Текст книги "Современная космология: философские горизонты"
Автор книги: авторов Коллектив
Жанр:
Философия
сообщить о нарушении
Текущая страница: 20 (всего у книги 25 страниц)
Вместе с тем разрушается иллюзия, будто нам (наконец-то!) удалось перебросить мостик через бездну бесконечности. Полуклассическая постановка вопроса, которая используется в простейших моделях, допускающих суще-ствование и единственность физически преимущественной системы отсчета и связанное с этим однозначное расщепление пространства-времени на пространство и время, в общем случае оказывается невозможной.
В работах А.Л. Зельманова[359] показана относительность пространственной и временной конечности-бесконечности, зависимость этих свойств пространства и времени от системы отсчета. Объем пространства может быть конечен в одной системе отсчета и бесконечен в другой. Это же относится и к длительности процессов. Пространственновременной каркас модели, оба сечения которого (и пространственное, и временное) бесконечны, может составлять лишь часть другого каркаса, притом с конечным пространством. Привычная интерпретация такой ситуации означала бы, что бесконечное есть часть конечного.
Классическая (дорелятивистская) постановка вопроса о бесконечности Вселенной включала следующие основные положения: а) бесконечность есть неограниченная протяженность; б) бесконечность Вселенной есть ее бесконечность в пространстве и времени; в) бесконечность и конечность – полностью взаимоисключающие понятия. Релятивистская космология заставляет отказаться от всех этих положений классической постановки вопроса. Бесконечность и конечность оказываются не только взаимоисключающими, но связанными диалектическим единством понятиями. Инвариантный, абсолютный смысл имеет только вопрос о конечности или бесконечности Вселенной в пространстве-времени, но не в пространстве и времени. При этом конечность и бесконечность следует рассматривать как некое внутреннее свойство континуума, его меру, а не только количественную характеристику.
Общий итог релятивистской космологии в интересующем нас вопросе формулируется так: в пространстве-времени Вселенная метрически бесконечна.
2.4. Топологическая бесконечность. В плане возрастающей общности геометрических идей (по Эрлангенской программе Клейна, сейчас следовало бы рассмотреть постановку проблемы бесконечности в аффинной и проективной геометрии. Однако имея в виду интересующий нас космологический аспект проблемы, такое рассмотрение, по-видимому, без ущерба для дела можно опустить и перейти сразу к наиболее общему, с точки зрения геометрии, аспекту вопроса – топологическому.
Метрические свойства многообразия сохраняются при его деформациях, оставляющих неизменными расстояния и углы. В наглядном случае двумерного многообразия (поверхности) такие деформации представляют собой всевозможные изгибы без растяжений и разрывов поверхности. Топологические свойства сохраняются при более значительных деформациях, таких, которые оставляют неизменными лишь связность поверхности, т. е., грубо говоря, его свойство состоять из одного или нескольких кусков. Поверхность можно любым образом изгибать, растягивать и сжимать, но без разрывов и склеиваний краев. (В общем случае трех– или многомерного пространства отсутствие разрывов означает непрерывность преобразования пространства, а отсутствие склеиваний – взаимную однозначность такого преобразования, то обстоятельство, что каждой точке недеформированного преобразования соответствует лишь одна точка деформированного и наоборот). Метрическое пространство есть частный случай топологического (всякое метрическое пространство есть и топологическое пространство, но существуют такие топологические пространства, которые не могут быть метризованы – понятие расстояния в них неприменимо).
Познание топологических свойств пространственно-временного континуума Вселенной, вероятно, явится одной из наиболее фундаментальных задач космологии недалекого будущего. Пока же здесь сделаны лишь первые шаги, и каждый из них связан с преодолением очень больших трудностей.
2.4.1. Выше (2.3.2) говорилось о том, что кривизна определяет свойство конечности или бесконечности пространства постоянной кривизны однозначно. Теперь пора уточнить, что это так только в случае односвязного пространства, в общем же случае по локальным свойствам пространства, определяемым метрикой, еще нельзя судить о его глобальных свойствах. Метрика на плоскости и на поверхности цилиндра – в точности одна и та же (евклидова), но на поверхности цилиндра существуют конечные расстояния, возвращающие кратчайшим путем в исходную точку. Топологически эти две поверхности различны (не гомеоморфны), ибо деформация, при которой из плоской полосы получается поверхность цилиндра, включает склеивание краев, т. е. нарушает требование взаимной однозначности соответствующих точек.
Роль топологических свойств пространства для релятивистской космологии в принципе известна очень давно. Когда Эйнштейн предложил исторически первую релятивистскую космологическую модель – статическую модель с пространством постоянной положительной кривизны, – он трактовал это пространство как «сферическое». Но Клейн тогда же показал, что это пространство можно трактовать и как «эллиптическое». Объем последнего вдвое больше объема «сферического» пространства. Но все же пространства постоянной положительной кривизны конечны (замкнуты). Однако отрицательная или равная нулю постоянная кривизна, т. е. случай, когда локально пространство имеет свойства бесконечного (открытого) пространства, еще не позволяет сделать вывод о том, что оно действительно бесконечно, ибо среди топологически различных типов таких пространств известны и замкнутые формы. Таким образом, локальные и глобальные свойства пространства могут быть не только различны, но даже противоположны (в тех пределах, в которых конечность и бесконечность могут противопоставляться друг другу).
Вообще в топологии простое противопоставление конечного (замкнутого) и бесконечного (открытого) становится еще менее обоснованным, чем в метрической геометрии, их взаимоотношения становятся еще более сложными.
Следовательно, существуют по крайней мере две очень серьезные причины, в силу которых нельзя утверждать, что уточнение данных о кривизне метагалактического пространства позволит решить вопрос о том, конечна или бесконечна Вселенная. Во-первых, как уже говорилось выше (2.3.2), это было бы верно только в том случае, если бы мы могли быть уверены в том, что в природе реализуется наиболее удобная возможность – простейший случай пространства постоянной кривизны. Во-вторых, как мы видим сейчас, даже в этом случае все могла бы испортить каверзная топология.
2.4.2. Трудности, которые стоят на пути познания топологических свойств пространственно-временного континуума, можно (довольно условно, разумеется) разделить на две группы: математические и физические трудности. Начнем с первой группы.
Космология заинтересована в классификации возможных пространств (в математическом смысле) по их топологическим типам. Эта задача решена исчерпывающим образом только для двумерных пространств (поверхностей), во всяком случае, для замкнутых поверхностей. Задача изыскания всех топологических типов многообразий трех и большего числа измерений, по словам такого знатока топологии, как акад. П.С. Александров, «до настоящего времени остается безнадежно трудной».
Что касается наиболее важного для космологии вопроса о топологических свойствах пространства-времени (псевдориманова многообразия), то здесь, естественно, положение еще сложнее и, вероятно, таит в себе немало сюрпризов. Намек на то, что эти сюрпризы могут быть весьма разительного свойства, содержится в проблеме пространственных форм Клиффорда – Клейна, или локально евклидовых пространств[360]. Если рассматривать их в качестве подпространств римановых (псевдоримановых) пространств, то возникает возможность замкнутых во времени «миров», грубо говоря, возможность «путешествия в свое собственное прошлое», обращения направления времени вспять в результате перемещения в пространстве[361]. В какой мере и в каком смысле физически реализуема такая математическая возможность, это пока далеко не ясно, но ее существование, во всяком случае, является лишним предостережением против чрезмерно оптимистической оценки наших современных знаний о бесконечности.
Насколько я могу судить, те частные, но очень интересные результаты, которые получены в области топологии космологических моделей, получались двумя путями (или их сочетанием). Первый путь – это нахождение систем отсчета, наиболее подходящих к характеру задачи (подходящих с точки зрения тех или иных физических или математических критериев), и исследование свойств пространства или пространства-времени найденных систем отсчета. В качестве примера использования физических критериев можно указать на вакуольную модель Эйнштейна и Страуса[362] или известную абсолютно вращающуюся модель Геделя[363], которую считают важнейшим достижением теоретической космологии после Эйнштейна и Фридмана[364]. Пример использования математических критериев – ряд работ последних лет о внутреннем решении Шварцшильда (см., например5); к этим работам придется вновь обратиться в 2.4.4. Второй путь – это выяснение топологии данного многообразия путем его погружения в евклидово многообразие большего числа измерений. Так, например, пространство-время простейших (однородных изотропных) моделей может быть вложено в пятимерное евклидово многообразие; в силу равноправия пространственных координат можно ограничиться одной из них и тогда получаются чрезвычайно наглядные «диаграммы Робертсона[365]». В некоторых более сложных случаях четырехмерное пространство-время «не помещается» в пятимерное евклидово многообразие, и приходится прибегать к шестимерному[366]. Но и тогда можно получить довольно наглядные диаграммы в виде трех– и двухмерных проекций интересующего нас сечения многообразия.
Сочетая указанные пути, по-видимому, можно продвинуться довольно далеко в выяснении топологических типов физического пространства-времени.
2.4.3. Кривизна метагалактического пространства, если она вообще существует, т. е. отлична от нуля, столь мала, что не может быть и речи об определении ее с помощью, например, астрономической триангуляции. Она вычисляется весьма косвенным путем, исходя из предсказываемой теорией связи метрики пространства с теми или иными наблюдательными данными внегалактической астрономии, причем получение последних находится на самом пределе возможности даже крупнейших современных инструментов. Но принципиальная сторона вопроса ясна: возможность наблюдательной проверки метрических свойств пространства следует из релятивистской теории тяготения, связывающей метрическую геометрию с физикой.
Вопрос о наблюдательной проверке топологических свойств пространства, а тем более, пространства-времени, намного сложнее, ибо не существует физической теории, которая связывала бы эти свойства с каким-либо конкретным физическим «агентом» – полем, типом взаимодействия и т. п. Поэтому здесь связь с опытом носит еще более опосредованный характер, чем в случае метрических свойств. Можно, например, искать наблюдательного подтверждения тех решений уравнений тяготения, которые связаны с «необычной» топологией; если такое подтверждение обнаруживается, то это может рассматриваться как косвенное свидетельство в пользу существования у реального пространства именно таких топологических свойств.
На одном из примеров такого рода стоит остановиться подробнее из-за его принципиального значения для проблемы бесконечности и ее связи с гравитацией.
В течение ряда лет делались попытки устранить сингулярности из космологических решений уравнений Эйнштейна или, по крайней мере, выяснить, насколько тесно они связаны с самими уравнениями. Сейчас эту трудную задачу можно, видимо, считать решенной.
Общий случай произвольного распределения материи не приводит к появлению физической особенности и связанной с нею ограниченности времени, о которой шла речь в 2.3.2. Этот вывод относится и к важному, с точки зрения астрономических приложений, случаю пространственной сферической симметрии2. Однако история науки любит парадоксы, и почти одновременно с устранением недостатка теории стало выясняться, что это, возможно, вовсе и не недостаток, а плодотворная черта теории: реальные гравитационные процессы действительно могут иметь исходным или завершающим пунктом состояние материи со сверх-ядерной плотностью, взрывной деформацией пространства и вырожденной метрикой. Открытие «сверхзвезд»3 повлекло за собой очень интенсивное изучение таких процессов – гравитационного коллапса и антиколлапса. Можно даже говорить о зарождении на стыке астрофизики, космологии и космогонии новой научной дисциплины – релятивистской астрофизики.
Длительное время считалось, что существование сингулярной сферы Шварцшильда устанавливает предел геометрических размеров тела заданной массы, так что при гравитационном сжатии плотность вещества не может превзойти определенное конечное значение (см., напр.[367]). Вместе с тем подчеркивалось[368], что при очень высоких плотностях вещества уравнения Эйнштейна теряют силу. Начиная с известной работы Оппенгеймера и Волкова, постепенно росла уверенность, что при определенных условиях возможно катастрофическое сжатие гравитирующих масс «в точку» и взрывное расширение из «точки», что при этом выход энергии может на два порядка превышать выход при термоядерных реакциях, и, наконец, что «сверхзвезды», возможно, являются образцом таких процессов. Похоже, что границы Метагалактики также находятся внутри сферы Шварцшильда и космологическое расширение может интерпретироваться как антиколлапс Метагалактики[369].
Эта новейшая гравитационная экзотика существенна для нашей темы. Она показывает необходимость учета возможной неевклидовости топологии в космологии и даже в явлениях обычного астрофизического масштаба.
Она показывает также, что не только метрика, но и, вероятно, топология хотя бы частично может быть поставлена в зависимость от гравитации. Это открывает возможность физического, наблюдательного подхода к топологической структуре пространства-времени.
Процессы коллапса-антиколлапса существенно асимметричны по отношению к отражению времени (времени-подобной координаты). В этом можно было бы искать объ-яснение направленности времени, сказав, что «стрела времени» в нашей Метагалактике определяется ее расширением. В сжимающихся (коллапсирующих) метагалактиках направление течения времени является обратным, таким образом, можно было бы утверждать, что гравитация определяет не только метрику (шкалу, ритм) времени, но и такое глубоко топологическое его свойство, как ориентируемость.
Упоминавшаяся выше вакуольная модель показала, что свойства пространства-времени данной системы могут быть в высокой степени автономными, независимыми от метрики пространства и течения времени в окружающем мировом субстрате, каким бы он ни был. Рассматриваемый сейчас круг явлений сильно укрепляет этот вывод. Процессы, которые не могут завершиться в шкале времени (бесконечной!) внешнего наблюдателя, в собственном времени системы требуют лишь конечного времени. Мыслим такой вывод: длительность существования любых составных частей Вселенной конечна, но существуют и такие части, в которых само время ограничено (с одной или с обеих сторон). Это существенно иметь в виду, например, когда выдвигается постулат вечности Вселенной. Он имеет совершенно четкий смысл в рамках классической физики с его единым для всей Вселенной мировым абсолютным временем. На современном уровне наших знаний мы должны считаться, во всяком случае, с тем, что время, о котором идет речь в постулате вечности Вселенной, совсем не то время, которым мы пользуемся, назначая свидание, и даже не то, ритм которого определяется расширением нашей Метагалактики. Оно, в принципе, не только может отличаться по ритму, но и быть, например, обратным по направлению (своеобразный вариант флуктуационной гипотезы!) или еще хуже – ортогональным к нашему времени или замкнутым. Обо всем этом мы сейчас попросту не можем судить.
Пространственный аспект автономности не менее интересен. Пространство системы (например, Метагалактики), находящейся «под гравитационным радиусом», замкнуто. Формально, с точки зрения математической, это означает, что никакая информация наружу и извне проникать не может – вне системы попросту ничего не существует, в том числе нет и пространства, пространство системы есть все пространство, и само понятие «внешнего» по отношению к нему лишено всякого смысла (именно такова, например, обычная трактовка понятия замкнутости Вселенной). Реальность оказывается «хитрее», замкнутость сложнее.
Существенна история замкнутой системы. Если система оказалась «внутри» сферы Шварцшильда в результате сжатия, то никакие сигналы, никакая информация ее покинуть не могут, пространство системы для них замкнуто. Тем не менее, внешний наблюдатель (в пространстве-времени окружающего космологического субстрата) может обнаружить существование системы, ушедшей под гравитационный радиус по создаваемому ею гравитационному полю. Если система еще не вышла из-под гравитационного радиуса, т. е. это состояние есть результат предшествовавшего расширения, то наружу может проникать любая информация, но зато не может поступать никакая информация извне. В первом случае система замкнута как источник информации, во втором – как ее приемник. Случай, когда система была бы замкнута в обоих смыслах, неизвестен.
Для того чтобы отличать такую замкнутость от строгой, математической, которая, возможно, вообще не реализуется в природе, ее следовало бы называть квазизамкнутостью или физической замкнутостью. Тогда мы имели бы здесь один из тех «типовых» случаев взаимоотношения между физическим и математическим, когда последнее является идеализацией первого: математическая замкнутость есть идеализация, предельный случай физического. Физическая замкнутость, в свою очередь, есть обобщение термодинамической, которая может рассматриваться в качестве частного случая физической замкнутости.
Уже из того, что топология таит в себе по крайней мере формальную возможность замкнутости времени, видна ее связь с проблемой причинности и еще шире – закономерности и случайности. С другой стороны, связь с этой про-блемой просвечивает в том обстоятельстве, что физическую замкнутость можно интерпретировать в понятиях термодинамики и теории информации, для которых объединяющим является понятие энтропии, а связь энтропии с указанной проблемой общеизвестна. В следующем разделе эта гипотеза будет продвинута несколько дальше.
В заключение стоит отметить еще одну экзотическую особенность пространства-времени при шварцшильдовских плотностях вещества. Характерная черта найденных до сих пор систем отсчета, описывающих и внутренние, и внешние области, т. е. таких, в которых может быть представлен процесс ухода системы под гравитационный радиус или выхода из-под него, это то, что временная и одна из пространственных координат (радиальная) меняются ролями. Если бы мы хотели выразить это обстоятельство в привычных понятиях пространства и времени, нам пришлось бы сказать, что здесь происходит превращение пространства во время и времени в пространство! Независимость и различие пространства и времени, которым нередко пытаются дать даже философское обоснование, несомненно имеют место, но только для явлений определенных классов и масштабов; в общем же случае необходимо исходить из нераздельного единства пространственно-временного континуума, его метрических и топологических свойств.
2.5. Экстенсивная и интенсивная бесконечность. Еще мыслители античной эпохи пришли к выводу, что пространство может быть бесконечным не только «вширь» (экстенсивная бесконечность) но и «вглубь», в смысле бесконечной делимости (интенсивная бесконечность). Занимал их, кстати, главным образом этот второй аспект бесконечности, в котором были обнаружены апории, приковывающие вновь и вновь внимание математиков и философов вот уже более двух тысячелетий.
Считалось, что космологию интересует экстенсивная бесконечность. Сейчас этого утверждать уже нельзя. Есть явления (рассмотренные в предыдущем разделе), где она сталкивается с проблемами интенсивной бесконечности и даже с обоими аспектами сразу. Возможно, что именно на пути к бесконечно малому будет в конце концов получен тот синтез представлений квантовой теории и общей теории относительности, который является вожделенной целью теоретической физики.
Психологически кажется естественным ожидать, что расстояние, отделяющее 10-13 см от нуля, преодолеть несравненно легче, чем расстояние, отделяющее 1027 см от бесконечности. Ведь последнее расстояние бесконечно велико, а первое практически бесконечно мало. Но опыт последних десятилетий научил нас иному: экспериментальные средства, с помощью которых можно сократить на порядок «путь, оставшийся до нуля», обходятся еще дороже, чем средства, увеличивающие на порядок путь, ведущий к бесконечности. Стоимость тех и других выражается уже почти «астрономическими» цифрами и имеет тенденцию быстро расти. Таким образом, мы убеждаемся очень наглядно в том, что раньше было ясно лишь умозрительно: для научного познания непройденный еще «к нулю» путь в 10-13 см ничуть не короче, чем бесконечно длинный путь, ведущий в экстенсивную бесконечность. Ни тот, ни другой не будут исчерпаны всем будущим развитием науки за сколь-угодно большой конечный срок (при все убыстряющихся темпах развития науки!).
Важнейшая, имманентная черта, общая интенсивной и экстенсивной бесконечности, – неисчерпаемость. Чрезвычайно важно подчеркнуть, что речь не идет только о практической, технической или познавательной неисчерпаемости. Все это только следствия или формы проявления качественной неисчерпаемости, присущей бесконечности. Опыт физики и астрономии свидетельствует о том, что каждый раз при существенном изменении пространственновременных масштабов явлений, становящихся доступными для исследования, обнаруживаются качественно иные свойства, черты, закономерности; эти качественно различающиеся ступени или уровни как при движении в сторону больших, так и меньших масштабов, по-видимому, несчет-ны, не могут быть исчерпаны – не просто практически, но и принципиально, в возможности, в потенции.
Выдвигались (и выдвигаются) гипотезы, которые в психологическом аспекте могут быть квалифицированы как оптимистические, вселяющие утешительную надежду, что при движении в одну из сторон (меньшего или большего) или в обоих направлениях лестница качеств или, точнее, мер, поскольку качество оказывается тесно связанным с количеством, будет исчерпана, что существует определенная граница (снизу или сверху, либо и снизу, и сверху) «потоку бесконечного». Назовем такие гипотезы гипотезами конечности.
Для экстенсивной бесконечности примеры приводились выше. Это, например, идея замены бесконечного в математике очень большим, но конечным (в числовом выражении – «сверхастрономическим» числом), а в космологии – идея пространственно конечной Вселенной. Можно упомянуть еще точку зрения Гильберта, согласно которой бесконечность есть лишь идея (правда, очень плодотворная), но она нигде не реализуется.
Упомянем об аналогичных гипотезах в отношении интенсивной бесконечности (интенсивной конечности). В теории элементарных частиц предположение об интенсивной бесконечности пространства и времени влечет (на современном уровне наших знаний) за собой вывод об экстенсивной бесконечности энергии, массы, заряда, что считается неудовлетворительным не только в вычислительном, но и в принципиальном отношении. Для преодоления этой трудности выдвигаются различные варианты гипотезы о дискретности пространства и времени, о том, что не существует интервалов меньше определенной малой, но конечной протяженности. Еще более радикальной является гипотеза конечного (на взгляд докладчика, лучше сказать, счетного) континуума: пространство состоит из большого, но конечного числа точек.
Разумеется, как и в случае концепции конечной Вселенной, было бы совершенно неверно сводить причины появления таких гипотез к психологической, эстетической или идеологической области. Причина их появления прежде всего та, что они дают определенный эффект в физике, позволяют преодолеть или обойти определенные трудности, возникающие в ходе развития физических наук.
Надежда получить некое окончательное решение проблем пространственно-временного континуума с помощью гипотез конечности вряд ли оправдана. В этом отношении очень поучительна история релятивистской космологии.
Как известно, Эйнштейн надеялся вывести из своей теории тяготения однозначный вывод о пространственной конечности Вселенной. Но уже через несколько лет после появления этой теории A.A. Фридман показал, что она допускает как конечность, так и бесконечность Вселенной. В свете исследований последнего десятилетия стало ясно, что положение еще намного «хуже»: если бы даже и удалось доказать пространственную конечность (замкнутость), например, Метагалактики, то это вовсе не означало бы, что Вселенная сводится к Метагалактике. В физических приложениях, как мы видели, не только метрическая, но даже и топологическая замкнутость пространства далеко не абсолютна. Она означает всего лишь весьма сильную автономность данной физической системы. Если и «сверхзвезды», и Метагалактика суть антиколлапсирующие системы, то может существовать целая иерархия (в принципе, даже бесконечная иерархия!) замкнутых пространств.
Аналогичное положение может существовать и в микрофизике, словом, пространство может оказаться замкнутым не только сверху, но и снизу, в направлении бесконечно малого, но это также, вероятно, окажется не абсолютной, а относительной, физической замкнутостью.
Отсюда вместе с тем следует и полная правомерность изучения того, что могут дать гипотезы (постулаты) конечности в космологии и микрофизике. Это важно не только с точки зрения непосредственных физических приложений (релятивистская астрофизика), но и в интересах самой проблемы бесконечности. В силу «сопряженности» конечно-сти и бесконечности познание бесконечности предполагает выяснение смысла и пределов применимости понятия конечного (замкнутого).
В области очень малых пространственно-временных масштабов, как и в области очень больших, свойства континуума могут очень радикально отличаться от привычных. Не только метрические соотношения могут быть иными, сами метрические понятия могут оказаться ограниченно или вовсе неприменимыми (неметризуемое топологическое пространство). Мало этого. Если, например, пространство микромира, начиная с каких-то масштабов, дискретно, то придется считаться с нарушением такого фундаментального топологического инварианта, как размерность пространства (число его измерений): дискретное пространство не трехмерно, а нульмерно. Если бы на основе каких-либо априорных соображений или нашего предыдущего опыта можно было предсказать, какие из известных свойств пространства-времени сохранятся в ультрамикроскопических масштабах (например, топологическое свойство – непрерывность), то можно было бы сэкономить миллиарды на строительстве ускорителей. К сожалению, это не так. Источником всех знаний, в том числе и философских, является опыт. На основе нового опыта нам много-много раз придется пересматривать наши представления о пространстве и времени, в том числе и философские представления. В соответствии с известным положением Энгельса, это придется делать «с каждым крупным открытием естествознания» в этой области.
2.6. Теоретико-множественная бесконечность. По современным представлениям топологические свойства пространства-времени – это наиболее общие его свойства, сохраняющиеся при наиболее глубоких деформациях (преобразованиях). Более общих геометрических свойств мы сейчас не знаем. И все же, возможен еще более общий, – так сказать, общематематический подход к проблеме. Поскольку всю современную математику проникают понятия и методы теории множеств, такой подход является теоретико-множественным.
Но в современной математике топология и теория множеств настолько переплетаются между собой и с другими разделами математики, что определить точные границы их компетенции затруднительно. Столь же трудно провести грань между геометрией и остальной математикой. По словам акад. А.Н. Колмогорова, «вся та часть математики, в которой играет роль непрерывность, грозит сделаться геометрией, так как множество любых математических объектов (например, функций), в котором могут быть установлены топологические соотношения, может быть объявлена пространством. Таким образом, вместе с геометризацией всей непрерывной математики намечается исчезновение геометрии как самостоятельной и до известной степени противоположной всей остальной математике науки».
«Заметим здесь, – продолжает А.Н. Колмогоров, – что развитие общих геометрических идей в значительной мере задерживалось философскими спорами о природе пространства… Зато только после окончательного установления понятия абстрактного математического пространства приобрел ясный смысл и вопрос об устройстве физического пространства. Теперь вопрос этот ставится в такой форме: какое из многочисленных могущих быть построенными абстрактных математических пространств отражает с точностью, соответствующей нашим экспериментальным возможностям, строение физического пространства? Ответ на этот вопрос, естественно, может эволюционировать с ростом наших знаний»[370].
Что существенно нового вносит теория множеств в решение проблемы бесконечности?
Следует прежде всего подчеркнуть тесную связь теории множеств с этой проблемой. Сама теория возникла из стремления решить именно эту проблему. Можно сказать вместе с Э. Кольманом, что, «когда математики сделали серьезную попытку преодолеть затруднения и противоречия, вызванные в математике понятием бесконечности, они создали теорию множеств»[371].
Теория множеств устранила те противоречия, для устранения которых она была создана, но отнюдь не противоречия вообще. На место устраненных противоречий встали новые, более глубокие, но они относятся не столько к сфере математики, сколько метаматематики, в частности, к проблемам оснований математики и математической логики).
Чтобы не отходить от основного – космологического – стержня доклада, целесообразно ограничиться перечислением лишь тех новых аспектов в понимании бесконечного, которые существенны для дальнейшего изложения.
Теория множеств позволяет охватить с единой точки зрения все рассмотренные до сих пор аспекты бесконечности. В частности, она разрешила те «непостижимые загадки математики», которые были упомянуты выше и связаны, прежде всего, с понятием предела в анализе. Как замечает Г. Вейль, «все грандиозное здание анализа приобрело несокрушимую крепость, оказываясь прочно заложенным и строго обоснованным во всех своих частях. Понятия анализа приобретают точность, а доказательства – безупречную последовательность»[372].