Текст книги "История электротехники"
Автор книги: авторов Коллектив
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 29 (всего у книги 78 страниц) [доступный отрывок для чтения: 28 страниц]
Глава 6.
ЭЛЕКТРОМЕХАНИКА
6.1. ЭЛЕКТРОМЕХАНИЧЕСКОЕ ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ
Электромеханика – часть электротехники, занимающаяся электромеханическим преобразованием энергии. Устройства, преобразующие электрическую энергию в механическую и обратно, называются электромеханическими преобразователями (ЭП) или электрическими машинами.
Несколько ЭП, работающих в генераторном или двигательном режимах, линии электропередачи и различные функциональные аппараты образуют электромеханическую систему.
Большинство ЭП работает в объединенных энергетических системах. Мощность объединенной системы России достигает 160 млн. кВт.
XX в. по праву можно считать веком электричества. Практически вся электрическая энергия на Земле вырабатывается электрическими машинами, а затем две трети ее снова преобразуется в механическую энергию электрическими двигателями. Можно считать, что электрические машины совершили техническую революцию. Теория электромеханики на всех этапах была неразрывно связана с практическим электромашиностроением. Эта связь обеспечила прогресс во всех областях техники, изменив условия существования человека за время жизни одного поколения.
Среди выдающихся достижений ученых XIX в. А. Ампера, Г. Ома, Д. Джоуля, Э. Ленца и др. особое место занимают работы Д. Максвелла, обобщающие достижения в электродинамике и изложенные в «Трактате об электричестве и магнетизме» (1873 г.). Д. Максвелл разработал теорию электромагнитного поля и написал уравнения, составляющие теоретическую основу электромеханики.
Первой публикацией по проектированию электрических машин можно считать работу Э. Арнольда по теории и конструированию обмоток электрических машин, вышедшую в 1891 г.
В середине 90-х годов прошлого века М.О. Доливо-Добровольский, Г. Каппа и др. создали основу теории и методики проектирования трансформаторов.
В 1894 г. А. Гейланд теоретически обосновал круговую диаграмму асинхронной машины.
К. А. Круг в 1907 г. дал точное описание круговой диаграммы.
К концу 20-х годов XX в. вышли фундаментальные книги Э. Арнольда, Р. Рихтера, К.И. Шенфера по теории и проектированию машин постоянного и переменного тока. К 30-м годам в трудах Э. Арнольда, А. Блонделя, М. Видмара, Л. Дрейфуса, М.П. Костенко, К.А. Круга, В.А. Толвинского и других ученых была достаточно глубоко разработана теория установившихся режимов электрических машин.
Методы теории цепей исторически раньше начали использоваться для анализа и расчета электрических машин, чем методы теории электромагнитного поля. Ярким достижением первого подхода явилось создание общей теории электромеханического преобразования энергии, часто называемой обобщенной или матричной теорией. Последнее подразумевает, что в ее изложении используется математический аппарат дифференциальной геометрии многомерных пространств, тензорного анализа и матричной алгебры.
В обобщенной теории любая электрическая машина рассматривается как совокупность магнитно-связанных, взаимно перемещающихся электрических цепей с сосредоточенными параметрами. В допущениях обычно пренебрегают такими физическими явлениями, как насыщение, гистерезис, магнитные потери, высшие гармоники. Это оправдано, если рассматриваются динамические режимы, в особенности, когда электрическая машина работает в сложной электромеханической или энергетической системе.
Ключевыми элементами теории являются так называемая обобщенная машина – математическая модель электрических машин практически всех типов, ее дифференциальные уравнения и их координатные преобразования. Дифференциальные уравнения дают более универсальное описание электрических машин, чем алгебраические: они содержат мгновенные значения переменных и справедливы как для переходных, так и для установившихся режимов.
В теорию электромеханического преобразования энергии органически вошли ставшие классическими метод двух реакций, трехфазных и двухфазных симметричных составляющих, метод вращающихся магнитных полей и др. Она создавалась трудами многих ученых из разных стран. Первым следует назвать французского ученого А. Блонделя, который в 1895 г. предложил метод двух реакций для анализа синхронных машин. Его основные работы по аналитическому обоснованию и применению метода были опубликованы во французских журналах позднее – в 1922 и 1923 гг. [6.1; 6.2].
В 1918 г. американский ученый С.Л. Фортескью разработал метод трехфазных симметричных составляющих [6.3], практическая ценность которого сразу была высоко оценена специалистами. Первой обобщающей работой по этому методу была вышедшая на русском языке в 1936 г. книга электротехников из США К.Ф. Вагнера и Р.Д. Эванса [6.4].
Разложение несимметричных двухфазных систем на симметричные составляющие впервые было осуществлено американцем Ю.Г. Ку в 1929 г. [6.5] одновременно для комплексных векторов синусоидальных переменных и для мгновенных значений переменных, созданных двухфазными обмотками электрических машин. Наиболее глубокое изложение теории однофазных микромашин, построенной на методе двухфазных симметричных составляющих, принадлежит Ю.С. Чечету [6.6].
Изучением электромагнитных переходных процессов в электрических машинах и трансформаторах начали заниматься в середине 20-х годов XX в. Первые случаи нарушения устойчивости линий электропередачи произошли в 20-х годах. Исследование устойчивости энергосистем привело к необходимости исследования электромеханических переходных процессов.
Первой фундаментальной работой по переходным процессам в энергетических системах была монография Р. Рюденберга, вышедшая в 1923 г. в Германии и переведенная на русский язык в 1931 г. [6.7]. Р. Рюденберг показал возможность представления мгновенных значений переменных в многофазных обмотках электрических машин едиными пространственными векторами [6.7]. Они определяются в координатах комплексной плоскости, наложенной на поперечное сечение машины, и у разных авторов называются по-разному: обобщенными, отображающими, изображающими и другими терминами. Позже такой подход позволил венгерским электротехникам К.П. Ковачу и И. Рацу компактно изложить теорию переходных процессов в электрических машинах переменного тока [6.8].
Значительной вехой в развитии теории была публикация в 1929 г. Р.Г. Парка [6.9], который вывел, используя метод двух реакций, дифференциальные уравнения синхронной машины, часто называемые его именем. Независимо от него существование этих уравнений вскоре доказал и А.А. Горев [6.10].
Первой фундаментальной работой по переходным процессам в трансформаторах была работа Г.Н. Петрова, вышедшая в 1934 г. [6.11].
Основоположником тензорного и матричного анализов электрических цепей и машин, создателем обобщенной теории электрических машин и метода расчета сложных систем путем деления их на элементарные составные части (метода диакоптики) по праву считается Г. Крон, опубликовавший свои пионерские работы в американских журналах в 1938–1942 гг. Объединенные в монографию, они были изданы в 1955 г. на русском языке [6.12], что послужило импульсом для широкого распространения и дальнейшего развития метода в СССР.
Полученные Г. Кроном дифференциальные уравнения идеализированной обобщенной электрической машины сыграли выдающуюся роль в теории переходных процессов.
К обобщенной электрической машине сводятся все ЭП с синусоидальным магнитным полем в воздушном зазоре. Г. Крон первым положил в основу электромеханического преобразования энергии магнитное поле в зазоре машины, а уравнения записал на основе теории цепей. До него уравнения поля и цепей использовались многими учеными раздельно, и до сих пор бытует мнение, что уравнения поля более строго отражают физические явления в электрических машинах. Только в последнее десятилетие появились программы ЭВМ для расчета и проектирования ЭП с одновременным использованием уравнений поля и цепей.
Дифференциальные уравнения, описывающие переходные и установившиеся процессы в электрических машинах, без упрощающих допущений не имеют аналитического решения, и только применение ЭВМ для решения задач электромеханики привело к бурному развитию теории и практики динамических процессов в ЭП и электромеханических системах.
Обобщающей и, по существу, последней фундаментальной работой по применению аналитических методов решения дифференциальных уравнений электромеханического преобразования энергии была вышедшая в 1962 г. работа Е.Я. Казовского [6.13].
Д.А. Городский [6.14] развил метод симметричных составляющих, ввел системы основных и сопровождающих переменных, что позволило исследовать переходные и установившиеся режимы электрических машин, обладающих одновременно электрической и магнитной несимметрией.
Очень ценную монографию [6.15] выпустил в 1953 г. Л.Н. Грузов, представив в ней систематизированное изложение особенностей применения векторного анализа к исследованию электрических машин и электромеханических систем, сравнение различных преобразований координат с целью получения наиболее рациональных форм дифференциальных уравнений и их решений.
При разработке теории предложенной им машины с внешнезамкнутым магнитным потоком А.Г. Иосифьян критически пересмотрел ряд вопросов общей теории синхронной машины. Ему принадлежат труды по системам преобразований токов следящего электропривода, а также труды по теории режимов работы сельсинов [6.16].
В 1963 г. И.П. Копыловым была предложена математическая модель обобщенного электромеханического преобразователя, которая описывается дифференциальными уравнениями для несинусоидального магнитного поля в воздушном зазоре, при учете любого числа контуров обмоток на статоре и роторе, для симметричных и несимметричных машин с учетом нелинейного изменения их параметров [6.17].
Следует отметить позитивную роль, которую сыграла публикация в 1964 г. русского перевода монументального труда ученых из США Д. Уайта и Г. Вудсона по всем аспектам теории электромеханического преобразования энергии [6.18].
Значительный вклад в развитие обобщенной теории и ее использование для анализа переходных и установившихся режимов работы электрических машин, устойчивости электромеханических и энергетических систем внесли отечественные ученые: Р.А. Лютер [6.19], И.Д. Урусов [6.20], Н.Н. Щедрин [6.21], С.В. Страхов [6.22], А.А. Янко-Триницкий [6.23], А.И. Важное [6.24], И.И. Трещев [6.25], В.А. Веников [6.26], А.В. Иванов-Смоленский [6.27], Л.Г. Мамиконянц [6.28], И.А. Глебов [6.29].
До середины XX в. электромеханика развивалась в земных условиях, но в 50–60-х годах электрические машины, а за ними и человек вышли в космос. Для этого потребовалось создать теорию космической электромеханики и электромеханические системы, воплотившие в себе все новейшие достижения классической земной электромеханики.
Если классическая электромеханика одномерная, т.е. она имеет дело с ЭП, у которых вращается одна часть машины – ротор, то космическая электромеханика – шестимерная: ротор и статор ЭП могут перемещаться в трехмерном пространстве. Уравнения космической электромеханики значительно сложнее, так как они имеют шесть уравнений движения и дополнительное уравнение скоростей, учитывающее движение ЭП по шести степеням свободы.
Трудами больших научных коллективов в СССР, США и других странах теория космической электромеханики обеспечила движение космических кораблей как в околоземном, так и в далеком космосе. Технические достижения крупных научных коллективов обеспечили решение уникальнейших проблем бортовой космической электромеханики. Эти вопросы освещены гл. 8.
Зарождение технической электромеханики произошло в земных условиях в университетах, исследовательских и учебных институтах и на заводах. В послевоенные годы бурными темпами развивалась космическая электромеханика. В последние годы появилось новое направление в космической электромеханике – геоэлектромеханика – электромеханика планеты Земля, показывающее, что движение спутников вокруг Земли и Земли вокруг Солнца подчиняется одним и тем же законам, а электродинамические процессы в электрической машине – планете являются источником глобальных энергетических процессов на Земле [6.30].
История электромеханики продолжает развиваться бурными темпами и на рубеже второго и третьего тысячелетий мы являемся свидетелями зарождения новых направлений, которые дадут новые источники электроэнергии и послужат мощным импульсом для развития цивилизации.
Без электрических машин и трансформаторов невозможно производство, распределение и применение электрической энергии. Поэтому во всех главах этого издания есть место для истории электромеханики. В этой главе более подробно излагается история электромашиностроения, промышленных электроприводов, высоковольтных и низковольтных аппаратов.
Чтобы правильно оценить значение отдельных изобретений и теоретических разработок в области электромеханики, нужно время. Поэтому объективно можно оценивать историю электромеханики XX в. до послевоенных лет, а последние два-три десятилетия еще требуют осмысливания, так как только время есть критерий истины.
6.2. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ДЛЯ ЭЛЕКТРОЭНЕРГЕТИКИ И ОБЩЕГО НАЗНАЧЕНИЯ
6.2.1. ОБЩИЕ СВЕДЕНИЯПроизводство электрической энергии осуществляется в основном электромашинными генераторами, а потребляют ее преимущественно электродвигатели. Поэтому вращающиеся электрические машины имеют важнейшее значение в электротехнике. Многие выдающиеся специалисты России внесли в развитие электрических машин решающий творческий вклад. Вот примеры:
создание самых мощных в мире турбо– и гидрогенераторов;
применение водяного охлаждения в крупных электроэнергетических машинах;
создание систем возбуждения синхронных машин сначала со ртутными, а затем с полупроводниковыми преобразователями;
разработка и выпуск автоматических регуляторов возбуждения сильного действия для турбо– и гидрогенераторов;
применение преобразователей частоты для регулирования частоты вращения электродвигателей;
разработка и освоение наиболее совершенных серий электрических машин постоянного и переменного тока с широкой механизацией и автоматизацией производственных процессов;
разработка и освоение производства генераторов и двигателей постоянного тока, имеющих рекордную мощность.
Развитие электротехники привело к образованию крупных электротехнических фирм в Западной Европе, США и Японии, которые развивали электромашиностроение. В условиях конкурентной борьбы происходило объединение мелких фирм с целью создания в крупных фирмах более совершенного технологического оборудования, механизации и автоматизации производственных процессов, интенсивного развития исследовательских и конструкторских работ, создания крупной лабораторной базы. Такое объединение сопровождалось специализацией и концентрацией производства. Так, например, производство крупных электрических машин на небольших заводах мелких фирм было передано в крупные электромашиностроительные предприятия объединенных фирм: в Западной Европе
– «Сименс», ABB, «Альстом-атлантик», «Дженерал электрик» (лимитед), «Парсонс», в США
– «Дженерал электрик», «Вестингауз», в Японии – «Тосиба», «Хитачи», «Мицубиси». В области энергетического оборудования французская фирма «Альстом-атлантик» и английская фирма «Дженерал электрик» (лимитед) образовали общую компанию «Дженерал электрик – Альстом», причем в интересах более глубокой специализации производства и уровня НИОКР статоры турбогенераторов выполняются в Белфоре (Франция), а роторы – в Бирмингеме (Англия).
Вполне естественно, что работы в области электрических машин в СССР велись не изолированно, а во взаимодействии с зарубежными странами. Производственные связи сначала осуществлялись главным образом с германскими фирмами, а затем и с фирмами Англии, Франции, Швеции, США и других стран. Особое значение имеет участие русских специалистов в международных организациях, таких как СИГРЭ (Международная организация в области электроэнергетики) и МЭК (Международная электротехническая комиссия). Признанием высокого уровня наших специалистов служит избрание В.И. Попкова президентом МЭК (1974–1977 гг.) и И.А. Глебова председателем комитета по вращающимся электрическим машинам СИГРЭ (1968–1976 гг.). На протяжении многих лет в руководящих органах СИГРЭ работал Л.Г. Мамиконянц, а в последние годы А.Ф. Дьяков.
Для подготовки инженеров и кадров высшей квалификации, практической работы специалистов в области электрических машин важное значение имеет специальная литература. К выдающимся книгам зарубежных авторов относятся курсы электрических машин: Э. Арнольда и Дж.Л. Лакура (1919 г.), Р. Рихтера (1924 г.), М. Лившица (1926 г.). Эти труды сохранили свое значение до настоящего времени.
К классическим книгам, публикация которых началась еще в предвоенные годы, относятся труды отечественных авторов В.А. Толвинского, М.П. Костенко, Л.М. Пиотровского, Д.А. Завалишина, А.Е. Алексеева, К.И. Шенфера, Б.П. Апарова, Г.Н. Петрова. К выдающимся публикациям последних десятилетий относятся учебники и учебные пособия А.Н. Вольдека, А.В. Иванова-Смоленского, И.П. Копылова, В.В. Хрущева. Их книги получили заслуженно высокую оценку и международную известность. Следует отметить основополагающие труды Е.Я. Казовского в области переходных процессов электрических машин переменного тока.
6.2.2. МАШИНЫ ПОСТОЯННОГО ТОКА ЕДИНЫХ СЕРИЙБез существенного изменения конструктивных черт машины постоянного тока к 30-м годам нашего столетия стали более мощными, значительно расширился диапазон регулирования их частоты вращения. Как правило, машины постоянного тока создавались по индивидуальным проектам либо небольшими партиями.
В 1930–1931 гг. в СССР была поставлена задача создания единых серий электрических машин. При проектировании был использован опыт, накопленный к тому времени на наших заводах, по расчету, конструированию и технологии производства электрических машин, а также по привлечению к работе лучших специалистов вузов и научно-исследовательских институтов. Значительную научно-теоретическую, исследовательскую и организаторскую работу по производству серий машин постоянного тока и асинхронных двигателей с различными системами охлаждения провел академик М.П. Костенко в качестве шеф-электрика Харьковского электромашиностроительного завода (ХЭМЗ). В основу проектирования серий был положен геометрический ряд машин, подобных в отношении их электрических, тепловых и вентиляционных характеристик. Основополагающие принципы проектирования серий были отражены в монографии В.А. Трапезникова [6.31].
В 1932 г. советские машиностроители разработали и освоили первые серии машин постоянного тока: ПН мощностью до 200 кВт и МП 550 мощностью свыше 200 кВт. Эти серии отличались меньшей массой, лучшим использованием активных материалов, закономерно изменяющимися показателями и удовлетворяли всем требованиям научной методологии проектирования. Об этом свидетельствует тот факт, что серия ПН, созданная как временная, просуществовала в производстве свыше 30 лет.
В 1954–1956 гг. была разработана первая единая серия П машин постоянного тока 1–11-го габаритов[6]6
Каждому габариту соответствовал свой внутренний диаметр корпуса статора (станины).
[Закрыть] мощностью 0,3–200 кВт и частотой вращения 1500 об/мин, а затем единая серия П машин 12–17-го габаритов мощностью свыше 200 кВт. Впервые в стране для двигателей постоянного тока была применена твердая шкала мощностей с фиксированными значениями частот вращения; на базе основного исполнения разработана широкая номенклатура как электрических, так и конструктивных модификаций с высоким уровнем унификации деталей и сборочных единиц. Двигатели имели улучшенные динамические характеристики: момент инерции якоря по сравнению с двигателями серии ПН ниже в среднем на 34%.
Возросшие технические требования к машинам постоянного тока были удовлетворены после разработки новой единой серии 2П машин постоянного тока мощностью до 200 кВт, которая была осуществлена под руководством В.А. Кожевникова во ВНИИэлектромаше (г. Ленинград) в 1968–1972 гг. в содружестве с Прокопьевским (И.А. Волкомирский) и Харьковским (Ю.П. Сердюков) заводами «Электромашина». При разработке серии не только были решены задачи повышения технического уровня машин (повышения мощности в габарите, снижения удельной массы на 10%, момента инерции якоря на 22%), но и осуществлена стандартизация установочно-присоединительных размеров в соответствии с рекомендациями МЭК, обеспечена возможность питания электродвигателей от тиристорных преобразователей. Был сделан переход к оценке габаритов по значениям высот осей вращения. Изменилось соотношение основных размеров машины, впервые были созданы электродвигатели с отношением длины якоря к его диаметру выше единицы, что позволило удовлетворить требования заказчиков по встраиваемости электродвигателя в механизмы станков.
В 1976–1978 гг. была разработана, а затем внедрена в производство на электромашиностроительных заводах «Электросила» (В.М. Миничев) и ХЭМЗ (М.Н. Курочкин) серия электродвигателей П2 12–15-го габаритов. С учетом требования современного быстродействующего тиристорного электропривода магнитная система электродвигателей была выполнена шихтованной, а корпус восьмигранным, применены изоляция на основе полиимидных и полиамидных материалов класса нагревостойкости F и электротехническая сталь улучшенных марок. Масса электродвигателей серии П2 снижена в среднем на 21%, момент инерции якоря – на 45%. Особое внимание было уделено повышению надежности электродвигателей. На базе двигателей серии П2 разработана специализированная серия экскаваторных генераторов 2ГПЭ мощностью 75–630 кВт, которая была освоена в производстве на Карпинском электромашиностроительном заводе.
В 80-х годах во ВНИИэлектромаше (В.А. Кожевников, В.Н. Антипов, Л.В. Гамаюнов) была решена задача создания серии 4П машин постоянного тока, которая заменяла все ранее выпускавшиеся на заводах отрасли серии машин постоянного тока, с одновременным снижением трудоемкости их изготовления путем внедрения современного технологического оборудования. К разработке серии было привлечено свыше 20 организаций, в том числе специалисты Всесоюзного научно-исследовательского института технологии электромашиностроения (ВНИИТэлектромаш, г. Харьков) во главе с В.Г. Костроминым для разработки специализированного технологического оборудования.
Серия 4П включает в себя общепромышленные двигатели с нормальными регулировочными свойствами (габариты 80–280 мм), широко-регулируемые двигатели 4ПБ закрытого исполнения (габариты 80–180 мм), широкорегулируемые двигатели 4ПФ специализированного назначения с независимой вентиляцией (габариты 112–250 мм) и крупные двигатели для тяжелых условий эксплуатации (габариты 280–450 мм).
В электродвигателях габаритов 80–112 мм завода «Псковэлектромаш» реализована нетрадиционная, унифицированная с асинхронными двигателями конструкция с распределенной обмоткой статора, что позволило освоить механизированную технологию производства обмоток и использовать технологическое оборудование, разработанное для массового выпуска асинхронных двигателей. При этом трудоемкость изготовления снижена в 2–3 раза, достигнута существенная экономия обмоточной меди.
Для приводов главного движения станков и автоматизированного оборудования ВНИИ-электромаш (г. Ленинград) разработал специальные бескорпусные электродвигатели постоянного тока 4ПФ, оснащенные датчиками скорости, положения, системами температурной защиты и принудительной вентиляции. Электродвигатели выполнены в габаритах 112–250 мм с n-гранной шихтованной станиной, обладают диапазоном регулирования частоты вращения при постоянной мощности не менее, чем 1:4, высокими значениями удельной мощности и хорошими эргономическими показателями.
Крупные электродвигатели серии 4П (габариты 280–450 мм) по сравнению с аналогичными машинами серии П2 имеют увеличенный в 1,6 раза вращающий момент, большую в 1,5–2,0 раза единичную мощность и выше на 30–50% максимальную частоту вращения. Для серии проведена максимальная унификация конструкции и уменьшено количество типоисполнений, что привело к повышению уровня механизации производства и к снижению себестоимости изготовления. На базе крупных двигателей серии 4П развивается экскаваторное электромашиностроение, а также выпускаются электрические машины для нефтебуровых установок.







