355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » История электротехники » Текст книги (страница 12)
История электротехники
  • Текст добавлен: 9 октября 2016, 11:39

Текст книги "История электротехники"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 12 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]

Глава 4.
ТЕОРЕТИЧЕСКАЯ ЭЛЕКТРОТЕХНИКА

4.1. ВВЕДЕНИЕ

Теоретическая электротехника (ТЭ) как самостоятельное научное направление образовалась в результате синтеза физических представлений об электрических и магнитных полях, электрических цепях, математических методах для исследования и расчета электромагнитных явлений в технических устройствах. В этом качестве ТЭ является основой развития теории, методов расчета и синтеза широкого спектра электротехнических изделий. История развития ТЭ неотделима от развития электротехники и физики, поскольку открытие новых физических явлений и законов практически одновременно приводило к появлению новых электротехнических устройств. Характерно, что практически одновременно имели место открытие в 1831 г. закона электромагнитной индукции, т.е. возникновения электродвижущей силы в результате изменения потока вектора магнитной индукции М. Фарадеем, демонстрация в 1832 г. электрического генератора постоянного тока, созданного братьями Пиксии в Париже, и изобретение электродвигателя в 1834 г. Б.С. Якоби. Однако для создания серьезной теоретической, расчетной и проектной базы, а также глубокого изучения электромагнитных процессов в таких машинах и целенаправленного развития их конструкций потребовались многие десятилетия. Для ТЭ характерен учет влияния множества факторов и в этой связи усложнение картины протекания физических процессов, поскольку только при этих условиях стало возможным решить проблему создания и повышения эффективности новых электротехнических устройств. Именно необходимость учета множества факторов потребовала разработки методов создания соответствующего математического описания, т.е. математических моделей этих устройств.

Начальный этап становления ТЭ определялся не только историей развития физических представлений об электрических и магнитных явлениях. С созданием гальванических элементов, формулированием законов Ома и Кирхгофа, а также с началом практического использования физических явлений, связанных с протеканием постоянного тока по проводникам, независимо от теории электромагнитного поля (ЭМП) появился новый раздел ТЭ, известный в настоящее время под названием «Теория электрических цепей». Вначале раздельное развитие этих двух направлений ТЭ было обусловлено тем, что расчет электрических цепей постоянного тока не требовал привлечения закона электромагнитной индукции и введения понятия токов смещения, т.е. использования всех законов ЭМП. Однако и в дальнейшем выявленные особенности описания процессов в электрических цепях и их математических моделей, даже при необходимости использовать уравнения ЭМП, позволили создавать специфические методы расчета и сохранять теорию электрических цепей в качестве самостоятельного раздела. В этом отношении показательна возможность вывода законов Кирхгофа без использования уравнений Максвелла, исходя только из топологических особенностей электрических цепей. По этой причине в ТЭ с самого начала ее становления относительно самостоятельно развивались исследования, связанные с явлениями, вызванными протеканием электрического тока по проводникам, образующим цепи (теория электрических цепей) и с эффектами взаимодействия электромагнитного поля с веществом (теория ЭМП). Таким образом, это разделение было вызвано не только историческими причинами и различиями в методах анализа и синтеза электрических цепей и электромагнитных полей, но и используемым при этом математическим аппаратом.

Поражающая воображение быстрота появления практических устройств на основе использования электромагнитных явлений способствовала ускоренному развитию производительных сил с конца XIX в. и существенным образом повлияла на становление ТЭ в качестве самостоятельной науки. Со времени открытия гальванических источников тока, электрической дуги и появления возможности практического использования этих открытий для освещения и электротермии прикладные аспекты использования ЭМП приобретают особое значение для развития производства. Именно это обстоятельство в первую очередь стимулировало развитие ТЭ в качестве самостоятельной отрасли науки.


4.2. СТАНОВЛЕНИЕ ФИЗИЧЕСКИХ ОСНОВ ТЭ

Д.К. Максвелл в течение 1855–1873 гг., обобщив результаты экспериментальных исследований, известных в виде законов Ш. Кулона, А. Ампера, законов и идей М. Фарадея и Э.Х. Ленца сформировал на их основе систему уравнений ЭМП, описывающую поведение электромагнитного поля в общем случае. Впоследствии Г. Герц в 1884 и 1890 гг., О. Хевисайд в 1885 г., А. Эйнштейн в 1905 г., Г. Лоренц в 1909 г. и др. сформулировали варианты этой системы уравнений. С точки зрения теории математического моделирования система уравнений Максвелла является математической моделью электромагнитного поля для самого общего случая. Приспособление этой модели к конкретным свойствам исследуемого устройства и стало одной из основных задач ТЭ при создании общих методов разработки конкретных математических моделей, т.е. математического описания электромагнитных процессов в конкретном устройстве.

Становление ТЭ в области теории ЭМП протекало в период столкновения двух подходов толкования сути самих уравнений Д.К. Максвелла. В первом из них, характерном для ученых, придерживающихся позиций школы М. Фарадея и Д.К. Максвелла, математическое описание процессов производится на основе построения физической картины их протекания. Для подхода, характерного в основном для физиков немецкой школы, преимущественную роль играет сама математическая модель, которая является продуктом субъективного мыслительного процесса. Эти школы отражали принципиально различные подходы к толкованию результатов экспериментальных данных. В первом признается реальность существования электромагнитного поля в качестве особой формы материи и принципа близкодействия, т.е. взаимодействия, материальных тел через процесс, протекающий в разделяющем их пространстве. Для сторонников второго подхода, приверженцев принципа дальнодействия, по мнению которых взаимодействие тел происходит без участия какого-либо материального процесса в разделяющем эти тела пространстве, нет необходимости использовать ЭМП для объяснения процесса взаимодействия. Следует отметить, что при попытке понять картину физических процессов, представляющих ЭМП, физики столкнулись с дуальностью проявления света, а следовательно и ЭМП, когда явление фотоэффекта вынудило представить свет в качестве потока дискретных частиц-фотонов – квантов света, а дифракционные эффекты в виде волн. Этот двойственный характер поведения ЭМП и попытки создания адекватной математической модели послужили причиной появления новых физических концепций. Вследствие дуальности проявления ЭМП стало невозможным описать реальную картину поведения индивидуальных частиц и это заставило ввести в квантовую физику (на основе работ Н. Бора (1895–1962 гг.), Л. де-Бройля (1892–1987 гг.), Э. Шредингера (1887–1961 гг.), В. Гейзенберга (1901–1971 гг.), П. Дирака (1902–1984 гг.) и М. Борна (1882–1970 гг.)) понятий, определяющих только статистические, вероятностные особенности поведения множества частиц, в том числе фотонов и электронов.

Согласно этой теории реальное распределение частиц в пространственно-временном континууме (это слово использовано для выражения идеи о невозможности раздельного представления пространства и времени) можно описать только на основе понятий функции вероятности или «волны вероятности». При использовании данного подхода может быть определена только вероятность нахождения частицы в данной точке в данный момент времени. Разумеется, что столь глубокое проникновение в физическую картину построения вещества и поля выходит за рамки ТЭ, однако выяснение наличия различных ответов на вопрос, что такое ЭМП, и причин, порождающих эти расхождения, необходимо для понимания истории развития основных физических представлений о природе ЭМП, что важно не только для физиков, но и для электриков, специализирующихся в области ТЭ. Сторонники принципа близкодействия и в физике, и в ТЭ, ярким представителем которого являлся академик АН СССР В.Ф. Миткевич (1872–1951 гг.), вынуждены были предложить модели вхождения пространства в процесс взаимодействия первоначально при помощи введения понятия эфира, а в последующем и концепции электронно-позитронной теории вакуума. Согласно современным представлениям свободное от материальных частиц пространство – вакуум (некий непротиворечивый эквивалент эфира), состоит из совокупности взаимосвязанных электронно-позитронных пар. Поскольку принимается, что масса и электрона, и позитрона определяется только энергией, связанной с этими частицами ЭМП, которая при образовании пары освобождается, то вакуум представляет собой пространство с минимальным уровнем энергии. В таком вакууме может иметь место явление поляризации в полном соответствии с представлениями М. Фарадея и Д.К. Максвелла. Однако при этом возникает вопрос о причинах и механизмах взаимодействия вакуума с полем тяготения. Согласно представлениям о строении материи элементарные частицы вещества электрон и позитрон обладают всеми качествами материальных тел и отличаются наличием у них свойства взаимодействовать с ЭМП, мерой которого является электрический заряд. Заряд, в свою очередь, является следствием наличия кварков, этих нецелых по значению зарядов. Вследствие невозможности исчезновения зарядов следует, что вакуум состоит из кварков, которые должны обладать и другими свойствами, связанными с гравитационным полем. Таким образом, даже попытка представления основной физической особенности материи, связывающей ее с ЭМП, приводит к необходимости более глубокого проникновения в свойства материи. В этом заключается одна из важнейших особенностей ЭМП, познание которой послужило в прошлом важным стимулом развития физики.

Развитие физических представлений о строении материи и элементарных частиц привело к пониманию объективности существования материи в виде ЭМП. В настоящее время превалирует принцип близкодействия и на этой основе признание независимо от нашего сознания существования, т.е. материальности, ЭМП. Признание этого факта не просто некий результат абстрактного спора, но важный шаг к пониманию сути самого ЭМП, следовательно, более адекватному описанию электромагнитных процессов в конкретных условиях, что способствует созданию более точных математических моделей. Электромагнитное поле и его математическая модель в виде системы уравнений Максвелла сыграли важную роль в развитии физики и понимании строения вещества. В отличие от гравитационного поля, для которого не было экспериментально выявлено основное свойство вещества в виде поля, а именно свойство распространяться в пространстве в виде отделенной от вещественных тел материи, исследования электромагнитных явлений позволили наблюдать эффекты, связанные с отдельным от материальных частиц существованием ЭМП в виде предсказанных Д.К. Максвеллом электромагнитных волн (Г. Герц, 1880 г., П.Н. Лебедев, 1895 г.). В этом отношении исключительное значение имеют исследования П.Н. Лебедевым (1866–1912 гг.) коротких электромагнитных волн (6 мм), позволившие установить наличие давления света на материальные тела (1899 г.).


4.3. РАЗВИТИЕ ОТЕЧЕСТВЕННОЙ ШКОЛЫ ТЭ

В России ТЭ с самого начала своего появления развивалась на основе признания материальности ЭМП и важности понимания картины протекания рассматриваемых физических процессов для их практического использования и описания в виде математических моделей. Развитие этой школы до 20-х годов XX столетия отличается освоением достижений в области, главным образом, физики электромагнитных явлений. Характерной для этого периода в России следует считать практическую неделимость исследований физических явлений, разработки простейших моделей этих явлений и решения задач, связанных с расчетом исследуемых физических величин. В этом отношении работы множества ученых можно отнести и к области физики, т.е. к фундаментальным наукам, и к области ТЭ, поскольку в них предлагались и методы создания математических моделей, и методы анализа и расчета этих моделей для простейших с современной точки зрения задач.

Русские ученые внесли заметный вклад в развитие электротехники и физики и тем самым заложили надежную базу для создания отечественной школы ТЭ. В этом отношении следует отметить работы А.Г. Столетова и представителей его школы (Н.С. Акулов, В.К. Аркадьев, А.С. Займовский и др.) по исследованию магнитных свойств железа и ферромагнетиков. Вкладом в развитие ТЭ следует считать исследование зависимости экономичности передачи электрической энергии от напряжения, проведенное Д.А. Лачиновым и М. Депре. В России становление отечественной школы ТЭ одновременно протекало в двух главных центрах науки – в Петербурге и Москве. Отставание России в промышленном развитии по сравнению с западными странами вынуждало русских ученых реализовать свои идеи и новые разработки на Западе. В этом отношении весьма показательна судьба М.О. Доливо-Добровольского, который изобретением трехфазных систем и вращающегося магнитного поля совершил революцию в электромашиностроении и электроэнергетике.

На начальном этапе внедрения электричества в практику русские инженеры показали свои большие потенциальные возможности. В 1893 г. инженер А.Н. Шенснович построил Новороссийский элеватор с электростанцией мощностью 1200 кВт, (максимальная к тому времени мощность), в которой работали четыре синхронных трехфазных генератора мощностью по 300 кВт. Трехфазные генераторы и двигатели переменного тока, использованные на элеваторе, были изготовлены в собственных мастерских по проектной документации фирмы «Броун Бовери». По сути, на этом предприятии фактически была реализована наиболее оптимальная схема компоновки электропривода.

Однако в целом отсутствие в России равноценной западным странам проектной и промышленной базы стимулировало работы теоретического и исследовательского характера. В ТЭ такие исследования развивались в области формирования собственной точки зрения на ЭМП и, в частности, на влияние свойств среды на распространение электромагнитного поля и его использование для передачи сигналов. В прикладном аспекте следует отметить работы А.С. Попова (1859–1906 гг.), который в 1895 г. на заседании физического отделения Русского физико-химического общества продемонстрировал возможность передачи сигналов при помощи электромагнитных волн. Следует особо отметить изобретение Б.Л. Розингом, работавшим в Петербургском политехническом институте, системы передачи изображения (1911 г.) при помощи электронно-лучевой трубки (патент 1907 г.).

Важное значение для развития ТЭ имела изначальная ориентация большинства русских физиков на фарадей-максвелловы идеи о физической реальности процессов, происходящих в ЭМП. Профессор Петербургского университета И.И. Боргман (1849–1914 гг.) и ряд ученых на своих лекциях и в докладах на собраниях, организованных физическим отделением Русского физико-химического общества и электротехническим отделом Русского технического общества, пропагандировали и распространяли идеи, способствующие формированию знаний в области ТЭ. В контексте этих идей предметом глубокого и всестороннего рассмотрения стала проблема оценки принципов близко– и дальнодействия.

История создания электротехнических устройств показала, что решающее значение приобретает глубокое понимание физической картины протекающих в них электромагнитных процессов. Именно эта особенность в максимальной мере отличала развитие отечественной школы ТЭ. В этой связи следует отметить принципиальное отличие методических основ подготовки научных и инженерных кадров для экономики и формирования ТЭ в нашей стране от иностранных. Несмотря на совпадение на начальном этапе развития ТЭ и раздела физики, относящегося к ЭМП, в университетских курсах и у нас и за границей прикладные аспекты электромагнитных процессов не рассматривались. В этом отношении весьма показательно высказывание автора двухтомного курса физики И.И. Боргмана «Основания учения об электрических и магнитных явлениях», вышедшего из печати в 1895 г. в Петербурге. В этой книге автор заканчивает раздел, относящийся к рассеянию энергии в стали, следующими словами: «Вопрос о выделении тепла в железе при намагничивании его, т.е. рассеянии энергии при этом, представляет большой интерес в электротехнике, в теории трансформатора. Более подробное рассмотрение этого вопроса выходит из пределов настоящего курса». Эти, по существу дела, общие теоретические вопросы недостаточно полно рассматривались и в ряде специальных электротехнических курсов, читавшихся известными учеными электротехниками того времени: П.Д. Войнаровским, организовавшим первую русскую лабораторию высоких напряжений (2x100 кВ), А.А. Вороновым, крупным специалистом по электрическим машинам, и др. О необходимости восполнения этого пробела при подготовке кадров будущих специалистов-электриков вспоминает крупный ученый М.А. Шателен (1866–1957 гг.), чл.-корр. АН СССР с 1931 г.: «Особенно нас не удовлетворяла подготовка по теоретической электротехнике. Читавшийся тогда в Электротехническом институте «Специальный курс электричества», несмотря на то, что он читался таким крупнейшим профессором, как И.И. Боргман, не удовлетворял нас. В сущности это был тот же курс, который И.И. Боргман читал на физико-математическом факультете университета, только сокращенный. Никакой специфики, связанной с его целевым назначением не было.

И вот тут у Владимира Федоровича Миткевича начали назревать те мысли, которые потом были осуществлены в Политехническом институте, когда он начал читать на электромеханическом факультете (тогда отделении) курс теоретических основ электротехники. Аналогичного курса не было ни в русской, ни в иностранной литературе. Это было действительно изложение основ учения об электрических и магнитных явлениях, предназначенное специально для будущих инженеров-электриков и подготавливающее студентов к сознательному восприятию тех сведений, которые они потом получали в специальных курсах электрических машин, высоких напряжений и т.п.

Я помню тот исключительный интерес, который проявляли к этому курсу не только студенты, но и преподаватели и молодые электрики и физики. Литографированные листы этого курса разбирались нарасхват».

Речь здесь идет о курсе «Теория электрических и магнитных явлений», который В.Ф. Мит-кевич начал читать в 1904 г. в Политехническом институте и который был издан в 1912 г. В этих воспоминаниях высказана основная идея создания не просто учебного курса, а всего направления ТЭ, заключающаяся в создании совместными усилиями теоретиков и специалистов прикладного направления общего физического и математического фундамента для всех специальных дисциплин. В 1905 г. была начата подготовка инженеров электротехнической специальности и в Московском высшем техническом училище (МВТУ). Основные теоретические курсы «Теория переменных токов» (изданный в 1906 г.) и «Электрические измерения» в МВТУ начал читать Карл Адольфович Круг (1873–1952 гг.). Этими курсами, в систематической форме излагающими основные положения двух важнейших разделов ТЭ, и была заложена основа отечественной школы ТЭ. Со времени появления этих курсов в учебные программы всех высших учебных заведений, готовивших инженеров-электриков, неизменно входил курс «Теоретические основы электротехники».

Монографии и учебники по ТЭ отражали и систематизировали технические и научные достижения в области электротехники и физико-математических дисциплин в России и за ее пределами и в свою очередь служили фундаментом для дальнейшего развития электротехники. Вместе с тем развитие прикладных аспектов электротехники приводило к возникновению все новых и новых проблем, входящих в компетенцию ТЭ. На начальном этапе развития электротехники быстрее появлялись новые области приложения физических открытий, а следовательно, и новые отрасли электротехники. В последующем наблюдалась обратная картина, когда окрепшие и самостоятельно развивающиеся отрасли электротехники ставили перед наукой новые задачи, побуждающие развитие ТЭ. Установление основных законов электродинамики, т.е. взаимодействия токов и магнитных полей, привело к изобретению электрической связи, электрических машин и трансформаторов. В свою очередь, анализ процессов в электрических цепях способствовал оптимальному проектированию электрических сетей и линий электропередачи. Открытие электромагнитных волн дало толчок к изобретению радио и радиотелефонной связи, космической связи и навигации и т.п. Широкое применение электрических цепей и систем переменного тока, содержащих трансформаторы, электрические машины, двигатели и другие элементы, в которых происходило преобразование электрической энергии, поставило новые задачи перед ТЭ. Началось интенсивное развитие теории электрических цепей переменного тока, теории симметричных составляющих, переходных процессов и др. В этой связи особо значительным как в инженерном отношении, так и в отношении развития методов расчета электрических цепей было введение метода представления синусоидальных токов и напряжений в виде комплексных величин американским инженером Ч.П. Штейнмецем. Об этом методе Ч.П. Штейнмец докладывал в 1893 г. на Международном электротехническом конгрессе.

Исследования токов коротких замыканий при включении и выключении нагрузки привели к разработке новых методов расчета переходных процессов во всех электротехнических установках и в других областях инженерной практики, например при расчете гидравлических процессов.

Следует особо отметить вклад в развитие методов ТЭ английского физика Оливера Хевисайда (1850–1925 гг.). Подход О. Хевисайда к исследованию электромагнитных явлений – пример для специалиста в области ТЭ. Он стремился гармонически сочетать глубину понимания физического процесса и математических методов его представления и расчета для получения данных, количественно характеризующих эти процессы. В ТЭ он ввел много новых понятий (функцию Хевисайда, определяющую современное понятие единичной функции, импульсной функции и др.) и методов расчета. Большое внимание было уделено развитию раздела математики, необходимого для расчета переходных процессов в электрических цепях. Исследуя процесс установления тока в проволоке (сопротивление) при ее включении под действие постоянного напряжения, он пришел в выводу, что в процессе установления тока (по современной терминологии, в течение переходного процесса) он течет «по слоям, сильный на поверхности провода, слабый в середине» и определил зависимость этого явления от скорости изменения тока, т.е. предсказал явление поверхностного эффекта и объяснил его, введя понятие, аналогичное вектору Умова – Пойнтинга почти одновременно с Д.Г. Пойнтингом. Для расчета переходных процессов он использовал операторы, преобразующие дифференциальные уравнения в алгебраические. Подходы физика О. Хевисайда к исследованию электромагнитных процессов были близки к таковым в ТЭ в отношении доведения исследований до количественных данных. И то обстоятельство, что Хевисайд изобретал математические методы, отчасти разработанные задолго до него математиками, являлось отражением основного пробела в развитии ТЭ на начальном этапе – недостаточного использования достижений математики.


    Ваша оценка произведения:

Популярные книги за неделю