Текст книги "История электротехники"
Автор книги: авторов Коллектив
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 44 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]
Для обеспечения пассажирского движения с максимальной скоростью 200 км/ч (линия Москва – Ленинград) ЧССР в 1975 г. начала поставку восьмиосных двухсекционных электровозов серии ЧС200. Четыре двигателя каждой секции имели две группировки, на каждой из которых предусмотрено по пять ступеней уменьшения магнитного потока, а изменение группировок осуществлено по мостовой схеме. Схема резисторного торможения аналогична такой же схеме электровозов серии ЧС2т.
Известные недостатки системы электрической тяги постоянного тока обусловили в 60-х годах начало работ по повышению напряжения в контактной сети постоянного тока до 6 кВ. Состояние преобразовательной техники в то время было таково, что ни на полупроводниковых приборах, ни тем более на тиратронах надежно работающий статический преобразователь реализовать было невозможно. Однако идеи, предложенные отечественными учеными, ведущую роль среди которых играл В.Е. Розенфельд, для того времени были весьма прогрессивными и не имели аналогов в мире. Структура преобразования электроэнергии на электровозе была такой: постоянное напряжение в тиратронном варианте вначале преобразовывалась в напряжение трехфазной системы переменного тока повышенной частоты. При помощи разделительного трансформатора контактная сеть гальванически отделялась от цепи ТЭД, причем на выходе трансформатора формировалась трехфазная система напряжения с уровнем, оптимальным по напряжению ТЭД. Затем это напряжение выпрямлялось и прикладывалось к ТЭД постоянного тока. В полупроводниковом варианте на секции электровоза устанавливался шестиканальный импульсный преобразователь постоянного напряжения, предназначенный для преобразования постоянного высокого напряжения в постоянное регулируемое по значению напряжение.
Экспериментальные работы по применению этой системы проводились в СССР в 1964–1975 гг. на электровозах серии ВЛ8 (в 1966 г. это был первый в мире электровоз постоянного тока со статическими преобразователями на напряжение 6 кВ) и ВЛ22. Однако дальше изготовления опытных образцов электровозов из-за низкой надежности работы преобразовательного оборудования эти исследования не продвинулись.
Дальнейшее развитие электровозов постоянного тока с ТЭД постоянного тока шло по пути увеличения мощностей локомотивов за счет увеличения количества тяговых осей. В 1984 г. Тбилисским электровозостроительным заводом был построен двухсекционный двенадцатиосный грузовой электровоз серии ВЛ15 с ТЭД типа ТЛЗ. Схема силовой цепи электровоза предусматривает наличие трех группировок ТЭД с четырьмя ступенями уменьшения магнитного потока на каждой. Для маневровой работы, а также для отключения неисправного двигателя предусмотрена возможность соединения последовательно всех 12 ТЭД. С целью ограничения провалов силы тяги при переходе от одной группировки к другой применен вентильный переход. В остальном электрическая схема аналогична схеме электровозов серий ВЛ10 и ВЛ11. Для питания обмоток возбуждения ТЭД в режиме рекуперации использовались как машинные, так и статические преобразователи.
При очень высокой грузонапряженности железных дорог СССР актуальным являлось уменьшение количества пассажирских поездов при одновременном увеличении количества вагонов в них, что требует локомотивов с увеличенной силой тяги. Поэтому на первом этапе работы было решено у электровозов серии ЧС200 изменить передаточное число редукторов без изменения электрической схемы. Такие электровозы, поставка которых в СССР началась в 1981 г., получили обозначение серии ЧС6.
Использовав многие аппараты и узлы электровозов серий ЧС2т, ЧС200 и ЧС6, заводы «Шкода» в 1983 г. изготовили 20 двухсекционных восьмиосных пассажирских электровозов серии ЧС7. Имеется три группировки ТЭД, причем при восьми последовательно соединенных двигателях реализована общая схема силовой цепи для двух секций. На каждой группировке предусмотрено по пять ступеней уменьшения магнитного потока двигателей.
Электровозы этой серии были последними электровозами, поставленными из ЧССР в СССР. С распадом СССР поставки электровозов в Россию из ЧССР и Грузии были прекращены.
В настоящее время в соответствии с федеральной программой развития железнодорожного транспорта НЭВЗ в кооперации с другими заводами России готовит к выпуску опытный образец восьмиосного электровоза постоянного тока серии ЭП100 с трехфазными синхронными (вентильными) ТЭД. В качестве входного звена на электровозе используется импульсный преобразователь постоянного напряжения, в качестве выходного – трехфазный автономный инвертор тока.
В 1961 г. НЭВЗ выпустил первый восьмиосный электровоз однофазно-постоянного тока серии ВЛ80 со ртутными выпрямителями и высоковольтным регулированием напряжения. При эксплуатационных испытаниях этих электровозов были выявлены неполадки в системе высоковольтного переключателя ступеней, что обусловило переход к регулированию напряжения на вторичной обмотке трансформатора. В дальнейшем на электровозах ртутные выпрямители были заменены полупроводниковыми – диодными (электровозы серии ВЛ80к), применено резисторное торможение при независимом возбуждении ТЭД (электровозы серии ВЛ80т). Установка на электровозах тиристорных выпрямителей вместо диодных позволила реализовать плавное зонно-фазовое регулирование напряжения на ТЭД и рекуперативное торможение при независимом возбуждении двигателей (электровозы серии ВЛ80р).
Последним серийным электровозом однофазно-постоянного тока, выпущенным в СССР, был электровоз серии ВЛ80с, имеющий в основном электрическую схему и характеристики электровоза ВЛ80р, но предназначенный для работы по системе многих единиц [8.1–8.13].
Для пополнения парка электровозов однофазно-постоянного тока, выработавших свой ресурс, НЭВЗ продолжает выпускать электровозы новых серий. К ним относятся грузовой шестиосный электровоз серии ВЛ65 и пассажирский шестиосный электровоз серии ЭП1.
В соответствии с федеральной программой развития железнодорожного транспорта основным направлением при создании электроподвижного состава в России является использование на нем бесколлекторных (в первую очередь, асинхронных) ТЭД.
Еще в 1967 г. НЭВЗ изготовил макетную секцию, а в 1970 г. опытный восьмиосный электровоз с синхронными (вентильными) ТЭД (в создании электровоза активное участие принимали работники Всесоюзного научно-исследовательского института железнодорожного транспорта (ВНИИЖТ) под руководством Б.Н. Тихменева и Всесоюзного научно-исследовательского и проектно-технологического института электровозостроения (ВЭлНИИ) под руководством Б.К. Баранова). В 1970–1975 гг. было построено три таких электровоза (ВЛ80в).
Параллельно с этим НЭВЗ велись работы по созданию электроподвижного состава переменного тока с асинхронными ТЭД, и в 1967 г. была изготовлена опытная секция, а в 1971 г. опытный восьмиосный электровоз с асинхронными ТЭД (ВЛ80а).
Среди электровозов нового поколения, появление которых ожидается в ближайшие годы, следует отметить восьмиосный электровоз переменного тока серии ЭП200 с асинхронными ТЭД, шестиосный пассажирский электровоз серии ЭП2 с асинхронными ТЭД шестиосный пассажирский электровоз двойного питания серии ЭП10 с асинхронными ТЭД и восьмиосный электровоз постоянно-переменного тока (контактная сеть постоянного тока, ТЭД переменного тока) серии ЭП100 с синхронными ТЭД.
Для обеспечения пригородных и межобластных перевозок в СССР, а затем и в России использовались электропоезда, которые в отличие от пассажирских поездов не имели локомотива и прицепных вагонов, а состояли из секций, каждая из которых включала в себя моторный (т.е. оборудованный тяговыми двигателями с системой управления) и прицепной вагоны. В специальной литературе моторные и прицепные вагоны объединяются общим понятием «мотор-вагонный электроподвижной состав».
Пригородные поезда мотор-вагонной тяги формируют, как правило, из нескольких секций. ТЭД и электрооборудование вагонов с целью экономии места в салоне располагают под вагоном.
В дореволюционной России мотор-вагонный подвижной состав использовался на узкоколейных (шириной 1000 мм) подъездных путях г. Лодзь. Для этих линий Русско-Балтийский вагоностроительный завод («Руссо-Балт», г. Рига) в 1900 г. изготовил 16 моторных и 20 прицепных вагонов. На моторных вагонах были установлены тяговые двигатели постоянного тока типа GE-58, изготовленные фирмой «Дженерал электрик» (США). Питание контактной сети осуществлялось от двух электростанций, на каждой из которых был установлен генератор постоянного тока мощностью 110 кВт (выходное напряжение 550 В, ток 200 А).
Первые в СССР пригородные электропоезда были введены в эксплуатацию в 1926 г. на линии Баку – Сабунчи. Моторные вагоны для этой дороги были изготовлены Мытищинским вагоностроительным заводом, тяговые двигатели и пусковые резисторы – заводом «Динамо», электрические аппараты – фирмой «Элин» (Австрия) и тормозное оборудование – фирмой «Кнорр» (Германия). На каждом моторном вагоне было установлено по четыре ТЭД типа ДБ-2 номинальным напряжением 600 В (напряжение в контактной сети 1200 В). Тяговые двигатели имели две группировки.
При создании систем мотор-вагонной тяги в 20–30-х годах этого столетия в СССР рассматривалось несколько вариантов уровней напряжения в контактной сети постоянного тока: 600–800; 1200–1500 и 3000 В. На том этапе было принято напряжение 1500 В, что обусловливалось меньшими затратами меди для контактной сети по сравнению с напряжением 600–800 В и возможностью создания надежного электрооборудования моторного вагона, что нельзя было выполнить в то время для напряжения 3000 В.
Каждая трехвагонная секция серии Св состояла из одного моторного и двух прицепных вагонов. На каждом моторном вагоне были установлены четыре ТЭД типа ДП-150, изготовленные заводом «Динамо». Электрическая аппаратура была изготовлена английской фирмой «Метрополитен Виккерс». Двигатели имели две группировки, причем на параллельном соединении (по два последовательно) было возможно движение с уменьшенным магнитным потоком.
От коротких замыканий и перегрузок двигатели защищались при помощи реле максимального тока, отключающего линейные контакторы, и главного предохранителя. Реверсирование электропоезда осуществлялось посредством изменения направления тока в обмотках возбуждения ТЭД, а при повреждении одного из двигателей предусматривалась возможность отключения группы из двух последовательно соединенных двигателей. Цепи управления и освещения секций питались постоянным током напряжением 50 В от мотор-генератора или аккумуляторной батареи, установленных под кузовом моторного вагона.
Одним из наиболее слабых мест в электромеханическом оборудовании электропоездов серии Св оказались ТЭД типа ДП-150, в которых была применена хлопчатобумажная изоляция проводников якоря. В последующем эта изоляция была заменена полуслюдяной. Кроме того, имелись определенные недостатки и в электрической аппаратуре. Поэтому по мере износа ТЭД и электрической аппаратуры моторные вагоны секций серии Св начали переделывать в моторные вагоны вначале переходных серий, а затем серии Сд. Вагоны секций этой серии отличались от вагонов серии Св электрической аппаратурой. Прежде всего это различие состояло в том, что переход от одной группировки ТЭД к другой осуществлялся по способу короткого замыкания группы двигателей.
Начиная с 1935 г. вместо тяговых двигателей типа ДП-150 начали выпускаться более мощные и конструктивно улучшенные двигатели типа ДПИ-150.
В 1946 г. в связи с электрификацией пригородного участка Москва – Домодедово завод «Динамо» выпустил первый комплект нового электрооборудования и ТЭД типа ДК-103А для электропоездов серии Сд. Такие электропоезда могли работать при двух уровнях напряжения в контактной сети (1500 и 3000 В) и получили обозначение серии См.
В 1947 г. Рижским вагоностроительным заводом (РВЗ) была выпущена первая мотор-вагонная секция нового электропоезда серии Ср, электрооборудование и ТЭД которой были аналогичны секции электропоезда серии См.
В дальнейшем электротехнические системы электропоездов принципиально повторили ту же эволюцию, что и аналогичные системы электровозов. С 1952 г. вместо электропоездов серий Ср на РВЗ был освоен выпуск электропоездов серии С, предназначенных для эксплуатации только на линиях напряжением 3 кВ. В 1957 г. эти электропоезда начали оборудовать системой автоматического ведения поезда. В том же году на РВЗ вместо трехвагонных секций стали выпускать двухвагонные секции, ставшие основой электропоезда серии ЭР1, на которых стали устанавливаться новые ТЭД типа ДК-106Б. Кроме калориферов для подогрева воздуха в салонах с 1962 г. стали устанавливать под пассажирскими сиденьями электрические печи, причем в 1963 г. на Московском локомотиворемонтном заводе (МЛРЗ) все электропоезда раннего выпуска переоборудовались на комбинированную систему электроотопления. В 1962 г. РВЗ вместо электропоездов серии ЭР1 стал выпускать электропоезда серии ЭР2, на которых с 1964 г. стали устанавливать ТЭД типа УРТ-ПОА, имеющие одинаковые с ТЭД типа ДК-106Б электромеханические характеристики, но изготовленные с применением современных пластмасс.
По инициативе Прибалтийской железной дороги в 1970 г. были начаты работы по замене контакторно-резисторного электрооборудования на бесконтактное, позволяющее обеспечить плавное регулирование напряжения на ТЭД в процессе пуска электропоезда. В 1971 г. на одном из восьмивагонных электропоездов серии ЭР2 под кузовами всех четырех моторных вагонов были установлены статические импульсные преобразователи постоянного напряжения, работающие в режиме частотно-широтно-импульсного регулирования напряжения. Тягово-энергетические испытания показали, что применение для пуска импульсных статических преобразователей позволяет заметно снизить расход электроэнергии на тягу.
В 1970 г. МЛРЗ оборудовал шестивагонный электропоезд серии ЭР2 импульсными преобразователями постоянного напряжения с частотно-импульсным регулированием напряжения, которые в отличие от поезда Прибалтийской железной дороги были постоянно включены в цепь ТЭД (в работе принимали участие ученые Московского энергетического института и работники проектно-конструкторского бюро Главного управления локомотивного хозяйства МПС СССР).
Несмотря на положительные результаты испытаний электропоездов постоянного тока со статическими импульсными преобразователями, из-за отсутствия необходимой для их комплектации элементной базы (силовых полупроводниковых приборов и конденсаторов) дальнейшие работы по созданию таких электропоездов в СССР были прекращены.
С целью уменьшения времени доставки пассажиров на линии Москва – Ленинград в 1974 г. РВЗ совместно с Рижским электромашиностроительным заводом (РЭЗ) изготовил скоростной десятивагонный электропоезд постоянного тока серии ЭР200, имеющий конструктивную скорость 200 км/ч. Два моторных вагона имеют объединенную электрическую схему силовых цепей, при которой четыре ТЭД каждого вагона постоянно соединены последовательно, а в начальной стадии пуска последовательно соединяют восемь ТЭД. Пуск резисторный, десятиступенчатый, причем между ступенями плавное регулирование напряжения осуществляется при помощи статического импульсного преобразователя. Для плавного уменьшения магнитного потока ТЭД также используется импульсный преобразователь. При этом при скорости выше 30 км/ч использована система «автомашинист». На электропоезде применено резисторное торможение. После завершения тягово-энергетических испытаний электропоезд поступил на Октябрьскую железную дорогу, где после нескольких модернизаций эксплуатируется и в настоящее время.
В связи с бурным развитием электрической тяги переменного тока в 1959 г. РВЗ была выпущена опытная двухвагонная секция, а в 1961 г. первый десятивагонный электропоезд однофазного постоянного тока серии ЭР7 со ртутными выпрямителями и ТЭД типа РТ51В пульсирующего тока, соединенными попарно-параллельно. В отличие от электровозов уже на первых электропоездах однофазно-постоянного тока выпрямители были выполнены по мостовой схеме. Регулирование напряжения, прикладываемого к ТЭД, осуществлялось дискретно на вторичной обмотке за счет изменения коэффициента трансформации трансформатора. Дополнительно для расширения диапазона регулирования скорости электропоезда использовались ступени уменьшения магнитного потока двигателей. Электродвигатели компрессоров, вентилятора, насоса трансформатора, вентилятора реактора и других вспомогательных машин питаются трехфазным током напряжением 220 В, получаемым от электромашинного фазорасщепителя. Щелочная аккумуляторная батарея (напряжение ПО В) питается от специальной вторичной обмотки тягового трансформатора через выпрямитель.
В 1961 г. по инициативе ВНИИЖТ была начата модернизация выпрямительных установок электропоездов серии ЭР7, заключавшаяся в замене в них ртутных вентилей полупроводниковыми, и к 1964 г. на всех моторных вагонах ртутные выпрямители на МЛРЗ были заменены полупроводниковыми, располагаемыми под моторными вагонами. Этим поездам было присвоено обозначение серии ЭР7к. В отличие от электрической схемы электропоездов серии ЭР7 на электропоездах серии ЭР7к для регулирования напряжения был использован так называемый «вентильный переход», позволяющий устранить громоздкий делительный реактор, а для защиты вентилей от токов короткого замыкания применены быстродействующие разъединители, разрывающие цепь тока в непроводящий полупериод.
В том же году РВЗ совместно с РЭЗ и Всесоюзным электротехническим институтом (ВЭИ) выпустил опытную, двухвагонную секцию электропоезда серии ЭР9, полупроводниковая выпрямительная установка которого располагалась в тамбуре моторного вагона. При сохранении того же принципа регулирования напряжения и тех же ТЭД, что на поездах серии ЭР7к, по предложению ВЭИ бесконтактная защита вентилей от токов короткого замыкания была заменена контакторной при помощи главного воздушного выключателя типа ВОВ-25–4 с одновременным увеличением индуктивного сопротивления в контуре короткого замыкания за счет введения между вторичной обмоткой трансформатора и входными зажимами выпрямительной установки токоограничивающих реакторов. Впоследствии выпрямительные установки были перенесены под кузов моторных вагонов (электропоезд серии ЭР9п).
Электропоезда серий ЭР9 (с модернизациями) были единственными в СССР серийно выпускаемыми поездами однофазно-постоянного тока. Их выпуск продолжался до распада СССР, а в 1995 г. возобновлен на Демиховском машиностроительном заводе, причем электропоезда серии ЭД9т оборудованы системой резисторного торможения с независимым возбуждением ТЭД.
Наряду с выпуском серийных электропоездов однофазно-постоянного тока в СССР в 60-х годах велись научно-исследовательские работы по созданию электропоезда переменного тока с асинхронными ТЭД и статическими преобразователями электроэнергии, завершившиеся выпуском в 1970 г. первого в мире восьмивагонного электропоезда серии ЭР9а с асинхронными ТЭД типа ЭТА-300 мощностью часового режима 300 кВт каждый. В отличие от вентильного перехода электропоезда серии ЭР9 вентильный переход нового электропоезда был выполнен на тиристорах, что обеспечило плавное зонно-фазовое регулирование выпрямленного напряжения. От выходных зажимов выпрямителя асинхронные ТЭД питались через автономные инверторы напряжения (как и на электровозе серии ВЛ80а). К сожалению, несмотря на положительные результаты испытаний, отсутствие в то время необходимой элементной базы не позволило пустить электропоезд в нормальную эксплуатацию.
Вторично задача создания электропоездов переменного тока с асинхронными ТЭД нашла свое решение в 80-х годах, когда на базе электропоезда серии ЭР9 РЭЗ и Московским институтом инженеров железнодорожного транспорта (МИИТ) была оборудована асинхронными ТЭД и статическими преобразователями электроэнергии двухвагонная секция.
Секция успешно прошла пусконаладочные и испытательные поездки вначале на Горьковской железной дороге, а на испытательном кольце ВНИИЖТ, но в связи с отделением Латвии дальнейшие работы по созданию электропоезда с асинхронными ТЭД были прекращены.
Третья и наиболее успешная попытка создания электропоезда переменного тока с асинхронными ТЭД была предпринята по инициативе МПС РФ в 1995 г., когда ВЭлНИИ совместно с МИИТ, ВНИИЖТ и Новосибирским научно-исследовательским институтом комплектного электрооборудования (НИИКЭ) создал двухвагонную макетную секцию, одна из тележек моторного вагона которой была оборудована асинхронными ТЭД. Преобразователь электроэнергии был выполнен по схеме двухзонный тиристорный выпрямитель – автономный инвертор тока, причем секция была оснащена микропроцессорной системой автоматического управления режимами тяги и торможения. Успешные тягово-энергетические испытания секции на кольце ВНИИЖТ позволили вплотную подойти к решению задачи создания на НЭВЗ опытного шестивагонного электропоезда переменного тока серии ЭНЗ с асинхронными ТЭД.
На Демиховском машиностроительном заводе ведутся подготовительные работы по созданию электропоезда постоянно-переменного тока серии ЭД6 с асинхронными ТЭД и статическими преобразователями электроэнергии. Преобразователь электроэнергии такого электропоезда двухзвенный. Во входном звене преобразователя установлен импульсный преобразователь постоянного напряжения, а в выходном – автономный инвертор тока, что позволяет унифицировать узел автономный инвертор – асинхронный ТЭД для перспективных электропоездов, предназначенных для линий постоянного и переменного токов.
Необходимо при этом отметить, что по инициативе РАО «Высокоскоростная магистраль» Октябрьской железной дорогой, АО «Сила» в содружестве с МИИТ и ЗАО «Асинхрон» создана и в 1997 г. успешно прошла испытания макетная двухвагонная секция с асинхронным и тяговыми двигателями, преобразовательная установка которой выполнена на отечественной элементной базе.
Наряду с созданием главных тяговых электроприводов с асинхронными ТЭД в России ведутся работы по полной замене приводных электродвигателей постоянного тока для вспомогательных машин асинхронными приводными двигателями.
В 1996 г. на МЛРЗ был испытан образец статического преобразователя электроэнергии, изготовленного АО «Электровыпрямитель» (г. Саранск) с участием ЗАО «Асинхрон» и предназначенного вместо машинного преобразователя для питания асинхронного двигателя компрессора и бортовых цепей постоянного тока. По откорректированной в результате испытаний макетного образца документации АО «Электровыпрямитель» в 1997 г. был изготовлен опытный образец такого преобразователя с улучшенными характеристиками, который после наладочных испытаний на МЛРЗ поступит для испытаний на кольцо ВНИИЖТ.
Следует отметить, что, несмотря на пионерскую роль СССР в создании электроподвижного состава c бесколлекторными ТЭД, за последние 15 лет ведущим фирмам Германии, Японии, Франции, Италии удалось создать большое количество тяговых единиц с асинхронными (значительно реже с синхронными) ТЭД. Это объясняется в первую очередь тем, что передовые электротехнические фирмы значительно опередили российские предприятия в выпуске современных силовых приборов – GTO-тиристоров и JGBT-транзисторов и модулей на их основе. В настоящее время благодаря использованию современного технологического оборудования положение выравнивается, и, надо полагать, что в ближайшее время будут созданы высокоэкономичные отечественные тяговые преобразовательные установки на силовых полупроводниковых приборах нового поколения.
Еще в начале 90-х годов XIX в. русскими инженерами Л.Г. Кузнецовым и А.И. Одинцовым был разработан проект дизельного тепловоза с электрической передачей, в котором на валу дизеля предлагалось установить трехфазные генераторы переменного тока, питающие ТЭД и приводящие в движение колесные пары локомотива.
В начале XX в. на Коломенском машиностроительном заводе (КМЗ) в числе других был разработан проект тепловоза мощностью 1600 л.с. с электрической передачей, но такой тепловоз создан не был.
В 1924 г. на КМЗ был изготовлен первый отечественный тепловоз с электрической передачей, предложенной ЯМ. Гаккелем. Имея максимальную мощность дизеля, равную 1030 л.с., тепловоз, имевший конечное наименование Щэл 1, был в то время самым мощным в мире (мощность 100 кВт). Первые отечественные тепловозные ТЭД были спроектированы под руководством А.Е. Алексеева.
В дальнейшем развитие электротехнических систем отечественных тепловозов, повторяя, а иногда опережая развитие таких систем за рубежом, шло по пути совершенствования и увеличения мощности тяговых генераторов постоянного тока и ТЭД, а также другого электротехнического оборудования. При этом практически сразу наметились различия в электрооборудовании тепловозов, электровозов и электропоездов в уровне напряжений при принципиально одинаковой структуре преобразования и регулирования потока энергии в непосредственно электрической передаче. Это объяснялось тем, что поскольку тепловоз является автономным (не связанным с контактной сетью) локомотивом, то в нем может быть выбран более низкий уровень напряжения, прикладываемого к ТЭД, что и было сразу же сделано. В дальнейшем это напряжение постепенно повышалось.
Поэтому основные этапы развития электротехнических систем тепловозов и электроподвижного состава совпадают. Как и у электровозов, у которых сначала источником электроэнергии являлась контактная сеть постоянного тока, у тепловозов первых поколений в качестве источников электроэнергии выступали генераторы постоянного тока (с различными типами систем возбуждения). Электродвигатели и другое электротехническое оборудование тепловозов выпускали завод «Динамо», а впоследствии Харьковский электромашиностроительный завод (затем завод «Электротяжмаш»).
В конце 1967 г. Ворошиловградский (впоследствии Луганский) тепловозостроительный завод выпустил первый односекционный тепловоз серии ТЭ109 с электрической передачей переменно-постоянного тока, позволяющей иметь более легкий и надежный главный генератор. Главный синхронный генератор типа ГС-501А был выполнен с независимым возбуждением и принудительной вентиляцией. Для уменьшения пульсаций выпрямленного напряжения на статоре генератора расположены две трехфазные обмотки, одноименные векторы напряжений которых сдвинуты один относительно другого на 30° (электрических). К каждой статорной обмотке подключены входные зажимы трехфазных мостовых диодных выпрямителей, соединенных по отношению к нагрузке (тяговым двигателям) последовательно. Обмотка ротора генератора получает питание от машинного возбудителя через выпрямитель. На тепловозе установлены шесть ТЭД типа ЭД-112А. Предусмотрены две ступени уменьшения магнитного потока.
В дальнейшем развитие тепловозов шло по пути увеличения мощности как за счет увеличения количества тяговых осей, так и за счет увеличения мощности ТЭД, без принципиальных изменений в электрооборудовании.
Начало следующего этапа в развитии электрооборудования тепловозов относится к 1975 г., когда на Ворошиловградском тепловозостроительном заводе был изготовлен первый тепловоз типа ТЭ120 с электрической передачей переменного тока. Тяговый агрегат тепловоза типа А-711 состоит из главного синхронного генератора типа ГС-504А и вспомогательного генератора типа ГС-507 для питания цепей электрического отопления пассажирских вагонов. Такое совмещение в одном агрегате главного и вспомогательного генераторов в отечественном тепловозостроении было осуществлено впервые.
К двум трехфазным статорным обмоткам главного генератора подключены входные зажимы двух мостовых диодных выпрямителей, соединенных по отношению к нагрузке последовательно. К выходным зажимам выпрямителей через индивидуальные трехфазные автономные инверторы напряжения подключены статорные обмотки шести асинхронных ТЭД типа ЭД-900. Уровень напряжения, прикладываемого к ТЭД, регулируется возбудителем главного генератора, а частота этого напряжения – автономным инвертором.
По результатам испытаний опытного тепловоза с асинхронными ТЭД были сделаны рекомендации о выпуске такого тепловоза в двухсекционном варианте, но, как и в случае с электровозами, эти работы были приостановлены из-за отсутствия необходимой элементной базы (силовых полупроводниковых приборов и конденсаторов).
В связи с распадом СССР выпуск тепловозов в России перешел полностью на Коломенский тепловозостроительный завод, который продолжает выпускать грузовые и пассажирские тепловозы с электрической передачей переменно-постоянного тока, электрооборудование которых не претерпевает принципиальных изменений [8.13].







