355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » История электротехники » Текст книги (страница 43)
История электротехники
  • Текст добавлен: 9 октября 2016, 11:39

Текст книги "История электротехники"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 43 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]

7.4.4. ЭЛЕКТРОХИМИЧЕСКОЕ ПОЛУЧЕНИЕ НЕОРГАНИЧЕСКИХ ВЕЩЕСТВ

Электролизом получают гипохлорит, хлораты, перхлораты, персульфаты, пероксид водорода, перманганат калия, диоксид марганца и др.

В 1882 г. А.П. Лидовым и В.А. Тихомировым был разработан электрохимический способ получения гипохлорита натрия NaOCl. Процесс

проводился в бездиафрагменном электролизере в растворе хлорида натрия NaCl. На аноде образовывался как гипохлорит-ион ClO, так и хлор. При взаимодействии хлора с гидроксид-ионами

ОН, накапливающимися у катода, образуется гипохлорит-ион. При более высоких напряжениях гипохлорит-ионы на оксидно-рутиниево-титановые анодах (ОРТА) окисляются до хлорат-ионов.

Электрохимический способ получения хлоратов натрия и калия был разработан в 1886 г.

При электролизе растворов хлоратов на аноде (платинированном титане или диоксиде свинца PbO2) образуются хлорная (НСlO4) и хлорноватая (НСlO3) кислоты. Из хлорной кислоты можно получить ее соли, называемые перхлоратами.

М. Вертело (Франция) исследовал электрохимический способ получения пероксида водорода Н2O2 (1872 г.). В 1905 г. Тейнером был предложен промышленный способ получения Н2O2 электролизом раствора серной кислоты. В 1930 г. разработан способ производства Н2O2 через стадию образования персульфата аммония. На платинированных титановых анодах сульфат аммония окисляется до персульфата аммония, который затем гидролизуется с образованием Н2O2.

В 1884 г. был предложен способ производства перманганата калия. Сначала химическим путем получали манганат калия К2MnO4 из диоксида марганца MnO2, а затем манганат калия электрохимически окисляют до перманганата.

В 1958 г. под руководством Р.И. Агладзе (СССР) был разработан простой способ получения перманганата калия путем анодного окисления марганца, при этом на катоде идет выделение водорода.

К одному из важнейших электрохимичеких процессов следует отнести электрохимическое получение диоксида марганца MnO2, применяемого в качестве катодного материала источников тока, катализатора, абсорбента, окислителя, поглотителя и т.д. В СССР первая установка по получению MnO2 была пущена к 1934 г. в Ленинграде. Процесс заключался в анодном окислении ионов Mn+ с выделением водорода на катоде. Первоначально в качестве анода служил графит, позднее – титан и сплав титана с марганцем.

7.4.5. ЭЛЕКТРОЛИТИЧЕСКОЕ ПОЛУЧЕНИЕ И РАФИНИРОВАНИЕ МЕТАЛЛОВ

Электроосаждение металла на катоде лежит в основе электрохимического получения металлов из растворов (гидроэлектрометаллургия) или из расплавов, а также рафинирования (очистки) металлов.

Металлы, имеющие электроположительные значения потенциала, например серебро Ag, золото Au, не растворяются и выпадают в виде частиц на дно электролизера (в шлам) из перешедших в раствор ионов. На катоде в первую очередь осаждаются металлы, имеющие электроположительные значения потенциала (основной металл, например медь). В результате электролиза очищаемый анодный металл растворяется и основной металл осаждается на катоде. Примеси, потенциал которых отрицательнее потенциала основного металла, остаются в растворе, а электроположительные (по потенциалу) примеси оказываются в шламе.

Важным шагом к открытию электролитического рафинирования было предложение Б.С. Якоби в 1840 г. использовать в гальванопластике растворимые аноды. В 1847 г. герцог М. Лейхтенбергский (Россия) высказал предположение о возможности электролитической очистки и разделения металлов. Практически применять электролитическое рафинирование меди стал Д.Р. Элькингтон в Америке с 1865 г. Промышленное производство возникло в Германии в 1878 г. В России производство рафинированной меди было организовано в начале 90-х годов XIX в. на Кавказе (г. Келакент) и в Нижнем Новгороде.

В это же время началось электролитическое получение меди как заключительная стадия гидрометаллургического производства. При осаждении меди из растворов ее солей, полученных путем переработки руд, используются нерастворимые аноды.

Электрохимический метод применяется для рафинирования и очистки многих металлов (около 80% выпускаемого никеля и значительная часть кобальта). При этом получается металл чистотой 99,99% (никель) и 99,6% (кобальт). При повторном рафинировании чистота металла повышается до 99,9999%. Электролитическое рафинирование применяется также для получения чистого серебра (99,99%) и золота (99,95%).

В 80-х годах XIX в. началась разработка электролитического метода получения цинка, а в 1909 г. в Германии его крупномасштабное производство. В России исследование электролиза цинка проводилось с 1909 г., а первая установка для получения цинка была запущена в 1925 г.

Исследования, проведенные еще в начале XX в. в России под руководством П.П. Федотьева, а затем в СССР под руководством Р.И. Агладзе, привели к организации производства чистого марганца гидроэлектрометаллургическим методом в конце 30-х годов. Под руководством Н.Т. Кудрявцева и А.В. Помосова в 60-х годах разработан электрохимический способ получения порошков металлов (меди, серебра, железа, никеля, цинка и свинца).

Электролизом расплавов производят алюминий, магний, щелочные металлы, кальций, бериллий, титан, цирконий, тантал, бор и фтор. Впервые в 1807 г. X. Дэви и С.П. Власовым электролизом был получен калий и натрий. В 1890 г. К. Кестнер (Германия) разработал промышленный способ получения натрия электролизом расплава NaOH. В этом случае на катоде выделяется натрий, а на аноде кислород и вода. В 1924 г. Г. Дауне (США) предложил проводить электролиз расплава NaCl – СаС12, позднее был разработан промышленный способ получения натрия электролизом расплава хлоридов. Этот способ используется до сих пор.

В 1887 г. П.Л.Т. Эру (Франция) и Ч. Холл (США) предложили способ получения алюминия путем электролиза расплава глинозема в криолите. Анодами в электролизере служил графит, окисляющийся при проведении процесса. В России исследования электролитического метода получения алюминия проводились под руководством П.П. Федотьева, А.И. Беляева, Ю.В. Баймакова, П.Ф. Антипина и др. Первый завод по производству алюминия в СССР был сдан в эксплуатацию в г. Волхове в 1930 г. Полученный на катоде алюминий обычно подвергают электролитическому рафинированию с получением алюминия чистотой 99,95–99,995%.

В 1886 г. А. Муассаном (Франция) был получен фтор электролизом смеси HF – KF с использованием платиновых электродов. Промышленное производство фтора началось в 40-х годах XX в. Процесс проводят либо при температуре 100°С в расплаве HF∙2KF, либо при температуре 250 °С в расплаве HF∙KF.

7.4.6. ГАЛЬВАНОТЕХНИКА

Гальванотехника включает в себя гальванопластику (см. подпараграф 7.4.1) и гальваностегию – процесс электроосаждения слоев металла (гальванопокрытий) с целью защиты от коррозии и придания различных физических и химических свойств поверхности изделий.

Как указывалось ранее, гальванотехника зародилась в начале XIX в. Наибольший вклад в зарождение этого направления внесли работы Б.С. Якоби, благодаря которым возникла практическая гальванопластика. Наряду с исследованиями электроосаждения меди Б.С. Якоби изучал электроосаждение золота, серебра, никеля и латуни. Е.И. Клейн в Петербурге исследовал электроосаждение железа, в 1869 г. процесс нашел практическое применение в полиграфической промышленности.

Электроосаждение меди первоначально проводилось из сернокислых электролитов, а в 40-х годах прошлого века для той же цели нашли применение и цианистые электролиты. Позднее были предложены комплексные нецианистые электролиты.

Уже в первой половине прошлого века широко применялось золочение из хлоридного электролита. В России зубной врач Бриан в 1842 г. предложил железосинеродистый электролит золочения, усовершенствованный затем А.Ф. Грековым и П.Р. Багратионом. П.И. Евреинов в 1843 г. разработал цианистый электролит золочения.

Патент на электролитическое серебрение из цианистых электролитов был получен в 1840 г. Опыты по платинированию проводились с начала 40-х годов прошлого века в Германии, России и других странах. А.Ф. Греков применил для этой цели раствор платинохлороводородной кислоты.

В России уже в 1844 г. была открыта мастерская, в которой проводились меднение, золочение, серебрение, а позднее и другие процессы.

С конца 40-х годов XIX в. в судостроении Англии и Франции получило применение электролитическое цинкование. В России цинкование начали использовать на 10 лет позднее (с 1858 г.). Практически с этого же времени вошло в практику гальваническое лужение.

Хотя уже в 60-х годах Б.С. Якоби и Е.И. Клейн изучали никелирование, однако практическое использование этот процесс получил в России в начале 70-х годов. С конца XIX в. начались опыты по получению блестящих никелевых покрытий.

Электрохимическое хромирование впервые предложил Р. Бунзен (Германия) в 1854 г. Практическое применение хромирование нашло лишь после 1924 г.

В 1844 г. Б.С. Якоби сообщил об исследовании латунирования. В 40–50-е годы француз Рюольз изучал электроосаждение бронзы. Однако практическое применение электроосаждения сплавов началось в 1950–1960 гг.

Создание генераторов тока в прошлом веке снизило стоимость работ в гальванотехнике в несколько раз, позволило сократить время осаждения покрытий, механизировать вспомогательные работы (шлифование, полирование и др.). К настоящему времени гальваническое производство практически полностью автоматизировано. Широкое применение находят процессы никелирования, хромирования, меднения, цинкования, лужения, серебрения, золочения, нанесения сплавов: латуни, бронзы, никеля с кобальтом и железом, золота и серебра. В СССР большой вклад в развитие гальванотехники внесли Н.Т. Кудрявцев, В.И. Лайнер, П.С. Титов, А.Т. Вагромян, Ю.Ю. Матулис, К.М. Горбунова, Ю.М. Полукаров и др.

Одной из серьезных проблем гальванотехники остается очистка сточных вод и создание замкнутого водооборота.

7.4.7. АНОДНАЯ ОБРАБОТКА МЕТАЛЛОВ

Разработано и широко применяется несколько методов анодной обработки металлов: электрополирование, анодное оксидирование и размерная обработка.

Электрохимическое полирование было открыто русским химиком Е.И. Шпитальским в 1910 г. Процесс заключается в анодной обработке металлов в концентрированных растворах преимущественно кислородсодержащих кислот (Н3РO4, H2Cr2O7, HClO4, H2SO4 и др.) при относительно высоких плотностях тока. К настоящему времени разработаны составы и условия электрополирования многих металлов и сплавов: железа и стали, никеля, серебра, цинка, алюминия и др.

При анодном оксидировании алюминия в растворах серной, хромовой, щавелевой или других кислот на его поверхности образуется пористый слой оксида. Этот процесс получил название анодирования. В зависимости от состава раствора и условий анодирования получают оксидные пленки с различными физическими и физико-химическими свойствами. Анодирование применяется для придания поверхности алюминия износостойкости, защитных электроизоляционных или иных свойств.

В 1928 г. В.Н. Гусев и Л.П. Рожков (СССР) разработали способ электрохимической размерной обработки металлов. По этому способу металл подвергается локальному анодному растворению при высоких плотностях тока в проточном растворе электролита. К настоящему времени применяются методы электрохимического фрезерования, сверления, шлифования, удаления заусенцев, разрезки металла и др. Созданы станки-автоматы, обеспечивающие придание металлу необходимой формы рельефа.

СПИСОК ЛИТЕРАТУРЫ

7.1. Очерки по истории энергетической техники СССР // Промышленная электротермия / А.Д. Свенчанский, А.В. Нетушил, Л.Д. Радунский, К.М. Филиппов. М.-Л.: Госэнергоиздат, 1954. Вып. 32.

7.2. История энергетической техники СССР. Т. 2. М.: Госэнергоиздат, 1957.

7.3. Elektrowarme. Theorie und Praxis. Essen: Verlag W.Girardet, 1974.

7.4. Свенчанский А.Д., Смелянский М.Я. Электрические промышленные печи. М.: Энергия, 1970. Ч. 2. Дуговые печи.

7.5. Высокочастотный нагрев диэлектриков и полупроводников/ А.В. Нетушил, Б.Я. Жуховицкий, В.Н. Кудин, Е.П. Парини. М.-Л.: Госэнергоиздат, 1959.

7.6. Руденко Д.И. Развитие техники высокочастотного нагрева. М.-Л.: Машгиз, 1954.

7.7. Петров Ю.Б., Ратников Д.Г. Холодные тигли. М.: Металлургия, 1972.

7.8. Шевцов М.С., Бородачев А.С. Развитие электротермической техники. М.: Энергоатомиздат, 1983.

7.9. Альтгаузен А.П. Развитие электропечестроения в СССР в послевоенный период (обзор). ВНИИЭТО. М., 1981.

7.10. Фарбман С.А., Колобнев И.Ф. Индукционные электропечи для плавки цветных металлов. М.-Л. – Свердловск: Госметаллу ргиздат, 1933.

7.11. Вологдин В.П. История, важнейшие задачи и перспективы применения токов высокой частоты (Труды Первой ленинградской конференции) / Под ред. В.П. Вологдина. М.-Л.: Машгиз, 1952.

7.12. Кувалдин А.Б. Индукционный нагрев ферромагнитной стали. М.: Энергоатомиздат, 1988.

7.13. Ткачев Л.Г., Кононов И.А. Промышленные установки электронно-лучевого нагрева // Итоги науки и техники. Сер. Электротехнология. Т. 3. М.: ВИНИТИ, 1980.

7.14. Корниенко А.Н. У истоков «Электрогефеста». М.: Машиностроение, 1987.

7.15. Прикладная электрохимия. 2-е изд. / Под ред. Н.Т. Кудрявцева. М.: Химия, 1975.

7.16. Лукьянов П.И. История химических промыслов и химической промышленности России. Т. VI. Электрохимическая промышленность. М.: Наука, 1965.

7.17. Павлова О.И. История техники электроосаждения металлов. М.: Изд-во. АН СССР, 1963.

7.18. Электротермия: Инф.науч.-техн. сб. Вып. 127. М.: Информэлектро, 1973.

7.19. Электротермия: Инф.науч.-техн. сб. Вып. 118–119. М.: Информэлектро, 1972.

7.20. Лазаренко Б.Р. Электрические способы обработки металлов и их применение в машиностроении. М.: Машиностроение, 1978.

7.21. Золотых Б.Н. Физические основы электроискровой обработки металлов. М.: Гостех-издат, 1953.

7.22. Hering M. Podstawy elektrotermii. Cz. 1. Warszawa: Wydawnictwa Naukowa-Techniczne, 1992.

7.23. Finkelburg W., Maecker H. Elektrische Bogen und Thermisches Plasma // Handbuch der Physik. 1956. Bd.XXII.


Глава 8.
ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ ТРАНСПОРТА И АВИАКОСМИЧЕСКОЙ ТЕХНИКИ

8.1. ЭЛЕКТРОТЕХНИЧЕСКИЕ СИСТЕМЫ ЖЕЛЕЗНОДОРОЖНОГО, ГОРОДСКОГО ТРАНСПОРТА И ПОДЪЕМНО-ТРАНСПОРТНОГО ОБОРУДОВАНИЯ
8.1.1. ЖЕЛЕЗНОДОРОЖНЫЙ ТРАНСПОРТ

Как уже отмечалось в гл. 3, еще в XIX в. в наиболее развитых странах мира предпринимались попытки использовать электрическую энергию для перемещения экипажей, в том числе и по рельсовому пути.

Различают два вида железнодорожного тягового подвижного состава: автономный и неавтономный. При автономном подвижном составе на локомотиве (тепловозе или моторном вагоне дизель-поезда) устанавливают первичный дизельный двигатель, приводящий во вращение генератор (постоянного тока или синхронный), от которого получают электроэнергию тяговые электрические двигатели (ТЭД), связанные с колесными парами и обеспечивающие перемещение подвижного состава по рельсовому пути.

При неавтономном подвижном составе на локомотиве (электровозе или моторном вагоне электропоезда) устанавливают только ТЭД с аппаратурой управления и регулирования (а иногда и преобразователи электрической энергии), первичным источником электроэнергии является электростанция. При этом электроэнергия от электростанции к локомотиву передается через линии электропередачи (ЛЭП) и системы тягового электроснабжения, включающие в себя подстанции и контактную сеть, от которой при помощи токоприемника получают питание ТЭД локомотива.

В зависимости от рода тока в контактной сети различают три системы электрической тяги: постоянного тока, однофазного переменного тока промышленной частоты и однофазного переменного тока пониженной частоты. На железных дорогах России применяются только две первые системы.

В современной системе электрической тяги постоянного тока номинальное напряжение на токоприемнике локомотива составляет 3 кВ. Такой уровень напряжения выбран для возможности согласования с номинальным напряжением

ТЭД, которые изготавливают на напряжение 1500 В (или 750 В) и соединяют на последней позиции регулирования соответственно по два или четыре последовательно. Помимо ТЭД на локомотиве размещают еще и пускорегулирующую аппаратуру. На тяговых подстанциях в такой системе тяги устанавливают понижающие трансформаторы и полупроводниковые выпрямительно-инверторные агрегаты. При этом расстояния между смежными подстанциями не превышают 15–20 км, а площадь поперечного сечения медных контактных проводов достигает 600 мм2 и более, что приводит к значительным расходам цветных металлов.

С целью упрощения устройств тягового электроснабжения применяют систему электрической тяги однофазного переменного тока промышленной частоты, причем напряжение на токоприемнике электровоза составляет 25 кВ. В этом случае на электровозе помимо пускорегулирующей аппаратуры и ТЭД размещают понижающий трансформатор и выпрямительный (или выпрямительно-инверторный) блок, а тяговые подстанции являются чисто трансформаторными. При этом из-за повышенного напряжения расстояние между тяговыми подстанциями можно увеличить до 40–60 км, а сечение контактных проводов уменьшить в 2–3 раза.

Поскольку однофазная контактная сеть получает питание от трехфазной системы внешнего электроснабжения, это приводит к несимметричной загрузке генераторов, трансформаторов и ЛЭП и ухудшает их работу. Кроме того, однофазный тяговый ток оказывает значительное электромагнитное влияние на работу систем автоматики и радиосвязи, что вынуждает принимать специальные меры по обеспечению электромагнитной совместимости тяговых и нетяговых потребителей электроэнергии.

Система электрической тяги однофазного переменного тока пониженной частоты (16 (2/3) Гц в Европе, 25 Гц в США) позволяет устанавливать на локомотиве однофазные коллекторные двигатели переменного тока, получающие питание непосредственно от понижающего трансформатора локомотива и имеющие электротяговые характеристики, аналогичные таким же характеристикам ТЭД постоянного тока. Напряжение на токоприемнике локомотива составляет 15 кВ, а расстояние между тяговыми подстанциями, оборудованными электромагнитными или полупроводниковыми преобразователями частоты и числа фаз, достигает 40–60 км.

Поскольку тяговый подвижной состав, предназначенный для железных дорог, электрифицированных на постоянном и переменном токе, а также для автономной тяги, оборудован аналогичными по своим характеристикам ТЭД постоянного (или пульсирующего) тока, а принципиальные схемы систем передачи и регулирования потока энергии от контактной сети ТЭД локомотивов, как было отмечено выше, различны для различных видов электрической тяги, представляется целесообразным рассмотреть отдельно историю развития электротехнических систем электроподвижного состава (электровозов и электропоездов), предназначенного для эксплуатации на линиях, электрифицированных на постоянном и переменном токе, и автономных локомотивов. В дальнейшем будет проанализировано развитие электротехнических систем железнодорожного подвижного состава на примере СССР (а затем России). Это представляется достаточно обоснованным потому, что российские ученые и инженеры на всех этапах развития электрической тяги занимали передовые позиции, а в ряде случаев, например в создании электровоза и электропоезда переменного тока с асинхронными и синхронными тяговыми двигателями и статическими преобразователями электрической энергии, были одними из первых в мире. Среди известных русских ученых, внесших наибольший вклад в создание таких локомотивов, необходимо отметить Е.С. Аваткова, Д.А. Завалишина, Б.Н. Тихменева.

Первые восемь электровозов постоянного тока серии С10 были поставлены в СССР в 1932 г. американской фирмой ДЖИИ, причем только на первых двух были установлены ТЭД американского производства, а на шести последних уже были установлены отечественные двигатели типа ДПЭ-340 мощностью 340 кВт, выпущенные заводом «Динамо». В том же году завод «Динамо» совместно с Коломенским машиностроительным заводом, переработав американскую документацию, выпустил два отечественных аналога электровозов серии СЮ; они начали серию Сс. На всех электровозах этой серии было установлено по шесть ТЭД (масса каждого составляла 4300 кг) номинальным напряжением 1500 В. Для изменения скорости движения поезда использовались три схемы соединения ТЭД (последовательное, последовательно-параллельное и параллельное), причем на каждом соединении использовалось еще и двухступенчатое уменьшение магнитного потока. При рекуперативном торможении якоря ТЭД также имели три схемы соединения. Изменение направления движения осуществлялось посредством изменения направления тока в обмотках возбуждения ТЭД. Дискретное повышение напряжения на ТЭД при пуске достигалось за счет уменьшения сопротивления пусковых резисторов путем закорачивания их отдельных секций, состоящих из чугунных пластинчатых элементов, а впоследствии еще и за счет их параллельного соединения. Электрическая связь электрооборудования электровозов с контактным проводом осуществлялась при помощи двух токоприемников пантографного типа, причем в нормальных условиях работал только один пантограф. Все переключения в цепях пусковых и стабилизирующих (при рекуперации) резисторов осуществлялись индивидуальными пневматическими контакторами. Аналогичные контакторы применялись и в цепях регулирования магнитного потока.

На электровозах серий С10 и Сс было установлено по два мотор-компрессора и по два мотор-вентилятора для охлаждения ТЭД, мотор-генератор мощностью 57 кВт для питания обмоток возбуждения ТЭД при рекуперативном торможении и одноякорный двухколлекторный делитель напряжения (динамотор) с генератором тока управления на общем валу. От динамотора получали питание электродвигатели вспомогательных машин, рассчитанные на напряжение 1500 В.

Для питания цепей управления, сигнализации и освещения, имевших номинальное напряжение 50 В, при неработающих генераторах тока управления использовалась свинцовая аккумуляторная батарея. В качестве регулятора напряжения генератора тока управления использовались аппараты со столбиками угольных дисков.

Защита цепей ТЭД осуществлялась с помощью трех реле перегрузки, воздействующих на быстродействующий выключатель, а цепей электродвигателей вспомогательных машин – с помощью плавких предохранителей. Установленные на электровозах быстродействующие выключатели были сконструированы таким образом, что чем быстрее нарастал ток короткого замыкания, тем при меньшем его значении происходил разрыв их контактов.

В 1933–1934 гг. СССР закупил у итальянской фирмы «Итальяно техномазио Броун Бовери» семь электровозов серии Си, электрооборудование которых было в основном аналогичным электрооборудованию электровозов серий С10 и Сс. Различие состояло в большей мощности ТЭД и выполнении двигателей вспомогательных машин на номинальное напряжение 3000 В, вследствие чего динамотор на них отсутствовал, а генераторы тока управления приводились во вращение от электродвигателей вентиляторов.

В 1932 г. на заводе «Динамо» и в Центральном локомотивопроектном бюро началось рабочее проектирование шестиосного грузопассажирского электровоза серии ВЛ19 с меньшей по сравнению с электровозами серии Сс нагрузкой на рельсы. В отличие от его предшественников на этом электровозе было применено резистор-ное торможение.

В 1936 г. завод «Динамо» выпустил первый шестиосный грузовой электровоз серии СК с тяговыми двигателями типа ДПЭ-340, рекуперативным торможением и значительно улучшенной схемой электрического торможения в отношении использования секций пускового резистора.

В 1938 г. заводом «Динамо» и Коломенским машиностроительным заводом были начаты работы по созданию модернизированного электровоза серии Сс. При сохранении ТЭД типа ДПЭ-340 электродвигатели вспомогательных машин этого электровоза, которому было присвоено обозначение ВЛ22, были выполнены на номинальное напряжение 3000 В. Вместо пантографов с двумя полозами на электровозах были установлены пантографы с одним полозом, имевшие меньшую массу.

В 1940 г. завод «Динамо» изготовил шесть ТЭД типа ДПЭ-400, которые были предназначены для замены двигателей на электровозах серий ВЛ22, ВЛ19, Сс и СК без переделки механической части.

Последний электровоз серии ВЛ22 был построен на заводе «Динамо» в 1946 г., после чего их выпуск был освоен на созданном на базе разрушенного во время войны паровозостроительного завода Новочеркасском электровозостроительном заводе (НЭВЗ). Первому электровозу НЭВЗ было присвоено обозначение ВЛ22м. Электрические схемы силовых цепей и цепей управления электровозов серии ВЛ22м с рекуперативным торможением незначительно отличались от аналогичных схем электровозов серий ВЛ22 и Сс, что позволяло этим электровозам работать по системе многих единиц.

В 1953 г. на НЭВЗ был изготовлен первый двухсекционный восьмиосный грузовой электровоз постоянного тока серии Н8. Восемь ТЭД типа НБ-406А имели три группировки, на каждой из которых имелось по три ступени уменьшения магнитного потока.

Для уменьшения мощности и массы мотор-генераторов в режиме рекуперативного торможения была применена схема с циклической стабилизацией без стабилизирующих резисторов.

В 1963 г. эти электровозы получили обозначение ВЛ8 и строились по 1967 г. включительно.

Электровозы серии ВЛ22м, предназначенные специально для обслуживания поездов на горных участках, не отвечали условиям эксплуатации на линиях с холмистым и равнинным профилем. Поэтому в 1954 г. на НЭВЗ был разработан эскизный проект нового шестиосного грузового электровоза серии ВЛ23 с ТЭД типа НБ.

Вспомогательные электрические машины и аппараты были унифицированы с электровозами серий ВЛ22м и ВЛ8.

К началу 60-х годов электровозы серии ВЛ8 с тяжелыми литыми тележками уже не отвечали возросшим требованиям к локомотивам такого класса. Кроме того, необходимо было унифицировать тележки для электровозов постоянного и переменного токов.

Новый двухсекционный восьмиосный электровоз, имевший большую мощность ТЭД типа ТЛ-2 и оборудованный устройством для выравнивания нагрузок от колесных пар на рельсы при больших тяговых усилиях, был изготовлен Тбилисским электровозостроительным заводом в 1961 г. (первоначальное обозначение Т8). Электрическая аппаратура электровоза была такой же, как у электровозов серии ВЛ8. Начиная с 1963 г. электровозы получили обозначение ВЛ10.

До 1957 г. на линиях, электрифицированных на постоянном токе, пассажирские поезда обслуживались электровозами серий ВЛ22м, ВЛ22 и ВЛ19, которые по своим тяговым характеристикам и динамическим качествам не соответствовали условиям пассажирского движения. Поэтому в 1956 г. было подписано соглашение о поставке из Чехословацкой Социалистической Республики двух опытных электровозов, выполненных на базе чешских четырехосных электровозов типа 12Е. На первых электровозах этой серии, получившей обозначение ЧС1, устанавливались шестиполюсные ТЭД, имеющие слабонасыщенную магнитную систему, благодаря чему можно было за счет значительного уменьшения магнитного потока двигателя регулировать скорость движения электровоза в широких пределах. Переключение ТЭД с последовательного соединения на параллельное осуществлялось при помощи мостового перехода. При последовательном соединении ТЭД имелось четыре ступени уменьшения магнитного потока, при параллельном – шесть. На электровозе было установлено по два мотор-компрессора и по два мотор-вентилятора. Двигатели вентиляторов вращают генераторы тока управления, служащие для питания цепей управления и освещения и заряда железоникелевой аккумуляторной батареи.

В 1960 г. на электровозах серии ЧС1 были установлены ТЭД с пятью ступенями уменьшения магнитного потока на каждой группировке. Таким электровозам было присвоено обозначение серии ЧСЗ.

Дальнейшее повышение скоростей движения пассажирских поездов обусловило необходимость увеличения мощности электровозов, и в 1958 г. на базе чехословацких электровозов типа 25Е были изготовлены для СССР два шестиосных пассажирских электровоза серии ЧС2. На электровозах имелись три группировки ТЭД с пятью ступенями уменьшения магнитного потока двигателей на каждой. Переход от одной группировки к другой осуществлялся посредством подключения параллельно одной из групп ТЭД переходного резистора (так называемое шунтирование ТЭД резистором). Цепи защиты и вспомогательные машины выполнялись так же, как на электровозе серии ЧС1, только мотор-вентиляторов было четыре. В 1962 г. на электровозах серии ЧС2 вместо четырех мотор-вентиляторов было установлено два мотор-вентилятора, но большей мощности, причем номинальное напряжение их двигателей составляло 3000 В. Двигатели мотор-компрессоров также перевели на напряжение 3000 В. Ранее применявшиеся чугунные секции пусковых резисторов были заменены на более легкие фехралевые.

В период с 1966 по 1975 г. продолжалось серийное изготовление (с некоторой модернизацией) электровозов серии ВЛ10 двумя заводами – Новочеркасским и Тбилисским. На них, в частности, были установлены ТЭД типа ТЛ-2К1. Впервые в отечественной практике для питания обмоток возбуждения ТЭД в 1970 г. был установлен статический преобразователь постоянного напряжения 3000 В в постоянное напряжение 38 В. Несколько позже аналогичный преобразователь был использован на одном электровозе для питания обмоток возбуждения в режиме рекуперативного торможения.

Восьмиосные электровозы серий ВЛ8 и ВЛ10 имели общую силовую цепь ТЭД для обеих секций, что не позволяло использовать их при работе в одну секцию. В ряде случаев было необходимо иметь локомотив с 10–12 тяговыми осями. Поэтому было принято решение спроектировать новый грузовой электровоз постоянного тока на базе четырехосной автономной секции, а число секций набирать по мере надобности. В 1975 г. Тбилисский электровозостроительный завод выпустил первый двухсекционный электровоз этой серии (ВЛ11) с ТЭД типа ТЛ-2К1. Четыре ТЭД каждой секции имели только два соединения: четыре двигателя последовательно и две параллельные группы ТЭД, каждая из которых содержит два последовательно соединенных ТЭД. На каждом соединении ТЭД имеется по четыре ступени уменьшения магнитного потока.

В 1973 г. НЭВЗ выпустил первый восьмиосный двухсекционный электровоз серии ВЛ12 с ТЭД типа НБ-407Б. Как и на электровозе серии ВЛ11, на каждой секции предусматривалось два соединения ТЭД, причем для изменения группировок использовался мостовой переход. Применено независимое возбуждение ТЭД в режиме тяги, а также при резисторном и рекуперативном торможении, причем для питания обмотки возбуждения во всех режимах были использованы статические преобразователи. Для заряда аккумуляторных батарей использован трехфазный генератор в сочетании с полупроводниковым выпрямителем.


    Ваша оценка произведения:

Популярные книги за неделю