Текст книги "Химия завтра"
Автор книги: Борис Ляпунов
Жанр:
Химия
сообщить о нарушении
Текущая страница: 4 (всего у книги 12 страниц)
УЧЕНЫЕ МЕЧТАЮТ…
«Получение новых сложнейших синтетических веществ с заливными свойствами, которые будут конкурировать с неизмеримо более бедным ассортиментом природных, требует объединенных усилий химии, физики и многих других наук.
Мы часто смешиваем понятия «материал» и «вещество». Но вещество – это только сырье. Нужно уметь перерабатывать его з физические тела, служащие техническим потребностям, в материалы.
Тут задача физико-химической механики – науки о превращении веществ в материалы – состоит прежде всего в повышении прочности материалов. Все реальные твердые тела пронизаны множеством изъянов, дефектов в структуре. Предотвратив в технологических процессах возникновение дефектов, мы решим фантастическую задачу: получим, по существу, материалы того же химического состава, что и естественные, но с механической прочностью в десятки и сотни раз более высокой», – говорит академик П. А. Ребиндер.
* * *
Химия создает уже теперь целое семейство материалов, основа которых не углерод, а кремний. И вот что пишут об их будущем химики А. Колпаков и В. Лосев: «Кремнийорганическая химия очень молода: ей нет ещё и двадцати пяти лет. Широким фронтом идут химики в наступление на мир кремнийорганических соединений, таящих в себе возможности, о которых мы не имеем и смутного представления.
Материалы с еще более чудесными свойствами, какие будут получены в ближайшие десятилетия, позволят человеку еще полнее подчинить себе природу Земли, освоить космос. Нашему мысленному взору рисуются отважные исследователи глубоких недр планеты: одетые в кремнийорганические скафандры, беспрепятственно пробираются они в раскаленных ущельях глубинных земных пород, преодолевают реки магмы, моря кипящей геотермальной воды. Космонавты, которые высадятся на другие планеты, будут уверенно путешествовать по дневной стороне Меркурия (сравнительно с ней мифический ад показался бы прохладной аллеей), взбираться на ледяные вершины Плутона, плыть по болотистым джунглям Венеры. Обитаемые искусственные спутники и будущие «эфирные» города в пространстве вокруг Земли наверняка потребуют для своего строительства огромных количеств новых, еще более высокоценных кремнийорганических материалов».
* * *
Химия должна будет найти новые и лучшие, чем сегодняшние, вещества – преобразователи энергии.
«Заглядывая в будущее, – говорит академик Н. Н. Семенов, – можно представить себе, что когда-нибудь вообще исчезнут четкие грани между материалом, машиной и источником энергии. Появится какая-то совершенно новая форма существования материи, когда материал сам будет служить источником энергии, сам будет передавать ее или потреблять для реализации каких-либо процессов».
Ученый приводит в качестве примера кристаллы и даже отдельные молекулы, которые служат передатчиками и преобразователями энергии, – полупроводники, лазеры. Он подчеркивает, что преобразования в них вызываются только свойствами самого материала, только особенностями его внутренней структуры.
* * *
Мечтая о термоядерной энергии, фантасты представляли не раз, как зажгутся маленькие искусственные солнца. Такие солнца они размещали и на спутниках Земли – чтобы менять на ней климат. Или, в более отдаленном будущем, когда настоящее Солнце начнет угасать, заменить его и не дать жизни погибнуть.
Конечно, речь шла и о расцвете чисто «земной» энергетики – энергетики для насущных повседневных человеческих нужд. Подобная мечта осуществима, ученые пишут о том же самом. И, что интересно, они обращают внимание на возможности, которые открывает здесь химия. Ведь не только одни неорганические полимеры могут выступить в роли преобразователей энергии, утилизируя свет искусственных солнц. Профессор Е. М. Балабанов замечает: «Возможно, в будущем будет выгодно с помощью термоядерных реакций и ускоренного фотосинтеза создавать искусственное химическое топливо, используя его затем как горючее на транспорте и электростанциях».
* * *
«Новые стройматериалы изменят облик городов. Тонкостенные, легкие, изящные сооружения – их легко отапливать, потому что стены их задерживают тепло. Чтобы их построить, не нужно много материала. Многоцветные и, когда нужно, прозрачные, внешне как будто бы невесомые и хрупкие, а на деле – чрезвычайно прочные, они позволят создавать совершенно сказочные города с обилием света, зелени и воздуха».
Фантастическая картина, но нарисована она не фантастом. Так говорит академик П. А. Ребиндер.
«Замена окон с мелкими переплетами цельными зеркальными стеклами преобразит облик городов. Вместо серого, вечно нуждающегося в ремонте асфальта, мы покроем улицы цветными вечными плитами, а тротуары мозаичными панелями, к тому же дешевыми и стойкими. Весь город получит праздничное звучание. Улицы будут дополнять архитектуру домов, так как для оформления площадей, зданий, метро будут использоваться в неограниченном количестве цветные новые стекла-ситаллы. Ситалловые черепичные детали не только украсят, но и упрочнят крыши домов, они не будут нуждаться в окраске. Цвет и свет вольются в ансамбль наших городов и сел, будут окружать людей в труде и повседневном быту».
Фантастическая картина, но нарисована она опять-таки не фантастом. Так говорил о городе будущего профессор И. И. Китайгородский.
«НОВЫЕ ХИМИИ»
ХИМИЯ «ГОРЯЧАЯ» И ХИМИЯ «ХОЛОДНАЯ»
При высокой температуре все в мире молекул становится иным – другие действуют законы, другие правила и исключения. И, конечно, все это связано с большими скоростями частиц.
Их найдем мы в пламени. Красивый сине-зеленый центр огненного язычка, синий ореол вокруг него – все это видимое проявление скрытого механизма горения.
С точки зрения химика, горение – это цепь реакций, отрыв атомов и атомных групп, разрушение и образование молекул.
Не одна, а множество реакций следуют друг за другом; не один, а множество продуктов образуется в огне. Одни разрушаются, другие возникают, И мы даже можем описать, как и в каком порядке идут превращения. В пламени возникает плазма, в которой перемешаны осколки молекул – ионы, электроны и еще не успевшие ионизироваться атомы.
Огромная скорость химических реакций в плазме еще непривычна химикам, хотя огонь людям известен с незапамятных времен. Вот, кстати, характерный пример того, как простое, всем известное на самом деле оказывается сложным и долгое время остается неразгаданной тайной.
Горение для нас во многом уже не загадка. Приборы дали возможность наблюдать происходящее в пламени, а теория помогла набросать, хотя и в общих чертах, его картину.
Оказывается, все химические превращения в горящем газе успевают происходить всего за стотысячную долю секунды. Все частички разгоняются почти до тысячи метров в секунду!
Когда горение происходит в чистом кислороде, то времени требуется и того меньше. Не проходит и одной миллионной доли секунды, как совершается весь вихрь сменяющих друг друга реакций. Фактически тогда происходит взрыв.
Потому так трудно разобраться во всех тонкостях процесса горения, а разобраться крайне необходимо. Горение – цепь химических реакций, сопровождаемых выделением энергии. Им пользуется вся армия тепловых двигателей. О реакциях в пламени особенно важно, как можно больше знать инженерам, строящим самолеты и ракеты – самые скоростные машины нашего века. Тогда они смогут подчинить себе бушующее пламя, сделать так, чтобы использовать топливо возможно лучше.
Надо добиться возможности регулировать по нашему желанию скорость сгорания топлива, вмешиваться в ход реакции, улавливать, если нужно, таинственные промежуточные продукты, которые остаются невидимками, возникая и тотчас исчезая. Надо избежать и появления вредных соединений, разъедающих, например, металл.
Так проблема пламени оказывается связанной с долговечностью двигателей. Связана она и с химией.
Химические превращения, идущие обычно медленно, в плазме совершаются мгновенно. Побочные реакции обычно не принимают в расчет. Однако здесь они начинают играть решающую роль. Удается получить такие соединения, которые иначе трудно либо вовсе невозможно получить. Удается вовлечь в химический кругооборот такие элементы, которые при обычных температурах использовать можно лишь с большим трудом.
Нагретые газы могут реагировать не только между собой – они взаимодействуют и с твердыми веществами. Это происходит в двигателях – поршневых и турбинных, воздушно-реактивных и ракетных. В них сгорает топливо и образуются потоки сильно нагретых и быстротекущих газов, идет каскад сложнейших реакций с участием газообразных и твердых веществ. Это и химическая лаборатория, и, пожалуй, даже химический завод в миниатюре.
«Энтузиасты утверждают, что реактивный двигатель является прообразом химического завода будущего», – пишет американский ученый Райденауэр.
Правда, в двигателях вся «продукция» выбрасывается на ветер, хотя и не без пользы, конечно. Энергия, освобожденная при сгорании, движет самолеты и ракеты, и самолет летит намного быстрее звука, а ракета преодолевает притяжение Земли.
Но уже научились извлекать пользу из струй горящего газа для нужд земных. Можно, оказывается, прямо из пламени вылавливать ценные вещества – промежуточные продукты горения.
Нельзя ли их заставить работать еще эффективнее? Раз они особенно активны, то, быть может, имеет смысл извлечь их из одной реакции и подключить в другую. Тогда пойдут такие превращения, которые обычно не происходят. Мы сумеем получить вещества, какие до сих пор получить не удавалось.
Молекулы в пламени дробятся на осколки, группы атомов. На ничтожную долю секунды они освобождаются от своих связей внутри молекулы, становятся свободными радикалами. Одни из них появляются и тотчас исчезают, на смену им возникают другие. Реакция не затухает, она разрастается, захватывая все новые и новые молекулы.
Неустойчивые, исчезающие, как только они сделают свое дело, свободные радикалы послужат в руках химиков еще одним орудием для управления ходом реакций.
Свободные радикалы оказались той отмычкой, которая открывает многие двери. Они способны заставить вступить в цепную реакцию обычно устойчивые молекулы. С их помощью можно регулировать величину молекулярных построек, когда создаются полимеры.
Уже рождается еще один виц химического реактора – плазмотрон. В нем работает разреженный газ, нагретый до температуры в тысячи и десятки тысяч градусов. Недаром химию плазмы называют «звездной».
Высочайший нагрев позволяет проводить реакции без катализаторов и давлений и вдобавок быстро, минуя многие промежуточные этапы, Можно получать окислы азота из воздуха. Можно получать и полимерные материалы, и металлоорганические соединения.
Плазмохимик является одновременно и плазмо-металлургом. Плазменной струей можно резать, сваривать, распылять и наплавлять металл, наносить на него всевозможные защитные покрытия. Металлурги мечтают о том, как плазма сделает ненужными гигантские металлургические агрегаты, а металлургию позволит полностью автоматизировать, включая плавку.
Плазмотрон – это еще и бурильщик, прокладывающий скважины и даже большие туннели в горных породах.
Газовый разряд, при котором образуется плазменная газовая струя и при высоких температурах идут сложные процессы – молекулы распадаются на осколки, – вот что происходит в плазмотроне. Вместо нейтральных молекул получается смесь ионов, свободных радикалов и других частиц с высокой энергией. В струе плазмотрона могут происходить реакции, невозможные при обычных для химии температурах.
Когда в плазменную струю попадает другой газ, менее нагретый, он перемешивается и тоже становится участником превращений. Эти превращения протекают в тысячные, десятитысячные и даже еще меньшие доли секунды. За такие ничтожные промежутки времени успевает совершиться распад одних, перестройка и создание других соединений. Поэтому плазмохимия есть одновременно и химия высоких скоростей.
Только при высокой скорости и можно задержать участников реакции лишь настолько, чтобы получить нужные «горячие» частицы и не дать им измениться. Плазмохимия есть одновременно и химия горячих атомов.
Но ведь получив вещество в плазмотроне, надо его сохранить, чтобы оно не разложилось в той же сильно нагретой газовой струе. Для этого применяют быстрое охлаждение, причем именно в той зоне плазмы, где это нужно, и именно в тот момент, когда это нужно. Конечно, рассчитать работу плазмотрона могут только быстродействующие электронно-вычислительные машины. Только они в состоянии наилучшим образом определить технологию процессов, длящихся мгновения.
Сейчас плазма возникает в плазмотроне, а в будущем, возможно, «химическую» плазму станут получать, как отходы в термоядерных реакторах, а также под действием ядерного излучения.
«Совершенно новой областью знания становится химия неорганических веществ при высоких температурах – 3000–5000 °C. Уже сейчас изучение химических процессов в электрической плазме приобретает острый практический интерес. В будущем, когда будет решена проблема управляемой термоядерной реакции и когда такие температуры будут «отходами производства», проведение химических реакций при температурах 3000–5000° сделается, вероятно, основным в ряде технологических процессов, в частности при получении азотных удобрений», – говорит академик Н. Н. Семенов.
Химия высоких скоростей и высоких температур – новая глава в этой древней науке. И, кто знает, сколько увлекательных открытий предстоит сделать тем, кто занимается ими!
Новые открытия сулят и продвижение далеко вниз по температурной шкале. Уже выяснилось, что замороженные вещества могут реагировать между собой на глубоком холоде. Притом быстро, иногда далее быстрее, чем жидкости и газы при температурах повышенных. Хотя это кажется невероятным даже ученым, но, видимо, появился принципиально новый путь создания полимеров.
Оказалось, что свободные радикалы – те самые, что возникают при высоких температурах, – можно заморозить, и при сверхнизких температурах они живут уже не тысячные доли секунды, а намного дольше. Отсюда намечается путь, например, к топливу для ракетных двигателей невиданных мощностей. Энергия освобождается при рекомбинации свободных радикалов – при слиянии их в устойчивые молекулы.
Возможно, в будущем появится еще и химия низких и сверхнизких температур – криохимия.
ХИМИЯ ВЫСОКИХ ДАВЛЕНИЙ
Высокое давление – еще одно орудие химиков. Оно ускоряет химические превращения и помогает получать больше готового продукта. Неудивительно поэтому, что оно участвует в производстве искусственных удобрений, пластмасс и многого другого.
Перестраивая молекулы с помощью высоких давлений, можно получить новые химические соединения. И десятки тысяч атмосфер в химической лаборатории уже не редкость. Тысячи атмосфер уже теперь не редкость на заводах, где возводят постройки из атомов и молекул.
Напомню историю с атмосферным азотом. Он составляет три четверти воздуха, но, чтобы его использовать, надо заставить пассивный, инертный азот вступать в соединения, связать его с другими элементами, например с кислородом.
Пробовали получить окислы азота, прибегая только к нагреву. Попытка окончилась неудачей, так же как и попытка получить аммиак – азотноводородное соединение. Реакции шли слишком медленно. И только тогда, когда применили катализаторы и высокие давления, добились успеха. Миллионы тонн ценнейшего сырья были извлечены из кладовой атмосферы.
Неудачей кончались и все попытки создать искусственный алмаз – до тех пор, пока не объединили усилия высоких температур и давлений.
Химия высоких давлений, несомненно, таит много неожиданностей, причем даже не такого характера, какие известны сейчас. Не только ускорение реакций, не только получение соединений, которые обычно не получаются, и не только новое обличие, новые свойства у старых, давно известных веществ. Высокие и даже сверхвысокие давления в сотни тысяч атмосфер – далеко не предел.
Уже удалось под действием высоких давлений и низких температур получить из нитрида бора боразон – вещество тверже алмаза. Интересно, что нитрид бора – неметалл – приобрел свойства металла. И лауреат Нобелевской премии американский химик У. Либби, впервые совершивший это удивительное превращение, сказал, что, повысив давление до миллиона атмосфер, мы откроем новый мир химических и физических явлений.
В лаборатории сейчас рекорд – десять миллионов атмосфер (почти в три раза больше, чем в центре Земли). На очереди – пятнадцать миллионов. При таком ультравысоком сжатии атомы разрушаются, и вещество, вероятно, превращается в своего рода плазму, в смесь ядер и электронов. О химических реакциях тогда трудно говорить.
Но пусть давление таково, что атомы еще целы, они только сжаты, но удерживают свои электроны. Что будет, если под «пресс» высоких давлений попадут разные атомы? Возможно, они обменяются электронами. И давление вынудит их сделать это гораздо быстрее: реакция, если она пойдет, убыстрится во множество раз.
Давление может послужить той силой, которая раздробит молекулы на атомы, создаст свободные радикалы, вещества станут необычайно активными. То была бы химия скоростная, даже сверхскоростная, химия высоких энергий.
Но откуда взять большое давление? Оказалось, что ультразвук способен образовать в жидкости пузырьки. Пузырек-крошка заполняется парами и газами, он расширяется и лопается, как бы взрываясь. При таком микровзрыве резко возрастает давление. Оно крошит молекулы жидкости и газов.
Воду, например, можно насытить азотом, водородом, кислородом. Ультразвук поможет окислить азот, соединит азот и водород в аммиачные молекулы и… здесь лучше всего пока ограничиться этими, уже известными примерами. Из бензола уже пробовали таким путем приготовить фенол – сырье для капрона.
Заглядывая же в будущее ультразвуковой химии – новой ветви химии высоких давлений, – можно предсказать самые удивительные перспективы: синтез новых соединений сложнейшего состава, реакции, которые пойдут без катализаторов и громоздких установок для высоких давлений.
А глубины Океана природа как будто нарочно приготовила для того, чтобы поместить там установки химии высоких давлений. И уже выдвинута идея подводного химического завода. Он сможет работать на подводном же сырье: нефти, природном газе, минералах, добытых со дна Океана, или же на «жидкой руде» – океанской воде. Возможно, такие заводы станут основой химической индустрии покоренного Океана.
ХИМИЯ И ЭЛЕКТРИЧЕСТВО
Электричество давно идет рядом с химией. Электролизом извлекают разные элементы из различных солей. С помощью электричества осаждают слой одного металла, чтобы защитить другой металл от разрушения.
Электричество уже участвует в целом ряде химических превращений. А в будущем оно станет проникать в химию все шире и шире.
Электрический разряд – вот еще одно средство, которое, подобно катализатору, вызывает и ускоряет реакции.
Оказывается, даже микровзрыв, вызванный электрическим разрядом, может дать энергию для перестройки вещества, и химическим реактором становится ванна с жидкостью, через которую пропускаются импульсы тока.
Искра, вероятно, может заставить вступить в реакцию любые соединения и любые элементы. Она будет окислять, восстанавливать, разлагать и соединять. Управляя искусственной молнией, можно менять ее каталитическое действие.
Возможно, именно электрическими будут заводы по производству азотной кислоты из воздуха и воды. Возможно, именно электроразрядные установки станут производить озон из кислорода воздуха. Озон же нужен химикам для множества дел.
Электричество в руках химика – это мощное средство тончайшего и направленного воздействия на вещество, С его помощью можно соединять молекулы и части молекул – вести электросинтез. Мощные электрические силы «сшивают» хрупкие сложные молекулы, причем в определенных местах. Никаким другим способом не удается этого проделать. Именно электричество было одним из средств, которое заставило инертные газы соединиться с фтором и окисью фтора.
Электролизом легко наносить полимерные покрытия на металлы, ткани и те же самые пластмассы. Покрытие можно вдобавок сделать не только твердым, но, если нужно, и нерастворимым, непроницаемым или клейким.
Электроразрядная установка станет мощным химическим реактором.
Химики считают, что в периодической системе нет ни одного металла, который бы нельзя было получить электрохимическим путем. Они говорят: недалек тот день, когда электрохимия найдет способ получения железа из руды.
И электрохимия же сможет создавать сложные органические молекулы – заготовки будущих волокон. Электричество станет «сваривать» молекулы, строя из простых молекул более сложные, поможет получать очень чистые вещества.
Оно и теперь выручает там, где другим путем провести синтез невозможно. Когда же электроэнергия будет дешевле, электрохимия займет одно из первых мест в химической технологии.
С другой стороны, химия проникает в электротехнику и становится союзницей электроники. Вместе они создают новые электронные приборы – хемотроны. По существу, это крошечный химический элемент. В нем происходят обычные для электрохимии процессы, и проявляют они себя таким образом, что легко поддаются управлению.
Нужен миниатюрный электросчетчик. Для этого в ячейке между электродами ставят перегородку. Когда идет ток, на ней с одной стороны накапливается растворенное в электролите вещество. Зная, сколько его отложилось, можно определить, сколько прошло электричества. А отсюда – еще один тип запоминающего устройства для электронно-вычислительных машин.
Нужно измерить давление. В ячейке опять помещают перегородку, на этот раз с небольшим отверстием. Электролит может перетекать из одной части ячейки в другую. Чем больше давление, тем больше перетечет жидкости, тем сильнее изменится ток в цепи.
Приборы эти могут быть разных размеров. Есть счетчик, который помещается в наперстке! Самый маленький хемотрон меньше спичечной головки. Вот как миниатюрны хемотронные приборы, хотя здесь они и уступают полупроводникам.
Для их работы не нужны громоздкие источники тока. Потому-то ими интересуется в первую очередь космонавтика: на ракете каждый грамм на вес золота! Поэтому ими интересуется медицина – ей ведь тоже необходимы приборы-крошки.
Трудно предвидеть, где еще будут работать хемотронные ячейки.
Хемотронные приборы-крошки не будут бояться жары, а потому появятся на разведчиках земных недр, которые попадут в царство высоких температур; они окажутся на ракетах и межпланетных станциях, которые полетят вблизи Солнца или опустятся на «жаркие» планеты – Меркурий и Венеру.
Химия с помощью хемотроники сможет управлять своим собственным производством. И сделает она это органично, «забираясь» в самое существо происходящих превращений. Ведь работает в хемотроне ион – частица вещества, получившая заряд и нередко участвующая в реакции.
Ионы послужат сигнализаторами происходящего в химическом реакторе. Вещества как бы сами с помощью хемотрона доложат о том, что с ними делается: какова их концентрация, плотность, давление, какова скорость потоков. И все это будет «сказано» ионами, выражено электротоком, который появится в приборе и который легко уже передать в электронный автомат. Он мгновенно определит, нет ли отклонений, идет ли реакция так, как надо, и выдаст управляющую команду.
И, что очень важно, хемотрону безразлично, какие вещества находятся в реакторе – пусть даже самые ядовитые, агрессивные. Хемотрон дополнит арсенал электроники, он сделает то, что недоступно полупроводникам.
Электролит хемотрона может реагировать на свет. Не путь ли это к хемотрону-фотоэлементу?
Хемотроника – еще шаг к тому, чтобы позаимствовать полезный опыт природы, Живая клетка – это всегда химическое производство, и работающая в ней «автоматика» напоминает хемотронную систему.