Текст книги "История электротехники"
Автор книги: авторов Коллектив
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 30 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]
Пионером советского тягового электромашиностроения был завод «Электрик» (г. Санкт-Петербург), который в начале 1924 г. изготовил десять двигателей мощностью 110 кВт при частоте вращения 660 об/мин для тепловоза с электрической передачей системы проф. Я.М. Гаккеля. В том же году на заводе «Электросила» была выпущена разработанная под руководством А.Е. Алексеева серия ПТ трамвайных двигателей пяти модификаций на мощности от 33 до 54,5 кВт, напряжением 550 В и частотой вращения 560–600 об/мин. Серия имела высокий КПД и хорошие массогабаритные показатели. В 1928 г. производство тягового оборудования было сосредоточено на специально приспособленном для этого московском заводе «Динамо». Применительно к разнообразным нуждам тягового хозяйства страны завод разработал ряд серий и типов тяговых электродвигателей: мощностью от 320 до 450 кВт с напряжением на коллекторе 750 и 1500 В – для магистральных электровозов; мощностью от 23,5 до 250 кВт с напряжением на коллекторе 230, 600, 750 В – для промышленных электровозов; смешанного возбуждения – для рудничных электровозов и трамваев; двигатели различных типов для пригородных железных дорог, метрополитена, троллейбуса, тепловозов. В успешном освоении этих серий несомненная заслуга принадлежит А.Б. Иоффе.
В послевоенные годы центром электровозостроения стал Новочеркасский электровозостроительный завод (НЭВЗ), который осуществил серийный выпуск электровозов, оснащенных тяговыми двигателями своего изготовления.
В 1957 г. вступил в строй электровозостроительный завод в г. Тбилиси (ТЭВЗ). Тяговые двигатели для электропоездов стал выпускать также Рижский электромеханический завод (РЭЗ).
Если для магистральных железных дорог применяются электровозы, то для дорог меньшей протяженности и неэлектрифицированных используются тепловозы. Выпуск электрооборудования для тепловозов был освоен на харьковском заводе «Электротяжмаш». В состав оборудования входят генераторы и тяговые электродвигатели серий ГП и ЭД соответственно. Главными конструкторами здесь были В.Е. Верхогляд и О. Р. Мандрыка.
Принципиально новые тяговые двигатели для городского транспорта были спроектированы на заводе «Динамо» и начали внедряться в производство в 1946–1948 гг. Конструкция их была в значительной степени унифицирована, серия из двух типоразмеров включала двигатели для трамвая, троллейбуса, метрополитена, а также генератор и двигатель для автобуса с электрической трансмиссией. Для новых двигателей трамвая и метрополитена вместо осевой была применена независимая подвеска, при которой полностью подрессоренный тяговый двигатель не испытывает значительных усилий, вызываемых неровностями пути. Независимая подвеска позволила почти в 2 раза увеличить передаточное число редуктора, повысить частоту вращения двигателей и снизить их массу.
Следующим этапом развития тягового электромашиностроения городского транспорта следует считать модернизацию серии, проведенную в 1974–1977 гг. Для троллейбуса и метрополитена были созданы новые двигатели с восьмигранной формой корпуса в поперечном сечении и петлевой обмоткой на якоре, что позволило резко повысить их мощность и обеспечить эффективное торможение подвижного состава при максимальной скорости движения. Мощность трамвайных двигателей также была повышена, появилась возможность использовать их на подвижном составе с тиристорно-импульсной системой управления, что привело к увеличению частоты вращения на 10–15% и экономии электроэнергии на 3–5%. Достигнутые результаты получены благодаря применению новых изоляционных материалов для обмотки якоря, введению ваку-умно нагнетательной пропитки в кремнийорганическом компаунде, а также использованию холоднокатаной изотропной электротехнической стали с изоляционным покрытием, нового материала коллектора и новой марки щеток.
В 70-е годы на базе новых технологий и материалов была создана серия совершенно новых тяговых двигателей, предназначенных для встраивания в пневматические колеса большегрузных автосамосвалов грузоподъемностью 75–180 т. Производство этих двигателей и трамвайного двигателя с завода «Динамо» было передано на новый завод «Татэлектромаш» в г. Набережные Челны. Освоение двигателей было проведено под руководством А.Д. Григоровича.
На заводе «Динамо» еще с 30-х годов было начато производство серий краново-металлургических и экскаваторных электродвигателей постоянного тока. В 1975 г. была разработана и внедрена в производство новая серия краново-ме-таллургических двигателей, которая по техническим данным и габаритно-установочным размерам соответствует нормам МЭК.
6.2.4. КРУПНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКАЕще до войны производство крупных машин постоянного тока было сосредоточено на заводах «Электросила» и ХЭМЗ и развивалось ускоренными темпами. На заводе «Электросила» в предвоенные годы было изготовлено свыше 200 единиц крупных электрических машин постоянного тока общей мощностью около 350 тыс. кВт. Из числа наиболее крупных поставок следует отметить электродвигатели для привода блюмингов (5150 кВт, 750 В, 50/120 об/мин) и слябингов (3700 кВт, 750 В, 50/100 об/мин; 1850 кВт, 750 В, 100/270 об/мин) и генераторы единичной мощностью 3500 кВт. ХЭМЗ совместно с заводом «Электросила» также освоил новую серию крупных машин постоянного тока мощностью до 7500 кВт с одним якорем.
Разработка серий прокатных реверсивных электродвигателей в диапазоне мощностей от 1850 до 6000 кВт и серии регулируемых электродвигателей в диапазоне от 110 до 4500 кВт с регулированием частоты вращения в пределах 1:3 была продолжена после войны. Завод «Электросила» произвел пересмотр расчетов и конструкций крупных машин постоянного тока с компенсационными обмотками и добился существенного повышения удельной мощности и экономии черных и цветных металлов. Коллектив работников завода в составе В.Т. Касьянова, А.А. Кашина, Р.А. Лютера, И.Н. Рабиновича и Д.В. Шапиро в 1948 г. получил высокую государственную оценку за создание крупных машин постоянного тока.
Важным этапом на пути повышения технического уровня машин постоянного тока явилась разработка в 1957 г. двухъякорного электродвигателя мощностью 19 600 кВт для привода гребных винтов атомного ледокола «Ленин» с двухходовой обмоткой якорей. Изучению особенностей работы двухходовых обмоток было посвящено много теоретических (В.В. Фетисов, П.М. Ипатов) и экспериментальных (О.Г. Вег-нер) работ, в результате которых были предложены рекомендации, позволившие заводу «Электросила» внедрить двухходовые обмотки якоря. Таким образом было преодолено ограничение мощности машины постоянного тока по значению допустимого напряжения между смежными пластинами. В 1958 г. был изготовлен электродвигатель мощностью 8840 кВт, напряжением 900 В, частотой вращения 65/90 об/мин, в 1977 г. – соответственно 12 500 кВт, 930 В, 63 /90 об/мин, а в 1985 г. – 10 000 кВт, 750 В, 32/63 об/мин. В итоге рост мощности реверсивного прокатного двигателя привел к реализации самого большого в мире вращающего момента 300 т-м.

Рис. 6.1. Электродвигательный агрегат, состоящий из четырех двигателей постоянного тока типа 2МП 25000–750 (25 МВт, 750 об/мин)
Значительный прогресс был достигнут в создании двухъякорных двигателей мощностью 11 000–14 000 кВт для электропривода нереверсивных прокатных станов. Характерными для этих машин, имеющих сравнительно высокую частоту вращения, являются показатель предельности, равный произведению мощности на частоту вращения, и коэффициент регулирования магнитного потока. Самый мощный из выпущенных нереверсивных прокатных электродвигателей мощностью 14 200 кВт с частотой вращения 200 об/мин имеет показатель предельности 5,8—10 кВт∙об/мин на один якорь. Необходимо отметить, что за рубежом двигатели для аналогичных прокатных станов изготовлялись не двухъ-, а трехъякорными даже при меньшей мощности. Дальнейшее повышение показателя предельности было возможно при переходе на трехходовые обмотки якоря. В 1973–1974 гг. были проведены исследования двух опытных машин с трехходовыми петлевыми обмотками, а в 1975–1976 гг. опытной двухъякорной машины мощностью 25 МВт с частотой вращения 750 об/мин, которые создали основу для изготовления уникального агрегата, состоящего из четырех двухъякорных электродвигателей постоянного тока такого типа с трехходовыми обмотками, соединенными на валу последовательно, что позволило получить мощность 100 МВт при частоте вращения 750 об/мин (рис. 6.1).
Гребные винты атомных ледоколов «Сибирь», «Арктика» и «Россия» оснащены электродвигателями мощностью 2x8800 кВт, напряжением 1000 В и частотой вращения 130/185 об/мин.
Выпускаемый с 70-х годов объединением «Электросила» генератор постоянного тока для питания прокатных двигателей мощностью 9500 кВт, напряжением 930 В и частотой вращения 375 об/мин по мощности превосходит все существующие типы генераторов постоянного тока как у нас в стране, так и за рубежом. Использование в конструкции генератора новых технических решений обеспечивает равномерное распределение крутящего момента между дисками якоря и гарантированное усилие на главный полюс, способствуя повышению надежности генератора в эксплуатации.
Успехи в производстве крупных машин постоянного тока достигнуты не только объединением «Электросила», но и заводами ХЭМЗ и «Электротяжмаш» (Харьков). На ХЭМЗ под руководством М.Н. Курочкина разработаны реверсивные двигатели постоянного тока 21–25-го габаритов серии П2 номинальной мощностью до 12 500 кВт, а также двигатели постоянного тока 21–25-го габаритов для электроприводов шахтоподъемных машин мощностью 1600–5000 кВт. Помимо обычной конструкции двигателей шахтного подъема с двумя стояковыми подшипниками разработаны и находятся в эксплуатации двигатели консольного исполнения. При такой конструкции якорь двигателя насаживается на вал барабана шахтного подъемника, что позволяет снизить массу машины в 1,2–1,4 раза.
Крупные машины постоянного тока находят широкое применение для приводов шагающих экскаваторов и роторных комплексов. Они устанавливаются в закрытом неотапливаемом кузове экскаватора и могут работать в заданном режиме при наличии вибрации, крена, воздействия инерционных сил и одиночных ударов. Наиболее интересен электродвигатель мощностью 500 кВт, напряжением 440 В и частотой вращения 32 об/мин, предназначенный для безредукторного привода механизма поворота платформы шагающего экскаватора.
6.2.5. ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ДЛЯ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКАВ электроприводах постоянного тока различных механизмов еще с 20-х годов наряду с системами «генератор – двигатель» стали находить применение системы «преобразователь – двигатель», основанные на ионных (ртутных) вентилях. Однако широкое развитие статических управляемых и неуправляемых преобразователей переменного тока в постоянный относится к 60-м годам, когда на смену ионным приборам пришли кремниевые диоды и тиристоры. Тиристорные преобразователи достаточно быстро, и в первую очередь в широкорегулируемом электроприводе, заменили генераторы постоянного тока и электромашинные усилители. Замена источников питания с практически «гладким» напряжением на источники пульсирующего напряжения и тока, с одной стороны, осложнили работу электродвигателя постоянного тока, с другой стороны, значительно повысили производительность автоматизированного привода за счет расширения диапазона регулирования частоты вращения, быстродействия и динамики регулирования.
Среди первых отечественных тиристорных преобразователей для электропривода постоянного тока следует отметить разработки Чебоксарского электротехнического НИИ (ЧЭТНИИ) для саранского завода «Электровыпрямитель», Всесоюзного электротехнического института (ВЭИ) для Запорожского электроаппаратного завода, Экспериментального научного института металлорежущего станкостроения (ЭНИМС) для станкостроения с диапазоном регулирования частоты вращения 1:1000.
Развитие тиристорных преобразователей было связано с освоением полупроводниковых вентилей на большие токи. На базе тиристоров со средним током 160 А и напряжением 2600 В в 70-х годах были созданы агрегаты:
для питания якорных цепей и обмоток возбуждения как реверсивных, так и нереверсивных машин на токи от 25 до 1000 А и выпрямленное напряжение 230 и 460 В при напряжении первичных обмоток трансформаторов 380 В и 6–10 кВ;
для питания якорных цепей с током от 800 до 6300 А и выпрямленным напряжением 230, 460, 660 и 825 В при напряжении сети переменного тока 6–10 кВ.
В дальнейшем ограничение по токам было снято. Электротехническая промышленность освоила выпуск тиристорных выпрямителей с системами управления на интегральных схемах, с защитой и диагностикой неисправностей. Установки «преобразователь – двигатель» для станков обеспечивают диапазоны регулирования 1:10 000 для механизмов подач и 1:1000 для механизмов главного движения. Развитие тиристорных выпрямителей сопровождалось уменьшением габаритов, упрощением наладочных работ и повышением надежности.
Кроме тиристорных преобразователей переменного тока в постоянный в тяге получили развитие тиристорные импульсные преобразователи постоянного тока. Завод «Динамо» разработал тиристорно-импульсную систему управления (ТИСУ) для двигателей постоянного тока метрополитена, а Московский энергетический институт – для двигателей трамвайных вагонов.
В перспективе при освоении промышленного выпуска запираемых тиристоров с требуемыми параметрами (ток порядка 1000 А и обратное напряжение 2400–2800 В) комплекты электрооборудования на основе импульсных тиристорных преобразователей могут быть значительно упрощены.
6.2.6. ТУРБОГЕНЕРАТОРЫТурбогенераторы являются основной в мире машиной, вырабатывающей электроэнергию переменного тока. Впервые турбогенераторы трехфазного тока с цилиндрическим ротором появились в 1900–1901 гг. После этого шло их быстрое развитие как по конструкции, так и по росту единичных мощностей. Крупнейшие турбогенераторы в период 1900–1920 гг. изготавливались шестиполюсными из-за ограниченных возможностей металлургии по изготовлению поковок для роторов. В 1920 г. в США был изготовлен самый мощный для того времени турбогенератор мощностью 62,5 МВт, частотой вращения 1200 об/мин. Двухполюсные турбогенераторы выполнялись мощностью лишь до 5,0 МВт.

Рис. 6.2. Макет турбогенератора мощностью 1200 МВт с частотой вращения 3000 об/мин Костромской ГРЭС
После 1920 г. основное развитие получили двух– и четырехполюсные турбогенераторы. Единичные мощности этих машин быстро росли. Ведущими странами в области турбогенерато-ростроения были и остаются Англия, Германия, Россия, США, Франция, Швейцария, Япония.
Первый турбогенератор в нашей стране мощностью 500 кВт был изготовлен в 1924 г. заводом «Электросила». В том же году были изготовлены еще два турбогенератора мощностью по 1500 кВт. Эти первые машины послужили основой для создания в последующие годы серии турбогенераторов в диапазоне мощностей от 0,5 до 24 МВт при частоте вращения 3000 об/мин. За 1926 и 1927 гг. было сделано 29 таких турбогенераторов. Эти машины создавались под руководством выдающегося инженера – организатора производства А.С. Шварца.
В начале 30-х годов на заводе «Электросила» была создана новая серия турбогенераторов с мощностями от 0,75 до 50 МВт. Существенное значение имело то, что при создании этой серии был широко использован опыт Западной Европы и США в турбогенераторостроении. По сравнению с предшествующей серией удалось снизить массу меди в обмотке статора на 30%, а электротехнической стали на 10–15%. При этом была уменьшена трудоемкость изготовления машин. Все электромагнитные, тепловые, вентиляционные и механические расчеты были выполнены по новым расчетным методикам. Машины изготовлялись из отечественных материалов. Уже к 1 января 1935 г. на отечественных тепловых электростанциях было смонтировано 12 таких турбогенераторов мощностью по 50 МВт.
На основе турбогенераторов последней серии были проведены разработки и началось изготовление быстроходных турбодвигателей мощностью от 1 до 12 МВт с частотой вращения 3000 об/мин для турбовоздуходувок и турбокомпрессоров.
Особое значение имеет цикл исследований и разработок, завершившихся изготовлением в 1937 г. самого мощного в мире турбогенератора на 100 МВт с частотой вращения 3000 об/мин и косвенным воздушным охлаждением. Основные трудности были связаны с ротором. Металлурги справились с созданием поковки больших размеров из высококачественной стали, а электромашиностроители – с ее механической обработкой, потребовавшей исключительно высокой точности.
Под руководством Р.А. Лютера и А.Е. Алексеева были выполнены расчеты и разработаны конструкции предвоенных серий турбогенераторов и отдельных машин.
В последующие годы возникла необходимость в освоении турбогенераторов большей мощности – 200 и 300, а в последующие годы 500, 800, 1000 и даже 1200 МВт при частоте вращения 3000 об/мин (рис. 6.2). Основные проблемы при создании турбогенераторов таких мощностей создает ограничение диаметра ротора и расстояния между его опорами. В первом случае ограничение обусловлено механической прочностью, а во втором случае – вибрациями. В этих условиях увеличение мощностей достигается за счет применения более интенсивных способов охлаждения, позволяющих повысить плотность тока в обмотках. Сложность при этом состоит в необходимости не только сохранения, но и некоторого повышения КПД, а также уменьшения вибраций. Все это потребовало очень большого объема теоретических и экспериментальных исследований, создания опытных машин и строительства уникальных испытательных стендов.
Исследования, разработки и производство мощных турбогенераторов проводились в СССР на трех заводах: «Электросила» (г. Ленинград), «Электротяжмаш» (г. Харьков) и «Сибэлектромаш» (г. Новосибирск). На каждом заводе создавались свои конструкции и технологические процессы.
На заводе «Электросила» впервые в мировой практике было предложено и освоено водородное охлаждение роторов с заборниками и дефлекторами, а также водяное охлаждение обмотки статора. Все работы проходили вначале под руководством главного инженера завода Д.В. Ефремова, главных конструкторов Е.Г. Комара и Н.П. Иванова, а затем главного инженера Ю.В. Арошидзе, главного конструктора турбогенераторов Г.М. Хуторецкого и руководителя научно-технических и опытно-конструкторских работ завода Л.В. Куриловича. Водород является лучшим хладагентом по сравнению с воздухом. Использование водорода началось с турбогенератора мощностью 100 МВт и частотой вращения 3000 об/мин, который был изготовлен в 1946 г. Он имел косвенное водородное охлаждение для роторной и статорной обмоток. Вполне естественно, что система охлаждения сердечника статора была в принципе такой же, как и при воздушном охлаждении. Потребовался переход от косвенного охлаждения обмоток к непосредственному. В катушках ротора выполнялись диагональные каналы, подача водорода в которые осуществлялась заборниками, а отвод – дефлекторами. Заборники и дефлекторы – клинья для крепления обмотки с профильными отверстиями для прохождения газа. При увеличении мощностей требовалось повышение давления водорода. Таким образом, газ непосредственно соприкасался с медью ротора. Стержни обмотки статора выполнялись из полых медных проводников, между которыми укладывались сплошные проводники. Вода, протекая по полым проводникам, обеспечивала непосредственное охлаждение статорной обмотки.
Для радикального снижения вибраций корпусов машин применялась эластичная связь между сердечником и корпусом. Это достигалось с помощью продольных прорезей в ребрах прямоугольного сечения, на которых собирается сердечник.
Особые трудности возникли при создании турбогенератора мощностью 800 МВт. В связи с очень большими электродинамическими силами и условиями работы, близкими к резонансным, оказались неприемлемыми обычные способы крепления лобовых частей обмоток. Монолитное крепление было достигнуто с помощью новых крепящих материалов: мягкого материала, формирующегося при комнатной температуре, т.е. в процессе изготовления машины, и твердеющего при повышенной температуре, а также самоусаживающихся лавсановых шнуров.
Под руководством А.Б. Шапиро и И.А. Кади-Оглы были разработаны оригинальные турбогенераторы с еще более интенсивным водяным охлаждением обмоток ротора и статора, сердечника статора и некоторых конструктивных элементов. Первый турбогенератор с полностью водяным охлаждением мощностью 63 МВт и частотой вращения 3000 об/мин был введен в эксплуатацию в 1969 г. В дальнейшем были сделаны еще три таких машины. В 1980 г. был включен турбогенератор мощностью 800 МВт и частотой вращения 3000 об/мин. В дальнейшем начали работать еще четыре машины. В их конструкции подача и слив воды осуществлялись помимо вала. Вода из неподвижной трубы поступает в зону фасонного кольца на роторе и удерживается в нем центробежными силами. Далее вода идет в нижние выводы катушек из прямоугольных проводов с отверстиями и под действием центробежных сил попадает в верхние выводы и сливное кольцо. Такая система называется самонапорной. Следует заметить, что во всем мире подача воды в обмотку ротора и ее отвод происходят через отверстия в валу, что делает конструкцию очень сложной и менее надежной. Преимуществом этого класса турбогенераторов является исключение водорода и заполнение корпуса воздухом при атмосферном давлении.
На заводе «Электротяжмаш» (г. Харьков) разработки и изготовление турбогенераторов мощностью 200, 300 и 500 МВт и частотой вращения 3000 об/мин проводились главным конструктором завода Л.Я. Станиславским, заместителем главного конструктора B.C. Кильдишевым, главным инженером Н.Ф. Озерным и начальником производства И.Г. Гринченко. Методы расчета турбогенераторов, особенно торцевой зоны, были развиты заведующим отделом Института электродинамики Академии наук УССР И.М. Постниковым.
В машине мощностью 200 МВт ротор с водородным, а статор – с водяным охлаждением. В турбогенераторе мощностью 300 МВт используется непосредственное водородное охлаждение как для роторной, так и для статорной обмоток. В роторе используется аксиально-радиальная вентиляция. В стержне статорной обмотки прокладываются тонкостенные стальные трубки, по которым проходит газ. В турбогенераторах мощностью 500 МВт обмотки статора и ротора образованы из полых и сплошных проводников. Вода подается в обмотку ротора и отводится из нее через отверстия в валопроводе.
На заводе «Сибэлектротяжмаш» (г. Новосибирск) был освоен турбогенератор мощностью 500 МВт и частотой вращения 3000 об/мин с масляным охлаждением обмотки статора и сердечника и водяным охлаждением обмотки ротора. Внутрь расточки статора вводится и герметично закрепляется в щитах цилиндр из стеклоленты. Масло с одной стороны статора проходит в другую через каналы в стержнях обмотки и через аксиальные отверстия в сердечнике. Вода к обмотке ротора поступает через валопровод. Напряжение статорной обмотки равно 35 кВ, что существенно облегчает токоподводы от генератора к повышающему трансформатору.
В организацию производства, методы расчета, технологические процессы и конструкции рассмотренных уникальных турбогенераторов решающий вклад внесли П.Е. Базунов, К.Ф. Потехин и К.Н. Масленников.
Существенные работы были проведены на Лысьвенском турбогенераторном заводе (г. Лысьва, Пермской обл.) в области турбогенераторов средней мощности. Особенно высокую оценку получили синхронные двухполюсные двигатели мощностью 630–12 500 кВт, напряжением 6 и 10 кВ. Они применяются в приводах нефтяных насосов магистральных нефтепроводов, нагнетателей магистральных газопроводов, воздуходувок доменных печей, газовых компрессоров химических производств и др. Их освоение было закончено в 1980 г.
По сравнению с предыдущей серией масса двигателей новой серии снижена в 1,5–2 раза, повышен КПД на 0,5–2%, снижена трудоемкость изготовления в 1,5 раза и увеличен объем выпуска в 3 раза без увеличения производственных площадей. По своему техническому уровню двигатели превысили показатели лучших мировых образцов. Наиболее существенный вклад в расчеты и конструкции двигателей внесли Э.Ю. Флейман и В.П. Глазков, а в системы возбуждения – С.И. Логинов.
Подводя итоги исторического развития турбогенераторов в послевоенные годы, следует отметить успехи научно-технической деятельности коллективов нескольких заводов, в результате чего были созданы и освоены в производстве турбогенераторы различных конструкций. Однако наличие различных конструкций усложняет проектирование и строительство электростанций, монтажные, наладочные и ремонтные работы, а также обеспечение запасными частями. Поэтому в рамках одной страны становится желательным выпуск машин единой конструкции. В зарубежной практике (Франция, Англия, Швеция, Швейцария) эта проблема решается путем объединения электротехнических фирм и специализации производства. В нашей стране с целью создания единой унифицированной серии турбогенераторов для всех заводов была разработана и выполнена обстоятельная программа исследований и разработок машин единой серии (научный руководитель И.А. Глебов, зам. научного руководителя Я.Б. Данилевич, главный конструктор Г.М. Хуторецкий, главный технолог Ю.В. Петров). Требования к новой серии формулировались с участием специалистов стран-членов Совета экономической взаимопомощи. В основу серии были положены турбогенераторы с водоводородным охлаждением производства объединения «Электросила», поскольку их число было наибольшим и имелся положительный опыт их эксплуатации во всем диапазоне мощностей от 63 до 800 МВт при частоте вращения 3000 об/мин. Освоение турбогенераторов единой унифицированной серии началось в 1990 г.
К наиболее крупным достижениям зарубежных фирм в области турбогенераторов относятся следующие. Фирма «Альстом-атлантик» выпустила серию четырехполюсных турбогенераторов мощностью 1600 MB∙А для атомных электростанций; предельная мощность четырехполюсных турбогенераторов для атомных электростанций фирмы «Сименс» составляет около 1300 MB∙А. Фирма ABB освоила выпуск турбогенераторов мощностью 1500 MB∙А, 1800 об/мин, 60 Гц и турбогенераторов мощностью 1230 MB∙А, 3000 об/мин, 50 Гц. Американские и японские фирмы выпускают турбогенераторы наибольшей мощностью около 1100 MB∙А. Все фирмы, за исключением «Сименс», используют водородно-водяное охлаждение. Фирма «Сименс» применяет водяное охлаждение для обмоток не только статоров, но и роторов.

Рис. 6.3. Общий вид ударного турбогенератора (инерционного накопителя энергии)
1,2,3 – подшипник, статор и вал ротора турбогенератора 200 МВт соответственно; 4,5,6 – подшипник, вал, кожух маховика соответственно; 7 – асинхронный двигатель; 8 – фундаментные плиты
Необходимо обратить внимание на все увеличивающийся выпуск турбогенераторов средних мощностей – до 250 МВт для тепловых электростанций с комбинированным циклом (две газовые турбины и одна паровая).
В последние годы началось использование парогазовых установок. Поскольку предельная мощность газовых турбин в настоящее время составляет 150–200 МВт, то парогазовая система мощностью 450–600 МВт состоит из трех блоков: два с газовыми турбинами и один с паровой. Поскольку для таких блоков нужны турбогенераторы сравнительно небольших мощностей (150–200 МВт), для упрощения их конструкции вернулись к воздушному охлаждению. Первый турбогенератор мощностью 150 МВт и частотой вращения 3000 об/мин с воздушным охлаждением изготовлен для Северо-западной ТЭЦ в 1996 г. в АО «Электросила».
К особому классу относятся ударные турбогенераторы кратковременного действия. Они применяются для испытания выключателей, для экспериментальных установок термоядерного синтеза на базе токамаков, крупных плазмотронов, установок ускорения масс и др. Для экспериментального токамака со сверхсильным полем были разработаны и выполнены четыре двухполюсных турбогенератора мощностью по 200 МВт (242 MB∙А). Такие турбогенераторы созданы впервые в мировой практике (рис. 6.3). В них применяется косвенное воздушное охлаждение. С целью снижения габаритов генераторы выполнены с повышенным насыщением магнитной цепи. На общем валу с генератором находится инерционный накопитель, сделанный на основе ротора турбогенератора мощностью 800 МВт. Запасенная энергия в генераторе равна 100, а в маховике – 800 МДж. Удельная энергоемкость ротора генератора составляет 5, а маховика – 10 Дж/г. Длительность импульса равна 5 с. Во время выдачи накопленной энергии частота вращения уменьшается до 70%. Таким образом, используется 50% энергии. Удельная стоимость накопленной энергии получается наименьшей по сравнению со стоимостью энергии других видов накопителей. Количество энергии может быть доведено до 2500 МДж за счет использования более прочной стали и увеличения диаметра маховика. Пуск установки осуществляется асинхронным двигателем с фазным ротором на валу агрегата или преобразователем частоты с питанием от сети. И.А. Глебовым, Э.Г. Кашарским и Ф.Г. Рутбергом разработаны методы расчета, выполнены технические проработки различных вариантов и их сопоставление, обоснование турбогенераторного исполнения в отличие от гидрогенераторного, применяемого в зарубежной практике [6.32]. Проект был выполнен Г.М. Хуторецким, а металлургические проблемы решены A.M. Шкатовой.
Следует заметить, что в начале 20-х годов XX в. русские ученые М.П. Костенко и П.Л. Капица сделали проект и осуществили первый ударный генератор для создания сильных магнитных полей.
В Томском политехническом институте под руководством и при непосредственном участии Г.А. Сипайлова была создана научная школа в области электромашинного генерирования импульсных мощностей в автономных режимах [6.33, 6.34]. Были проведены многочисленные исследования, разработаны методы расчета и создан ряд импульсных генераторов. К числу оригинальных решений относятся электромашинные генераторы с неявнополюсным шихтованным ротором и импульсной форсировкой возбуждения за счет намагничивания в несимметричных режимах при последовательных коммутациях обмоток статора и ротора.
Принципиально новым направлением являются сверхпроводниковые турбогенераторы, имеющие в 2 раза меньшую массу и потери. Вполне естественно, что вначале создавались опытные сверхпроводниковые машины небольшой мощности (синхронные, униполярные, постоянного тока) [6.35–6.37].
Во ВНИИэлектромаше были созданы следующие сверхпроводниковые машины: коллекторный двигатель постоянного тока мощностью 3 кВт, синхронный генератор мощностью 18 кВт, униполярный генератор с током 10 кА при напряжении 24 В и синхронный генератор мощностью 1200 кВт. Первые четыре машины были созданы под руководством и при непосредственном участии В.Г. Новицкого и В.Н. Шахтарина. В разработку и исполнение двигателя постоянного тока 3 кВт существенный вклад внес также Г.Г. Борзов. Синхронный генератор мощностью 1200 кВт был разработан и выполнен под руководством В.В. Домбровского.







