355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » История электротехники » Текст книги (страница 8)
История электротехники
  • Текст добавлен: 9 октября 2016, 11:39

Текст книги "История электротехники"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 8 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]

Событием, революционизировавшим развитие электрической машины и положившим начало промышленной электротехнике, явилось объединение принципа самовозбуждения с конструкцией кольцевого якоря.

Разработка самовозбуждающихся генераторов с кольцевыми и барабанными якорями и развитыми магнитными системами составила основное содержание четвертого этапа в развитии электрических генераторов.

З.Т. Грамм, занимаясь изготовлением электрических машин, стал одним из самых известных французских специалистов в области электромашиностроения и электрического освещения. В июне 1870 г. он получил патент, в котором содержалось описание самовозбуждающегося (в общем случае многополюсного) генератора с кольцевым якорем. На гладкий железный кольцеобразный сердечник наматывалась замкнутая сама на себя обмотка (позднее такую обмотку стали называть граммовской). От равноудаленных точек этой обмотки шли отпайки к коллекторным пластинам. Общий вид одной из конструкций генератора Грамма изображен на рис. 2.22, а.

На станине 1 укреплены электромагниты 2 с полюсными наконечниками 3, между которыми вращается якорь 4; в специальных держателях укреплены щетки, соприкасающиеся с почти современного типа коллектором 5. Якорь приводится во вращение через приводной шкив. Обмотка возбуждения включена последовательно с обмоткой якоря.

Рис. 2.22. Самовозбуждающийся генератор Грамма для питания осветительных установок 

На рис. 2.22, б показана принципиальная схема генератора, а на рис. 2.22, в – конструкция кольцевого якоря. З.Т. Грамм указывал, что сердечник якоря может быть сплошным, а может быть изготовлен из пучка стальных проволок 7, как показано на рисунке; здесь же 2 – катушки обмотки, 3 – коллекторные пластины.

Позднее З.Т. Грамм предложил еще несколько конструкций самовозбуждающихся машин, различных по внешнему виду и мощности, но принципиальных изменений в свою машину он больше не вносил.

Генератор Грамма оказался весьма экономичным источником электрической энергии, позволявшим получать значительные мощности при высоком КПД и сравнительно малых габаритах и массе. Сравнение машины Грамма, например, с машиной «Альянс» показывает, что самовозбуждающийся генератор с кольцевым якорем имел массу на 1 кВт примерно в 6 раз меньшую, чем генератор с постоянными магнитами.

Очевидные преимущества генератора Грамма способствовали тому, что этот генератор быстро вытеснил другие типы и получил очень широкое распространение. В начале 70-х годов принцип обратимости электрических машин был уже хорошо известен, а машина Грамма использовалась как в режиме генератора, так и в режиме двигателя. Таким образом, в начале 70-х годов обе линии развития электрических машин (генератора и двигателя) объединились.

Машина Грамма представляла собой машину постоянного тока современного типа. Однако она нуждалась в определенных усовершенствованиях, которые последовали в 70–80-х годах XIX в.

В 80-х годах XIX в. продолжались исследования процессов в электрических машинах и совершенствование их конструкций. В 1880 г. американский изобретатель Хайрем Максим (1840–1916 гг.) вновь (после А. Пачинотти) предложил зубчатый якорь, а также внутренние каналы для вентиляции. Знаменитый американский электротехник Томас Альва Эдисон (1847–1931 гг.) в 1880 г. получил патент на шихтованный якорь, в котором пластины изолировались листами тонкой бумаги, позднее она была заменена лаком.

С 1885 г. стали применяться шаблонная и компенсационная обмотки, устанавливаться дополнительные полюса.

Огромное значение в совершенствовании проектирования электрических машин сыграли работы Александра Григорьевича Столетова (1839–1896 гг.) по исследованию магнитных свойств «мягкого железа», доказавшего связь магнитной восприимчивости железа с напряженностью магнитного поля.

В 1880 г. немецким физиком Эмилем Варбургом (1846–1931 гг.) было открыто явление гистерезиса и начались исследования магнитных потерь в стали. Английский ученый Джеймс Э. Юинг (1855–1935 гг.) пришел к выводу о «гистерезисном цикле» и предложил прибор для вычерчивания кривых намагничивания. Выдающийся американский электротехник Чарльз Протеус Штейнмец (1865–1923 гг.) предложил эмпирическую формулу для определения потерь на гистерезис. В 1885 г. английский электротехник Джон Гопкинсон сформулировал закон магнитной цепи. Таким образом, к концу 80-х годов электрическая машина постоянного тока приобрела современные конструктивные черты.


2.11. ЗАРОЖДЕНИЕ ЭЛЕКТРОАВТОМАТИКИ, ЭЛЕКТРОПРИБОРОСТРОЕНИЯ И ИНФОРМАЦИОННОЙ ЭЛЕКТРОТЕХНИКИ

Длительное время электрическая энергия не могла получить широкого практического применения вследствие отсутствия экономичных генераторов. Но это относится к так называемым энергетическим применениям электричества, при которых затрата энергии пропорциональна количеству получаемого продукта, интенсивности производственного процесса.

Что же касается неэнергетических применений, не требующих значительных затрат электроэнергии, когда она используется лишь в качестве вспомогательного средства для передачи сигналов (телеграфия, телефония, электрическое взрывание мин, дистанционное управление и др.), то именно такие неэнергетические применения положили начало практическому использованию электричества [1.6].

Расширение неэнергетических применений электричества сыграло значительную роль в развитии электротехники вообще, так как в процессе создания разнообразных устройств такого рода неизбежно приходилось разрешать ряд практических и теоретических проблем в области электротехники: совершенствовать источники питания, создавать разнообразные приборы и приспособления, в том числе и автоматические, изготовлять изолированные проводники, исследовать свойства различных материалов, разрабатывать методы измерений, устанавливать единицы измерения величин. Все это привело к разработке схем и методов, получивших применение в современном телеуправлении, например, кодоимпульсного метода, принципа синхронно-синфазной связи, распределителей, исполнительных устройств.

Первым электротехническим устройством, предназначенным для широкого практического использования, был электрический телеграф. Наиболее совершенным оказался электромагнитный телеграф, выгодно отличавшийся от предшествовавших ему электростатического и электролитического телеграфов.

Первый практически пригодный электромагнитный телеграф был разработан русским ученым Павлом Львовичем Шиллингом (1786–1837 гг.) в 1828–1832 гг. Этот телеграф был основан на визуальном приеме кодовых знаков (рис. 2.23) и явился исходной конструкцией последующих телеграфов. П.Л. Шиллингом впервые был внедрен в область электрической передачи кодированный сигнал, чем было положено начало кодоимпульсному методу, который получил применение в современном телеуправлении [1.6; 2.18].

В процессе разработки проекта подводной телеграфной линии Петергоф – Кронштадт (1837 г.) П.Л. Шиллингом был впервые применен каучук для изолирования подводного кабеля, а также указана возможность использования воды или земли в качестве обратного провода. Кроме того, он впервые предложил подвешивать провода на столбах, что вначале было воспринято с недоверием.

Из всех предложенных после П.Л. Шиллинга конструкций электромагнитных телеграфов наиболее широкое применение получил телеграф (1844 г.) американца Сэмюэля Морзе (1791–1872 гг.). Заслуживает внимания разработанный Б.С. Якоби принцип электрической синхронно-синфазной связи, лежащей в основе современной техники дистанционной передачи и следящего электропривода. В таком телеграфе Б.С. Якоби стрелки передающего и приемного аппаратов совершали равномерно-прерывистое шаговое движение, перемещаясь с одинаковой скоростью (синхронно) и занимая одинаковое пространственное положение (синфазно). В середине XIX в. были разработаны конструкции буквопечатающих телеграфов [1850 г. – Б.С. Якоби, 1855 г. – английским физиком Дэвидом Юзом (1831–1900 гг.)].

Рис. 2.23. Схема телеграфа Шиллинга
1 – вольтов столб; 2 – клавиатура (передатчик); 3 – приемник; 4 – обратный провод; 5 – шесть рабочих мультипликаторов и один вызывной 

Среди первых применений электричества отметим использование его в военном деле, прежде всего для воспламенения пороховых зарядов. Эта проблема впервые была успешно разрешена в 1812 г. П.Л. Шиллингом, осуществившим на Неве опыт по электрическому взрыванию подводных мин.

Дальнейшие работы в области минной электротехники развивались в направлении совершенствования электрических запалов, создания специальных электрических машин и приборов для их питания («взрывные» машинки, индукционные катушки) и автоматизации самого процесса взрывания мины.

Так, например, Б.С. Якоби в начале 40-х годов XIX в. были разработаны специальный магнитоэлектрический генератор и индукционный прибор, которые были приняты на вооружение русской армией. Созданием этих приборов было положено начало внедрению батарейной и генераторной систем зажигания с применением индукционной катушки. Именно в минном деле впервые получил применение такой широко распространенный электротехнический прибор, как индукционная катушка Б.С. Якоби. Отечественными и зарубежными военными электротехниками были разработаны также разнообразные электроавтоматические приборы, обеспечивающие взрыв мины при ее соприкосновении с кораблем [2.14].

Характерной особенностью рассматриваемого периода являются первые попытки использования электрической энергии для целей автоматического контроля, управления и регулирования. Если ранее для этого применялись различные механические устройства, то начиная с 30-х годов XIX в. в автоматических приборах и установках получают все большее применение разнообразные электромеханические элементы. Происходит качественный сдвиг в развитии автоматики и телемеханики: зарождается новая область техники – электроавтоматика. Эффективность использования электричества в автоматических и телемеханических устройствах определялась прежде всего свойством электрического тока быстро распространяться по проводу. Основными элементами простейших электроавтоматических и телемеханических устройств были электромагниты и электромагнитные реле. К их числу могут быть отнесены электромагнитные реле в телеграфах П.Л. Шиллинга и Б.С. Якоби, электромеханический регистратор импульсов в пишущих телеграфах, устройства синхронизированного вращения в стрелочном и буквопечатающем телеграфах, релейные устройства для автоматического замыкания электрической цепи в телеграфах и минных установках.

Рис. 2.24. Схема автоматического переключателя 

В середине прошлого века разрабатываются электроавтоматические устройства для регистрации малых промежутков времени, контроля некоторых производственных процессов, создается ряд схем дистанционного управления.

Одним из первых наиболее совершенных регистрирующих устройств была разработанная в 1842–1845 гг. электробаллистическая установка русского военного электротехника Константина Ивановича Константинова (1817–1871 гг.) с электромагнитным хроноскопом и автоматическим переключателем цепей – прототипом распределителя – элемента современных автоматических и телемеханических установок. Автоматический переключатель (рис. 2.24) действовал следующим образом: двухступенчатый деревянный цилиндр 1 приводился во вращение грузом 2. При прохождении тока через электромагнит 5 тормозящий рычаг 3, посаженный на ось 4, удерживал цилиндр от вращения. После выстрела снаряд разрывал проволоку щита I и цепь электромагнит – источник тока (зажим 7) размыкалась. Спиральная пружина 8 отводила тормозящий рычаг до упора 9. Цилиндр вращался до тех пор, пока контактная пластина б не соединялась с пружиной следующего щита III, и цепь электромагнита снова замыкалась. С помощью такого устройства К.И. Константинову удалось осуществить измерение малых промежутков времени с точностью до 0,00006 с. Приборы, созданные К.И. Константиновым, автоматически регистрировали момент прохождения снаряда сквозь щит [1.6; 2.19].

В 60–70-х годах XIX в. в связи с развитием телефонии создаются специальные автоматические устройства – искатели, коммутаторы и др. Ведется разработка электротермических, электрохимических, электромагнитных и электромашинных устройств.

В рассматриваемый период было положено начало и энергетическим применениям электричества, в частности начинает развиваться промышленная электрохимия. Развитие промышленной электрохимии в огромной мере обязано открытию Б.С. Якоби в 1838 г. явления гальванопластики, которая позволила с помощью электролиза получать точные копии с поверхности предметов и сразу же нашла практическое применение в полиграфии, медальерном деле и других отраслях промышленности. Она явилась истоком созданного Б.С. Якоби метода нанесения на поверхность предмета металлических покрытий – гальваностегии. В середине прошлого века в России и за границей возникли крупные гальванотехнические промышленные предприятия, на многих заводах были созданы гальванические мастерские.

Развитие промышленной электрохимии также сыграло важную роль в развитии электротехники, вызвав необходимость совершенствования источников постоянного тока (в частности, создания экономичного генератора) и углубления электрохимических исследований.

Развитие исследований в области электрических и магнитных явлений и расширение их практического применения вызвали необходимость разработки методов измерений основных электрических величин и создания электроизмерительных приборов. Принцип действия первых электроизмерительных приборов был основан на отклонении магнитной стрелки электрическим током; такие приборы являлись лишь индикаторами тока. Первым из них, как уже указывалось ранее, был мультипликатор И.Х. Швейггера.

В первых стрелочных приборах, служивших для измерения тока, синус или тангенс угла отклонения стрелки был пропорционален значению тока, поэтому такие приборы назывались соответственно синус-гальванометрами и тангенс-гальванометрами. Первая попытка отградуировать гальванометр была сделана в 1839 г. Б.С. Якоби.

Уже в первой половине XIX в. создаются более чувствительные и точные гальванометры, электрогальванометры, астатический гальванометр и т.п. Были разработаны баллистический (Э.Х. Ленц, 1832 г.) и компенсационный [немецкий физик Иоганн Христиан Поггендорф (1796–1877 гг.), 1841 г.] методы измерений, мостовая измерительная схема (Ч. Уитстон 1843 г.) и др.

В 40–60-х годах XIX в. разрабатываются первые конструкции реостатов (вольтагометр Якоби), реохордов (И.Х. Поггендорф), магазинов сопротивлений и других подобных устройств.

В рассматриваемый период стабилизируются наименования основных электрических величин, постепенно устанавливаются термины: электродвижущая сила (ЭДС), сила тока, электрическое сопротивление, количество электричества и др. Электрические единицы и эталоны были утверждены на Чикагском электротехническом конгрессе в 1893 г. [1.6].


2.12. ПЕРВЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ОСВЕЩЕНИЯ

В 40–70 гг. XIX в. стали создаваться первые источники электрического освещения. Освещение является естественной и постоянной потребностью человека. Самым долгим был путь от лучины к свече и затем к масляной лампе. В первой половине XIX в. господствующее положение занимало газовое освещение, имевшее существенные преимущества перед лампами с жидким горючим: централизация снабжения установок светильным газом, сравнительная дешевизна горючего, простота газовых горелок и простота обслуживания. Но по мере развития капиталистического производства, роста городов, строительства крупных производственных зданий, гостиниц, магазинов, зрелищных помещений оно все менее удовлетворяло требованиям практики, так как было опасно в пожарном отношении, вредно для здоровья, а сила света отдельной горелки была мала. Для текстильных и швейных фабрик, типографий, деревообделочных цехов, театров и т.д. газовое освещение создавало угрозу пожаров. Особенно недостатки газового освещения стали сказываться на крупных предприятиях с большим числом рабочих, занятых на производстве по 12–14 ч в сутки, вызывая резкое снижение производительности труда.

Поэтому вполне своевременными, отвечавшими социальному заказу общества были попытки создать электрические источники света, которые вытеснили бы все иные источники.

Электрическое освещение развивалось по двум направлениям: дуговые лампы и лампы накаливания [1.6].

Вполне естественно начать историю электрического освещения с упоминания об опытах В.В. Петрова в 1802 г., которым было установлено, что при помощи электрической дуги «темный покой довольно ясно освещен быть может». Тогда же, в 1802 г., X. Дэви в Англии демонстрировал накал проводника током.

Электрическая, или «вольтова», дуга представляла собой в буквальном смысле яркое проявление электрического освещения. Принципиальными недостатками дугового источника являются, во-первых, открытое пламя (и отсюда пожарная опасность), огромная сила света и необходимость регулирования дугового промежутка по мере сгорания углей.

В 1844 г. французский физик Жан Бернар Фуко (1819–1868 гг.), именем которого названы исследованные им вихревые токи (напомним, что открыты они были Д.Ф. Араго), заменил электроды из древесного угля электродами из ретортного угля, что способствовало увеличению продолжительности горения лампы. Регулирование оставалось еще ручным. Такие лампы могли получить применение лишь в тех случаях, когда требовалось непродолжительное по времени, но интенсивное освещение, например при подсветке предметного стекла микроскопа, сигнализации в маяках или для театральных эффектов. Легко себе представить восторг (а может быть, и испуг) зрительного зала, когда в Парижском оперном театре в 1847 г. по ходу спектакля (давали оперу Мейербера «Пророк») восход солнца имитировался с помощью дуговой лампы!

Дальнейшая история дугового электрического освещения связана с изобретением различных механических и электромагнитных регуляторов, так как по мере сгорания электродов расстояние между ними возрастало и электрическая дуга гасла. Регулятор был самой сложной и дорогостоящей частью дуговой лампы.

Рис. 2.25. Дуговая лампа Аршро с электромагнитным регулятором 

Одной из первых по времени (1848 г.) конструкций дуговой лампы с электромагнитным регулятором была лампа французского механика Аршро (рис. 2.25). Эта лампа, в частности, применялась для освещения площади перед зданием Адмиралтейства в Петербурге. Большую известность получило применение десяти дуговых ламп с регуляторами талантливого русского изобретателя Александра Ильича Шпаковского (1823–1881 гг.) в 1856 г. при иллюминации на Лефортовском плацу в Москве во время торжеств по случаю коронации Александра II. Их по праву называли «электрическими солнцами Шпаковского». В них применялось комбинированное (электрическое и механическое) регулирование. Эти лампы были наиболее современными, в том числе и по сравнению с зарубежными.

Рис. 2.26. Схема автоматических регуляторов с последовательным (а), параллельным (б) и смешанным (в) включением (дифференциальная)
Р1 – масса угледержателя; Р2 – масса сердечника электромагнита; 1 – угли; 2 – последовательная обмотка; 3 – параллельная обмотка 

По характеру электрической схемы питания регуляторы разделяли на три группы: с последовательным и параллельным питанием, дифференциальные (рис. 2.26). В регуляторах с последовательным питанием обмотка электромагнита включалась последовательно с дугой, а с параллельным – параллельно. В дифференциальном регуляторе горение дуги регулировалось как последовательной, так и параллельной обмотками. После включения лампы регулятор работал при любом положении углей. Электромагнитные регуляторы в дуговых электрических лампах, обеспечивающие автоматическое регулирование расстояния между электродами дуги, были самыми распространенными электрическими устройствами в 50–70-х годах XIX в. До появления свечи Яблочкова в 1876 г. электромагнитный регулятор являлся наиболее важным конструктивным узлом дуговых ламп, без которого последние не могли работать. Большинство дуговых ламп различалось только устройством регулятора.

Рис. 2.27. Дуговая лампа Чиколева с электромашинным регулятором

Наиболее совершенные дифференциальные регуляторы были разработаны в 1869–1870 гг. известным русским электротехником, одним из основателей журнала «Электричество» Владимиром Николаевичем Чиколевым (1845–1898 гг.). Им впервые в мировой электротехнической практике был применен метод электромашинного регулирования. На рис. 2.27 показана дуговая лампас электромашинным регулятором. Последовательная и параллельная обмотки регулятора служили обмотками возбуждения двигателя 3, 4. Действие электромагнитов было встречным: при сгорании углей 1 усиливалось действие параллельной обмотки, якорь 5 вращал

вал 2 в одну сторону и угли сближались. При чрезмерном сближении углей усиливалось действие последовательной обмотки, угли раздвигались.

Идея дифференциального регулятора, получившего широкое применение в прожекторостроении, была использована другими конструкторами, в частности немецким фабрикантом З. Шуккертом. Крупносерийный выпуск дуговых ламп с дифференциальным регулятором был налажен в конце 70-х годов на заводах В. Сименса (с которыми объединялись заводы 3. Шуккерта), и такая лампа стала продаваться под именем «дуговая лампа Сименса».

С 80-х годов дуговые лампы с дифференциальным регулятором стали единственным типом дуговых источников света, которые применялись для освещения улиц, площадей, гаваней, а также для освещения больших помещений производственного и общественного назначения; они стали традиционными источниками света в прожекторной и светопроекционной технике.

Самая первая лампа накаливания была построена английским физиком У. Деларю (1819–1889 гг.). В этой лампе накаливалась платиновая спираль, находящаяся в стеклянной трубке.

Следующий шаг был сделан в 1838 г., когда бельгиец Жобар стал накаливать угольные стержни в разреженном пространстве. Эта лампа была, конечно, дешевле, но срок ее службы был незначительным.

После 1840 г. были предложены многочисленные конструкции ламп накаливания: с телом накала из платины, иридия, угля или графита и т.д.

В 1854 г. по улицам Нью-Йорка разъезжал немецкий эмигрант Генрих Гебель (1818–1893 гг.), на повозке которого находилась подзорная труба и лампа накаливания. Последняя служила для привлечения публики, которая приглашалась взглянуть через подзорную трубу на кольца Сатурна. Замечательным было то, что телом накала в лампе Гебеля служило обугленное бамбуковое волокно; нить была помещена в верхнюю часть закрытой барометрической трубки, т.е. в разреженное пространство. Медные проводники подходили к нити накала сквозь стекло. Лампа Гебеля могла гореть в течение нескольких часов.

В 1860 г. Джон В. Сван (1828–1914 гг.) в Англии впервые применил для лампы накаливания обугленные полоски толстой бумаги или бристольского картона, накаливавшиеся в вакууме.

Дальнейшее развитие электрического освещения будет рассмотрено в следующей, третьей главе.

СПИСОК ЛИТЕРАТУРЫ

2.1. Петров В.В. Известие о гальвани-вольтовских опытах. СПб., 1803.

2.2. Шнейберг Я.А. Василий Владимирович Петров. М.: Наука, 1985.

2.3. Ампер А. Электродинамика. М.: Изд-во АН СССР, 1954.

2.4. Кошманов В.В. Георг Ом. М.: Просвещение, 1980.

2.5. Кирхгоф Г.Р. Избранные труды. М.: Наука, 1958.

2.6. Фарадей М. Экспериментальные исследования по электричеству. М.: Изд-во АН СССР, 1947.

2.7. Цверава Г.К. Джозеф Генри. Л.: Наука, 1983.

2.8. Максвелл Д.К. Избранные сочинения по теории электромагнитного поля. М.: Гостехиздат, 1934.

2.9. Ленц Э.Х. Избранные труды. М.: Изд-во АН СССР, 1950.

2.10. Лежнева О.А., Ржонсницкий Б.Н. Эмилий Христианович Ленц. М. – Л.: Госэнергоиздат, 1952.

2.11. Майер Р. Закон сохранения и превращения энергии. М.: Гостехиздат, 1933.

2.12. Бернал Дж. Наука в истории общества. М.: Изд. иностр. лит., 1956.

2.13. Электродвигатель в его историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд-во АН СССР, 1936.

2.14. Яроцкий А.В. Борис Семенович Якоби. М.: Наука, 1988.

2.15. Гусев С.А. Очерки по истории электрических машин. М.: Госэнергоиздат, 1955.

2.16. Динамомашина в ее историческом развитии. Документы и материалы / Под ред. В.Ф. Миткевича. М.: Изд-во АН СССР, 1934.

2.17. Цверава Г.К. Аньош Йедлик. Л.: Наука, 1972.

2.18. Яроцкий А.В. Павел Львович Шиллинг. М.: Изд-во АН СССР, 1963.

2.19. Храмой А.В. Константин Иванович Константинов. М.: Госэнергоиздат, 1951.

2.20. Шателен М.А. Русские электротехники XIX в. М.: Госэнергоиздат, 1955.


    Ваша оценка произведения:

Популярные книги за неделю