412 000 произведений, 108 200 авторов.

Электронная библиотека книг » авторов Коллектив » История электротехники » Текст книги (страница 41)
История электротехники
  • Текст добавлен: 9 октября 2016, 11:39

Текст книги "История электротехники"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 41 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]

7.7.5. ПЛАЗМЕННЫЙ НАГРЕВ

Начальный период. Начало работ по плазменному нагреву относится к 20-м годам XX в. Сам термин «плазма» ввел И. Ленгмюр (США), а понятие «квазинейтральная» – В. Шоттки (Германия). В 1922 г. X. Гердиен и А. Лотц (Германия) провели опыты с плазмой, полученной при интенсивном охлаждении электрической дуги путем применения металлической диафрагмы и тангенциальной подачи воды. Затем в течение ряда лет проводились исследования физических свойств электрической дуги и плазмы, и только в 50-х годах начались разработки промышленных плазмотронов и плазменных технологических процессов.

Рис. 7.9. Плазмотрон с дугой, горящей в парах воды
1 – вода; 2 – катод; 3 – изоляция; 4 – плазма

Дуговые плазмотроны. В 1954 г. Т. Петерс (США) создал плазмотрон, представляющий собой камеру, в которой дуга горит в парах воды при давлении до 500 МПа (рис. 7.9). На выходе из сопла получены высокие сверхзвуковые скорости плазмы.

Фирмы США («Линде», «Плазмадин») с 1955 г. стали применять плазмотроны для нанесения покрытий (алюминий, вольфрам), а также для резки и сварки металлов.

В СССР развитие плазменного нагрева началось в конце 50-х – начале 60-х годов. Под руководством М.Я. Смелянского работы по применению плазменного нагрева велись на кафедре электротермических установок МЭИ. Во ВНИИ-ЭТО (Н.И. Бортничук, В.А. Хотин) в 1961 г. была запущена первая плазменная печь – стенд мощностью 30 кВт, а затем была создана лабораторная плазменная печь для плавки сталей и тугоплавких металлов (1965 г.). В 1970 г. пущена в эксплуатацию плазменная печь для плавки стали в керамическом тигле емкостью 3,5 т (г. Челябинск) и созданы дуговые плазмотроны и источники питания для плавильных печей на токи 1, 3 и 6 кА.

Исследования по промышленному применению плазменного нагрева велись в Институте металлургии АН СССР (Н.Н. Рыкалин, А.В. Николаев), Институте тепло– и массообмена АН БССР (О.И. Ясько), Московском авиационном институте (И.С. Паневин), Институте нефтехимического синтеза и неорганической химии АН СССР (Л.С. Полак) и ряде других организаций.

Особенно необходимо выделить Институт магнитогидродинамики Сибирского отделения АН СССР, где под руководством М.Ф. Жукова была создана научная школа по изучению и применению плазмы (М.С. Даутов, А.С. Аньшаков и др.); разрабатывалась теория и проводились экспериментальные исследования плазмотронов; были разработаны различные конструкции плазмотронов: с осевой стабилизацией дуги, двусторонним истечением плазмы, с вращением дуги в магнитном поле и т.д.

В 60-х годах фирма «Линде» (США) разработала конструкцию плазменно-дуговой сталеплавильной печи с керамическим тиглем и тремя плазмотронами. Подобные установки разрабатывали также фирмы Англии, Японии и ГДР.

В СССР разработки плавильных плазменных печей вел ВНИИЭТО: 1977–1979 гг. в ГДР была введена в эксплуатацию крупнейшая в мире печь емкостью 30–45 т и мощностью 20 МВт с четырьмя плазмотронами постоянного тока для плавки сталей и сплавов (изготовлена на Новосибирском ЗЭТО); 1979 г. – пуск печи емкостью 12 т на Челябинском металлургическом заводе.

Фирма «Дайдо Стил» (Япония, 1969 г.) ввела в эксплуатацию индукционно-плазменную печь емкостью 500 кг, общей мощностью около 400 кВт, из которых 200 кВт за счет индуктора и 200 кВт – плазмотрона постоянного тока с использованием аргона. В нашей стране индукционно-плазменные печи разрабатывал ВНИИЭТО. Основная энергия в металл передается индукционным методом. Плазмотрон позволяет интенсифицировать процесс расплавления шихты, а при рафинировании расплавленного металла подогревать шлак.

В начале 70-х годов в разных странах (Япония, СССР и др.) стали разрабатываться плазмотроны с полым катодом, работающие при давлениях 1–100 Па. По сравнению с электронно-лучевыми установками в них снижается испарение металла и легирующих добавок. Фирма «Ульвак» (Япония) создала плазменную вакуумную установку мощностью 2400 кВт для переплава титановой губки и титановых отходов. Установки такого типа разрабатывались также у нас во ВНИИЭТО и МЭИ.

В начале 70-х годов работали промышленные установки для крекинга метана мощностью 6–8 МВт (фирма «Хюльс», ФРГ) и 25 МВт («Вестингауз», США).

Шведская фирма «СКФ стил дивизион» в конце 70-х годов разработала новые плазменные процессы прямого восстановления железа, получения чугуна при усовершенствованной доменной плавке и извлечения металлов из улавливаемой пыли прокатного производства.

Сверхвысокочастотные (СВЧ) плазмотроны. В начале 70-х годов СВЧ-установки для нагрева газов серийно выпускались в США, Великобритании и Франции. Подобные установки были созданы и в СССР. В установке «Фиалка» СВЧ-разряд горел в кварцевой трубке диаметром 50 мм. Технические данные: рабочие газы – аргон, азот, воздух, температура 4000–6000 К, мощность до 5 кВт, частота 2375 МГц.

7.1.6. ЭЛЕКТРОННО-ЛУЧЕВОЙ НАГРЕВ

Начальный период. Техника электронно-лучевого нагрева (плавка и рафинирование металлов, размерная обработка, сварка, термообработка, нанесение покрытий испарением, декоративная обработка поверхности) создана на основе достижений физики, электроники, электронной оптики и вакуумной техники.

После открытия электрона и измерения отношения его заряда к массе началось широкое изучение свойств электронных потоков, их получения и взаимодействия с электрическими и магнитными полями. Электронный микроскоп был создан трудами ряда ученых, в том числе Н. Руска, М. фон Арденна (Германия), В.К. Зворыкина (США) в 20–30-х годах. В нем применялись электронные пушки небольшой мощности с малыми токами и большими разгоняющими напряжениями. Тогда же были разработаны электростатические и магнитные системы управления электронным лучом.

Идея создания установки электронно-лучевого нагрева появилась еще в начале XX в., и в 1905 г. М. фон Пирани получил патент Германии на использование электронного луча как источника нагрева. Однако для технологического использования требовались более мощные электронные пушки, создание которых связано с различными конструктивными трудностями, а также были необходимы исследования взаимодействия электронного луча и материала обрабатываемого изделия.

Первые электронно-лучевые установки (ЭЛУ) для плавки ниобия и тантала были созданы в 50-х годах. С 1960 г. ЭЛУ стали использоваться для нанесения покрытий, а затем и для обработки поверхности и размерной обработки, с 1970 г. – для нетермической микрообработки и химической обработки полимеров.

Электронные пушки. Электронно-лучевые установки с кольцевыми катодами вначале получили широкое распространение, в частности в США, благодаря простоте конструкции, в которой катод расположен прямо в рабочей камере. Однако из-за невозможности сохранения высокого вакуума при плавке и возникновения электрических пробоев такая конструкция оказалась ненадежной, и поэтому стали разрабатываться конструкции электронных пушек со своей вакуумной системой.

Рис. 7.10. Плосколучевая электронная пушка конструкции ИЭС им. Б.О. Патона:
1 – катод; 2 – прикатодный электрод; 3 – анод; 4 – каналы водоохлаждения; 5 – пучок электронов 

Принципы создания электронной пушки для плавки или сварки были разработаны только в 1940 г. (Дж.Р. Пирц, США).

В СССР в конце 50-х годов работы по ЗЛУ начали вести несколько организаций: кафедра ЭТУ МЭИ (М.Я. Смелянский, Л.Г. Ткачев), ВЭИ (В.И. Переводчиков), ВНИИЭТО (В.А. Хотин), ИЭС им. Е.О. Патона АН УССР (Б.А. Мовчан), Всесоюзный институт легких сплавов – ВИЛС (А.Ф. Белов, И.А. Кононов), Государственный институт редких металлов – Гиредмет, Всесоюзный институт авиационных моторов – ВИАМ и др.

В МЭИ в 1959 г. был создан стенд с пушкой мощностью до 60 кВт, а позднее ЭЛУ мощностью 500 кВт. В 1961 г. по ВНИИЭТО изготовлена первая электронно-лучевая печь-стенд мощностью 200 кВт. Плосколучевые пушки мощностью 20–300 кВт при ускоряющем напряжении 15–20 кВ созданы ИЭС (рис. 7.10). Серию промышленных электронных пушек на мощности 60–500 кВт разработал ВЭИ.

За рубежом подобные пушки применяли фирмы «Гереус» (ФРГ) и «Штауффер темескал» (США). Мощные аксиальные электронные пушки (до 1200 кВт при напряжении 35 кВ) были созданы М. фон Арденне в ГДР.

Испарение и нанесение покрытий. Первый агрегат непрерывного алюминирования стали с использованием ЭЛУ вместо электролитического лужения был построен в США в 1965 г.

Для испарения материала (алюминий, цирконий, сталь, различные сплавы и др.) созданы специальные электронно-лучевые испарители. Промышленный испаритель подобного типа был установлен в ГДР в 1971 г. на основе разработки М. фон Арденне. На стальную ленту шириной 400 мм наносилось двустороннее покрытие алюминием толщиной 2 мкм на сторону при скорости движения ленты до 3 м/с.

Агрегаты такого типа разрабатывала также фирма «Лейбольд – Хереус» (ФРГ): общая мощность электронно-лучевых пушек 1500 кВт, испарителя 1500 кВт, ширина ленты 1000 мм, скорость ее движения до 5 м/с. Фирма «ЮС Стил» (США) изготавливала установки для ленты шириной до 1250 мм при скорости до 7,5 м/с.

В СССР практически одновременно использовались аналогичные агрегаты, разработанные ВНИИ металлургического машиностроения (ВНИИметмаш), СКБ вакуумных покрытий при Госплане Латвийской ССР, ИЭС. В них были использованы пушки аксиального и плосколучевого типа с поворотом луча магнитной системой на 90–270°.

В 1979 г. советскими космонавтами в космических условиях успешно испытана экспериментальная аппаратура «Испаритель» с применением электронно-лучевого нагрева. В перспективе возможно создание металлических покрытий (защитных, отражающих и др.) на конструкциях непосредственно в космическом пространстве, т.е. с использованием космического вакуума.

Плавка тугоплавких металлов, в том числе зонная плавка получение монокристаллов тугоплавких металлов. В конце 50-х в США ряд фирм, в том числе и «Темескал металлургикал», разработали оборудование для получения ниобия, тантала, молибдена и других тугоплавких металлов высокой чистоты. В 1959 г. появилась публикация данных о печи фирмы «Темескал металлургикал», позволяющей выплавлять слитки тугоплавких металлов массой до 90 кг с двумя, электронными пушками для плавления шихты и подогрева металла в кристаллизаторе. При плавке ниобия скорость плавления достигала 110 кг/ч при расходе энергии 1100 кВт∙ч/т. Мощность установки 225 кВт. К 1970 г. в различных странах имелось более 100 электронно-лучевых плавильных печей мощностью до 1200 кВт, выплавлявших слитки массой до 12 т.

Уже в 60-х годах прорабатывались конструкции ЭЛУ с кольцевым катодом или тремя аксиальными пушками для вертикальной зонной плавки с целью получения монокристаллов тугоплавких металлов. Такие работы проводились в Институте металлургии им. А.А. Байкова АН СССР. В 1967 г. в США эта же технология использовалась для получения монокристаллов кремния.

Важная проблема утилизации отходов титана также была решена с использованием ЭЛУ. Фирма «Эйрко Темескал» (США, 1977 г.) проводила плавку стружки сплава титана в установке с шестью пушками общей мощностью 1200 кВт. Качество полученного слитка оказалось выше, чем при вакуумно-дуговом переплаве.

Японская фирма «Джапан электрон оптике лаб. корп.» в конце 60-х – начале 70-х годов выпускала плавильные ЭЛУ для переплава первичных слитков и сыпучей шихты. Подобные же установки выпускались в нашей стране по разработке ИЭС им. Е.О. Патона и в ГДР по разработке М. фон Арденне.

Для рафинирования стали при разливке электронно-лучевые установки используются с 1963 г., когда в США впервые была продемонстрирована опытная установка. Для холодноподового рафинирования применяют каскады камер с несколькими электронно-лучевыми пушками (до 18), при этом увеличивается обрабатываемая поверхность расплава.

В СССР плавильные электронно-лучевые печи разработанные ВНИИЭТО, стали внедряться в 70-е годы: в 1977 г. осуществлен пуск в промышленную эксплуатацию ЭЛУ емкостью 1 т на Узбекском комбинате тугоплавких и жаропрочных металлов; в 1980 г. на Новосибирском ЗЭТО изготовлена ЭЛУ для получения слитков массой 30 т.

Для получения порошков тугоплавких металлов (с последующим изготовлением деталей горячим прессованием) методом центробежного распыления вращающейся оплавляемой заготовки в 70-х годах начал использоваться электронно-лучевой нагрев (США, ФРГ, СССР).

Термообработка металлов. Электронно-лучевой нагрев позволяет реализовать технологические процессы поверхностной закалки и оплавления поверхности деталей. Для деталей сложной формы и больших габаритов электронно-лучевая закалка, которая стала применяться в 70-х годах, имеет преимущества по сравнению с индукционной закалкой. Оплавление поверхности деталей позволяет улучшить механические характеристики деталей из сталей, чугунов и алюминия.

С 1961 г. фирма «Темескал» (США) эксплуатирует установку с плосколучевой пушкой для рекристаллизационного отжига металлической ленты в вакууме. Подобную установку разработала также фирма «Дегусса» (ФРГ). Изготовленная в ГДР установка для термообработки ленты была оснащена аксиальной пушкой с системой управления перемещением электронного луча.

Размерная обработка материалов. В 1938 г. электронный луч был использован для получения мельчайших отверстий в металле (использовался электронный микроскоп). С помощью ЭЛУ в обрабатываемом изделии можно получать отверстия заданного диаметра и пазы различной формы и глубины в твердых и тугоплавких материалах. В таких установках используют аксиальные пушки на рабочее напряжение 60–150 кВ. Мощности установок в непрерывном режиме 1 кВт и в импульсном режиме до 15 кВт. В 1953 г. такие установки выпускала фирма ФРГ «Штайгервальд – Штальтехник» для сверления и перфорации металлических листов. Фирма «Роллс-Ройс» (Великобритания) использовала ЭЛУ в производстве газотурбинных двигателей и барабанов центрифуг.

В США в 70-х годах ЭЛУ использовалась для микрообработки полупроводниковых приборов. Промышленные установки для размерной обработки электронным лучом выпускались также в Японии, ГДР и других странах.

В нашей стране в 80-е годы для электроннолучевой обработки выпускались специализированные промышленные установки типов А306 и ЭЛУРО мощностью до 100 кВт, оборудованные системой перемещения заготовки.

7.1.7. ЛАЗЕРНЫЙ НАГРЕВ

Начальный период. Лазер (сокращение английского Light Amplification by Stimulated Emission of Radiation) создан во второй половине XX в. и нашел определенное применение в электротехнологии.

Идею процесса вынужденного излучения высказал еще А. Эйнштейн в 1916 г. В 40-х годах В.А. Фабрикант (МЭИ) впервые экспериментально подтвердил возможность усиления света и получил диплом СССР на открытие (1951 г.), Н.Г. Басов, A.M. Прохоров, (СССР), Ч.Х. Таунс (США) получили Нобелевскую премию (1964 г.) за работы по квантовой электронике.

Первые лазеры создали:

Т.Х. Майман (США, 1960 г.) – импульсный твердотельный лазер (на рубине);

А. Яван, В.Р Беннет, Д.Р. Херриот (США, 1961 г.) – непрерывно работающий гелиево-неоновый лазер;

Р.Н. Холл, М.Дж. Натан, Т.М. Квист (США, 1962 г.) – лазер на арсениде галлия;

С. Пател (США, 1964 г.) – лазер на углекислом газе.

В 90-х годах известны уже около 200 рабочих тел для получения лазерного излучения, однако для электротехнологии наиболее часто применяют лазеры на углекислом газе, позволяющие получить наибольшие значения мощности и КПД, и твердотельные (рубиновые), имеющие меньшие габариты и удобные в эксплуатации.

Плотность потока энергии в лазерном луче достигает весьма высоких значений (до 1∙1013 Вт/м2), чем главным образом и определяются технологические возможности лазерного нагрева.

Технологическое применение. Разработки лазерного оружия для «звездных войн» начались в США с начала 60-х годов, когда около 40 фирм получили правительственные заказы. С 1962 г. практически одновременно во всем мире началось технологическое применение лазеров: изготовление мельчайших отверстий, резка, сварка, поверхностная закалка. Фирма «Дженерал электрик» создала установку с использованием рубинового лазера для получения отверстий диаметром 0, 5 мм в алмазе за 0, 2 мс.

Первым процессом, внедренным в промышленность, являлось упрочение картера рулевого управления автомобиля в отделении фирмы «Дженерал моторе» (США) в 1974 г., при этом использовался лазер на углекислом газе мощностью 1 кВт.

В СССР первые лазерные технологические установки для поверхностной обработки были выпущены в 1964 г. на базе твердотельных лазеров типа «Квант» и газовых типа «Катунь», «Кардамон» и др. У первых установок с твердотельными лазерами для поверхностной обработки производительность и размеры обрабатываемого изделия были невелики. Переход на газовые лазеры позволил обеспечить значительно большую производительность.

В 1976 г. начались опытные работы по лазерному нагреву на ЗИЛе с участием МГУ им. М.В. Ломоносова и Института атомной энергии им. И.В. Курчатова (Е.П. Велихов). На предприятии запущена в производство автоматическая линия поверхностной лазерной обработки головок блоков цилиндров из алюминиевого сплава для двигателей внутреннего сгорания, внедрено упрочнение кромок вырубного пуансона, разработан процесс повышения износостойкости чугунного корпуса подшипника водяного насоса.

В 1978 г. началось промышленное применение лазерного нагрева на АЗЛК (г. Москва). Разработаны технология и оборудование с использованием газового лазера «Кардамон» для упрочнения коробки дифференциала заднего моста легкового автомобиля.

С 1964 г. лазерный луч нашел применение в биологии и медицине, например для приваривания сетчатой оболочки глаза.

С середины 70-х годов к работам по лазерному нагреву подключился ВНИИЭТО, где была создана лаборатория по использованию лазерного нагрева в промышленности.


7.2. ЭЛЕКТРИЧЕСКАЯ СВАРКА
7.2.1. ЭЛЕКТРИЧЕСКАЯ ДУГОВАЯ СВАРКА

Электрическая дуговая сварка была изобретена в России. Н.Н. Бенардос 6 июля 1885 г. подал заявку и получил привилегию Департамента торговли и мануфактур № 11982 (1886 г.) на способ «соединения и разъединения металлов непосредственным действием электрического тока» (рис. 7.11). Изобретение было запатентовано в Англии, Германии и некоторых других странах, причем эти патенты получены Н.Н. Бенардосом совместно с петербургским купцом С.А. Ольшевским, который финансировал зарубежное патентование.

Работы были начаты в 1881 г., а в 1885 г. в Петербурге на набережной р. Большой Невки, д. 41, была открыта показательная мастерская, в которой проводились сварочные работы по этому способу. Н.Н. Бенардос разрабатывал также автоматизацию сварки, применение инертных газов при сварке, сварку на переменном токе, подводную сварку и др. К середине 90-х годов XIX в. сварка по способу Н.Н. Бенардоса применялась более чем 100 заводами Западной Европы.

Рис. 7.11. Электрическая дуговая сварка по методу Н.Н. Бенардоса
1 – угольный электрод; 2 – присадочный материал; 3 – свариваемые детали

Н.Г. Славянов (1888 г.) предложил дуговую сварку с использованием расплавляемого электрода (рис. 7. 12). Этот метод впервые был использован в 1888 г. на Пермских казенных заводах при сварке вала паровой машины. В 1889 г. дуговая сварка по методу Славянова была использована на Пермских казенных заводах при строительстве парохода «Редедя князь Коссогский». В 1891 г. Н.Г. Славянов получил в Департаменте торговли и мануфактур привилегии № 8747 и 8748 на изобретения «электрической отливки металлов» и «электрического упрочнения металлов», а затем и патенты США и других стран. Им разрабатывались методы автоматического регулирования длины дуги, применения сварки под шлаком (использовалось дробленое стекло), использования предварительного подогрева свариваемых деталей, применения присадок ферросплавов для регулирования химического состава ванны и сварного шва.

Рис. 7.12. Электрическая дуговая сварка по методу Н.Г. Славянова
1 – металлический электрод; 2 – свариваемые детали 

В 1905 г. В.Ф. Миткевич предложил использовать трехфазную дугу для сварки металлов.

Одна из проблем электрической сварки – защита расплавленного металла от окисления и повышение устойчивости горения дуги, особенно при использовании плавящегося электрода. О. Кьельберг (Швеция, 1907 г.) предложил специальные покрытия для сварочных электродов, И. Ленгмюр (США, 1911 г.) разработал процесс дуговой сварки в атмосфере водорода, а позднее и с использованием других газов.

Параллельно с электрической сваркой развивалась и газовая сварка. Уже в 1902 г. А. Ле Шателье (Франция) применял кислородно-ацетиленовую сварку при ремонте паровых котлов. В 1903 г. Э. Фуше (Франция) получил патент на газовую сварочную горелку. Этот способ вскоре получил широкое распространение, что затормозило развитие электрической сварки. С 1908 г. на заводах Форда (США) стали применять газовую сварку. Во всем мире, в том числе и в России, газовая сварка стала применяться в различных отраслях промышленности.

Однако в 20-е годы развитие электрической сварки вновь продолжилось.

В 1919 г. фирма «Дженерал электрик» изготовила первую автоматическую дуговую сварочную головку. Подача электродной проволоки осуществлялась электродвигателем постоянного тока, а ток к электроду подводился через ролик. Длина дуги контролировалась по напряжению. В СССР автоматическую подачу электрода разработал в 1924 г. Д.А. Дульчевский. Он же применял угольный порошок при сварке меди для защиты от окисления.

Завод «Электрик» (г. Ленинград) внес значительный вклад в развитие электросварки в нашей стране: под руководством В.П. Никитина в 1924 г. были созданы первая электросварочная машина постоянного тока типа СМ-1 и сварочный трансформатор со встроенным регулятором (тип СТН). В 1926 г. начался выпуск машин для контактной сварки. В 1932–1933 гг. началось производство оборудования для автоматической дуговой и аргоноводородной сварки, был осуществлен выпуск первой в мире сварочной автоматической установки на переменном токе. В 1934 г. выпущен передвижной электросварочный агрегат типа САК-2, состоящий из бензинового двигателя Горьковского автозавода и сварочного генератора, смонтированных на общей раме. В 1947 г. начался серийный выпуск универсальных сварочных автоматов тракторного типа АДС-1000–1.

Первые применения сварки:

– в 1929 г. Николаевский судостроительный завод применяет дуговую сварку днищевых балок танкеров, а позднее и судовых трубопроводов; с 1931 г. в г. Магнитогорске при строительстве домны началось использование электрической сварки вместо клепки; (разрешение на сварку дал И.П. Бардин вопреки мнению американских специалистов, консультировавших строительство); при строительстве завода «Уралмаш» с помощью электрической сварки изготовили подкрановые балки пролетом 10 м; в том же 1931 г. началось внедрение дуговой сварки в мостостроение (Г.А. Николаев); на Западной железной дороге было установлено первое сварное пролетное строение длиной 19,8, а несколько позднее, в 1934 г.; на заводе «Стальмост» в г. Днепропетровске – цельносварное пролетное строение длиной 45 м; в те же годы изготовлены сварной мост (42 м) через водопад Челоне в США и однопролетный сварной мост решетчато-ферменного типа длиной 49,2 и шириной 8,25 м в г. Пльзень (Чехословакия).

В начале 30-х годов Е.О. Патон создал лабораторию электросварки, которая с 1934 г. реорганизована в Институт электросварки (с 1953 г. ИЭС им. Е.О. Патона), который занял ведущее положение в развитии сварочной техники и технологии. К числу важнейших разработок ИЭС относятся:

– высокопроизводительный способ автоматической дуговой электросварки под слоем флюса (1941 г.);

– конструкция сварочной головки с постоянной скоростью подачи электрода (1942 г.);

– новый способ полуавтоматической шланговой сварки (1944 г.);

– мощный трансформатор СТ-1000 с дистанционным управлением для автоматической сварки под флюсом (1947 г.);

– метод двухдуговой электросварки на больших скоростях (1949–1950 гг.);

– полуавтомат для подводной сварки (70-е годы).

Интересные результаты были получены и в других организациях:

– сварка меди под флюсом разрабатывалась Д.А. Дульчевским в начале 20-х годов;

К. К. Хренов разработал процесс ручной сварки под водой (1932 г.) и предложил сварочный трансформатор с поворотным верхним ярмом типа СТХ (1934 г.);

– сварочная лаборатория МВТУ им. Н.Э. Баумана разработала способ автоматической дуговой сварки с подачей в дугу гранулированного флюса (1934 г.);

– в 1946 г. В.П. Никитин создал новый трансформатор типа СТАН компактной конструкции и небольшой массы с тремя ступенями регулирования сварочного тока, предназначенный для монтажных работ;

– в 1949 г. Подольский завод им. С. Орджоникидзе разработал и освоил процесс сварки нефтеаппаратуры из нержавеющей стали;

– сотрудниками ЦНИИТмаш создана усовершенствованная аппаратура для автоматизации дуговой электросварки (1951 г.) и совместно с ИЭС разработана и внедрена серия флюсов для автоматической сварки (1952 г.);

– в начале 50-х годов во ВНИИавтоген проводились работы по дуговой сварке меди и ее сплавов на постоянном токе прямой полярности в атмосферах аргона и азота;

– технология сварки в атмосфере углекислого газа разработана в ЦНИИТмаше в 50-е годы под руководством К.В. Любавского.


    Ваша оценка произведения:

Популярные книги за неделю