органики недостижимые, что совершенно понятно. У углерода есть не только достоинства, но и недостатки. Как только воспользовались кремнием, появилось семейство теплостойких материалов.

Пластмасса горюча, к этому мы привыкли. Но ведь она может быть и негорючей! Цепи неорганических молекул должны составить основу жаростойкого полимерного материала. Тогда появятся обшивки для космических кораблей и самолетов, «вечные» автомобильные шины и жаростойкие химические реакторы.

Уже есть полимерный бесцементиый бетон. Уже есть неорганические волокна – стеклянные и базальтовые, и не только бетон, но и цемент и другие стройматериалы.

Теперь неорганическим синтезом заменяют природный. И самое тугоплавкое из всех нам известных веществ уже не природное, а синтетическое. Первенство по твердости держит уже не естественный алмаз, а искусственный боразон. Негорючий каучук без углерода, очень прочное волокно из соединений серы – вот первые новинки химии неорганических полимеров.

Фтороорганика означает стойкие против воды, огня, излучений, легкие и прочные материалы. А кроме того, это материалы для атомной и атомноракетной техники, техники полупроводниковой и лазерной.

Это и автомобиль будущего. О нем пишет американский ученый Дж. Саймонс. «Фтороорганические соединения смогут улучшить наши автомобили. Фтороуглеродное смазочное масло не надо заменять свежим. Жидкий фтороуглерод заменит антифриз и никогда не даст ржавчины. Шины из фтороуглеродных каучуков совершенно не будут портиться, и их не надо будет менять. Обивочная ткань на сиденьях будет огнеупорной и не боящейся пыли. Охлаждающей жидкостью из радиатора можно будет загасить пламя, если все же машина загорится. У автомобиля – фторопластовый корпус. II двигатель будет у него не поршневой, а газотурбинный. Вращать турбину будут пары фтороуглерода…»

Ученые выяснили, что бор может образовывать необычные соединения с водородом – не с целыми, а с дробными связями. И поэтому в молекуле диборана, например, один атом водорода связан сразу с двумя атомами бора, а бор имеет четыре связи вместо положенных ему, трехвалентному, трех.

Поиски лучших ракетных топлив привели к открытию и более сложных бороуглеродо-водородных построек – барена и необарена. Они замечательны своей необычной химической структурой. В молекуле барена, например, углерод оказался шестивалентным, что несказанно изумило химиков.

Барен и необарен – бороорганические соединения, первые из этого вновь открытого класса. Они чрезвычайно устойчивы, не боятся ни нагрева, ни сильных окислителей. В будущем они послужат основой для получения ряда веществ, применение которых полностью сейчас предугадать еще невозможно.

Говоря о металлоорганике, химики имеют в виду такие ее перспективы, как полимер легче воды, прозрачнее воздуха и прочнее стали. Им видится полимер, который может служить преобразователем энергии: он будет поглощать энергию космических лучей и превращать ее в тепло или свет.

Металлоорганика открыла новый, ранее неизвестный вид соединений: два углеродных цикла, две конструкции из атомов, расположенных в вершинах многоугольников, – и между ними атом металла. Металл соединяет их, образуя очень прочное вещество. Он зажат между циклами, как начинка в сандвиче между двумя ломтями хлеба. Свойства его неожиданны: марганцевый «бутерброд» – отличный антидетонатор, бутерброд с железом – ферроцен – очень прочен и послужил родоначальником новых красителей.

Сандвич-соединения представляют загадку для классической химии. В ферроцене, например, железо получается вроде бы десятивалентным! Видимо, здесь действуют какие-то пока незнакомые нам закономерности.

Требования к материалам будущего многогранны, и универсальную синтетику создать невозможно. Все же химия стремится к сочетанию качеств, которые природа не может объединить.

В дополнение к старому, давно всем известному стеклу химия, например, создаст новые, поистине чудо-стекла.

Уже есть совершенно небьющееся стекло. Оно так прочно, что даже тонкий стеклянный лист нельзя разбить сильным ударом. Тяжелый стальной шар отскочит от него как мячик.

Появится стекло прочнее металла – в стеклянной капсуле можно будет опуститься даже на дно глубочайшей океанской впадины, где давление более тысячи атмосфер.

А ситалл – новый материал, родственник стекла – выдерживает давление, которое не выдерживает сталь. К тому же он не боится кислот и высокой температуры, не растрескается, если его после нагрева опустить в воду.

Из стекла пока что не делают рельсы и станки, но лишь пока… Когда появится ковкое и пластичное стекло, то и это станет возможным.

Стекло с пленочным покрытием, защищающее от солнца, стекло с электропроводящей пленкой, отапливающее помещение…

Большое будущее также и у старого знакомого – кварцевого стекла, чрезвычайно прочного и пропускающего ультрафиолетовые и инфракрасные лучи.

Еще одно применение стекла, о котором не подозревали даже фантасты. Предполагают, что из стекла удастся, возможно, изготовить светопроводы. По каналам из стекловолокна с отражающими стенками будут передавать изображения и даже свет, выработанный мощными генераторами – лазерами. Свет транспортируется, почти не ослабляясь и, конечно, не выходя наружу. Так можно будет со светостанций подавать освещение в дома и на заводы. Более того, свет подберут нужного состава и оттенка – скажем, дневной и вечерний – и централизованно доставят потребителям, которым тогда не понадобятся громоздкие осветительные электроприборы.

Действительность догнала, а во многом и перегнала фантастику об искусственных материалах. Непромокаемые, немнущиеся, сверхпрочные и так далее, и тому подобное… Если говорить об одежде, то теперь ее без химии уже трудно представить. Вот лишь несколько примеров – и известных, и малоизвестных.

Белые рубашки и платья, к которым не пристает грязь, – вместо стирки их надо только прополоскать в воде. Куртки и пальто из заменителей кожи легкие и удобные. И выходная и рабочая одежда, которая отлично защищает от холода. Одежда, в которой можно не бояться огня, воды, кислот и щелочей. Ткань, к которой не пристает никакая грязь, даже масло. Ткань из пустотелого химического волокна, которая согревает не хуже, чем ватная подкладка. Антимикробные костюмы для врачей и медсестер. Лечебное белье для больных. «Складные» плащи, косынки, куртки, береты, тренировочные и даже вечерние костюмы – все это умещается в кармане.

Ткани, окрашенные синтетическими красками, которые придают одежде яркий, нарядный вид. И, наконец, одежда специального назначения, для тех, кто работает на переднем крае науки – атомников, космонавтов, а в недалеком будущем – подводников (гидронавтов).

Химия, и только химия даст полимеры легкие, прочные, стойкие, эластичные, выдерживающие десятки тысяч градусов тепла и холод, близкий к абсолютному нулю; материалы магнитные и полупроводниковые, материалы, меняющие свои свойства.

Армированные пластики, которые будут прочнее металла и легче его по крайней мере в несколько раз, Полимеры-ионообменники, которые будут очищать любые вещества, извлекать ценные элементы из растворов. Полимеры, которые будут сверхпроводниками и при обычной температуре.

Полимерный каучук, полностью заменяющий натуральный, эластичный, но теплостойкий.

Химические волокна не хуже натуральных и дешевле их; волокна негорючие, негниющие, волокна-ионообменники и полупроводники. Пористые полимерные ткани. Химически обработанный, немнущийся хлопок.

Искусственные волокна, которые будут лучше природного асбеста и помогут пустить в оборот запасы бросового каменного сырья. Полимерные краски, стойкие и яркие; разноцветные волокна, которые не надо красить, они окрашены сами по себе, и цветная синтетика.

Химически обработанная негниющая и негорючая древесина.

Полимерные туманы и дымы, защищающие поля и сады от морозов.

Обивочные полимерные покрытия, не боящиеся пыли.

Полупроводники сейчас очень дороги, и они работают пока только в приборах и радиоэлектронной аппаратуре. Полупроводники сейчас – сверхчистые вещества, а добиться сверхвысокой чистоты – труднейшая задача.

Иное дело, если полупроводник полимерный. Более дешевый, потому что сырья для него пока вполне достаточно, потому что получать его оказалось бы проще и сделать из него удастся что угодно – и ткани, и пленки, и волокна, и порошки. Решилась бы проблема мощных преобразователей света и тепла в электроток.

Среди полимерных полупроводников есть и такие, которые могут служить катализаторами. Вот прекрасный материал для стенок химических реакторов! Но живая клетка – тоже реактор. И, создавая искусственные полимеры, мы тем самым делаем шаг к живой природе, учимся у нее и разгадываем ее загадки.

Это – полимеры самого ближайшего будущего. Это заказ, который химия начинает выполнять уже сегодня. И он показывает, что химия действительно сможет удовлетворить самого прихотливого заказчика.

Синтетическая ткань должна быть не только прочной, но и красивой. Синтетические волокна надо окрасить. Дело, казалось бы, несложное: заготовка для полимерных волокон представляет собой расплав, жидкость. Добавить туда краску – что может быть проще?

Однако… Жидкость может быть горячей – значит, краситель должен быть теплостойким. Волокно и краситель – оба детища химии – не должны вредить друг другу. И, наконец, ткань носят, а значит, стирают и гладят.

Если волокно выдерживает все это, должна выдержать и краска. От красителя требуется, кроме того, чтобы он не выцветал на свету и не линял.

Хотя созданы многие тысячи красителей, такого идеального сочетания качеств нет ни в одном. Далеко не для всех искусственных тканей подобраны подходящие красители.

На палитре у художника несколько чистых тонов. Из них он составляет все нужные ему оттенки. А сколько таких основных цветов должно быть в палитре химии? Пока их приходится создавать много.

Но обходятся же полиграфия и цветное кино всего тремя красками – желтой, голубой и пурпурной. Может быть, и для химических волокон хватит той же тройки?

«Если такую идею удастся осуществить, это будет настоящей революцией и в химии красителей, и, главное, в производстве полимерных изделий – красивых, долговечных», – говорит советский химик Е. П. Фокин.

Еще одна задача для создателей полимерного мира.

Сверхпроводящий полимер? Проводник, который проводит ток без потерь, и к тому же при комнатной температуре? Может ли существовать подобное чудо?

Ведь известно, что сверхпроводимость в металлах наступает лишь при сверхнизких температурах. Для электропередач это не годится – линию пришлось бы охлаждать жидким гелием, что на Земле, конечно, совершенно невозможно. Поддерживать глубокий холод удалось бы только в космосе, но там вряд ли понадобилось бы тянуть провода для передачи энергии.

Фантасты до сих пор мечтали лишь об аккумуляторах из сверхпроводников, где запасалась бы электроэнергия от космических гелиостанций. Такой энергосклад можно было бы переправлять на Землю, защитив его жидким гелием.

А теперь химия предлагает иное решение – пригодное для земных нужд. Теория предсказывает возможность создания полимерного сверхпроводящего материала. Он будет сверхпроводником при комнатной, а может быть, и более высокой температуре. Это – реальное будущее, но оно кажется нам теперь столь же удивительным, как мечта фантаста. Каким же оно видится ученым?

Передача энергии без потерь – совсем без потерь! Сверхмощные электромагниты. Электрические машины, работающие практически вечно. Новые совершенные ускорители частиц и счетно-вычислительные устройства. Это пока не слишком удивляет. А дальше?

Сверхпроводниковые электромагниты будут парить на своеобразной подушке, образованной магнитным полем. «Пассажиры и груз проносятся без трения над дорогой со сверхпроводящим покрытием, как на ковре-самолете; или представим себе катание на магнитных лыжах по сверхпроводящим склонам…» Такую картинку рисует американский физик профессор А. Литтл.

Очень многого ждет от химии космонавтика.

Вот заметка о настоящем; она рассказывает о том, что есть уже сегодня.

В пакете – порошок. По обеим сторонам его – горючие слои. Их поджигают, и материал начинает вспучиваться от тепла, и вырастает… палатка или домик.

Не наводит ли она на размышления о будущем – о домах, которые растут на наших глазах «сами по себе»?

Подобные дома могли бы найти применение при возведении построек на Луне. Конструкцию их пришлось бы сделать несколько иной. Заготовкой послужила бы ткань, пропитанная синтетической смолой. Она мягкая, и ее легко уложить в пакет. Если затем пустить раздувающий газ, то дом примет нужную форму, скажем, шара. А далее газообразный же катализатор заставит смолу превратиться в твердый полимер.

В перспективе – пластмассы, способные служить одновременно и конструкцией и горючим. Из них можно будет сооружать баки для двигателей космических кораблей.

Поиски новых полимеров и сплавов тем более нужны, что в космосе материал должен работать и при высоких и при сверхнизких температурах, в вакууме и невесомости.

Диапазон применений химических материалов обширен. Из специального пластика можно изготовить «липкую» обувь для космонавта и облицовку кабины космического корабля: человек сможет спокойно ходить, будучи невесомым.


    Ваша оценка произведения:

Популярные книги за неделю