Текст книги "Журнал «Если», 1999 № 01-02"
Автор книги: Аркадий и Борис Стругацкие
Соавторы: Кир Булычев,Владимир Гаков,Эдуард Геворкян,Джеймс Генри Шмиц,Йен Макдональд,Евгений Харитонов,Сергей Кудрявцев,Джеффри Алан Лэндис,Александр Ройфе,Арсений Иванов
Жанр:
Научная фантастика
сообщить о нарушении
Текущая страница: 12 (всего у книги 21 страниц)
– Отлично! – восклицаю я. Скоро я организую себе биотело. Теперешнее выше всяких похвал, но среди людей чувствуешь себя неуютно, когда рост у тебя – всего миллиметр.
Обратный переход в реальное пространство прошел без огрехов. Придумав, как перемещаться во вставшем на уши пространстве-времени, я уже без труда нашел червоточину и мгновение ее пересечения с горизонтом событий.
– Вы собираетесь сделать пережитое всеобщим достоянием? – спрашивает психолог. – Думаю, человечеству захочется узнать, что вы перенесли. Ведь это нечто невероятное!
– Возможно, – отвечаю я.
– Между прочим, – добавляет психолог, – я бы тоже не возражала узнать.
– Я подумаю.
Вот я и настоящий человек, не зависящий от тебя, моего оригинала.
Мое появление из червоточины было встречено восторгами и прославлениями, но никому даже в голову не приходило, до чего странным вышло путешествие, пока я все не рассказал. Мне вряд ли поверили до конца, но потом датчики Huit Clos подтвердили мои слова.
Физики впали в экстаз. Новый инструмент для зондирования – времени и пространства! Возможность превращать пространство во время открывает невероятные перспективы! Они уже планировали новые экспедиции, среди которых главное место занимала та, чьей целью было потрогать за жабры саму сингулярность.
Найденное мной решение проблемы произвело на них сильное впечатление, хотя, поразмыслив с часок, они дружно заключили, что это был очевиднейший ход.
– Вам повезло, – сказал один из них, – что во второй раз вы решили проникнуть в червоточину с противоположного конца.
– Почему? – удивился я.
– Если бы вы двинулись в прежнем направлении, то вместо возвращения провернулись бы еще на девяносто градусов.
– Ну и что?
– Разворот временного вектора. Вы превратились бы в анти-вещество. Ну, в то самое, из чего состоит межзвездная среда…
– О! – только и пробормотал я и перестал чувствовать себя непревзойденным умником.
Теперь, когда моя миссия выполнена, мне недостает цели и смысла существования. Будущее пусто: это черная дыра, в которую нас всех засосет. Я, конечно, получу биологическое тело и приступлю к познанию самого себя. Возможно, это как раз та задача, что стоит перед каждым.
А потом я встречу тебя. Если повезет, ты мне понравишься.
А если ты мне сильно понравишься, если внушишь доверие, то я, возможно, перекачаю тебя в себя, и мы снова объединимся.
Перевел с английского Аркадий КАБАЛКИН
Леонид Лесков,
доктор физико-математических наук
ОТКРЫТИЕ НА КОНЧИКЕ ПЕРА
*********************************************************************************************
Если наши читатели сумели одолеть физико-литературные модели одного из самых ярких представителей американской «твердой» НФ, то им, без сомнения, будут интересны научные гипотезы, связанные с этой проблемой.
Черные дыры – одни из немногих космических объектов, которые вначале были «придуманы» астрофизиками, а уж затем использованы фантастами. Известный ученый рассказывает о «положении дел» в изучении этих таинственных объектов.
*********************************************************************************************
ДВЕСТИ ЛЕТ ЗАБВЕНИЯ
В 1783 г. профессор Кембриджского университета Джон Митчелл представил Лондонскому Королевскому обществу – английской Академии наук – работу, в которой доказывал, что если существуют достаточно массивные и компактные звезды, то испускаемые ими лучи света не смогут преодолеть их гравитационного поля и будут втянуты обратно к звездной поверхности. Митчелл исходил из теории Ньютона, который считал, что свет состоит из корпускул (по современной терминологии – фотонов) и, следовательно, должен испытывать отклонение от прямолинейного направления в поле силы тяжести.
Для своих расчетов Митчелл использовал те же самые формулы классической механики Ньютона, с помощью которых сегодня рассчитывают первую и вторую скорости космических кораблей. Корабль, которому сообщена первая из этих скоростей (8 километров в секунду), превращается в искусственный спутник Земли, а получивший вторую космическую скорость (11 километров в секунду), навсегда покинет сферу притяжения нашей планеты.
Очевидно, такую звезду, которая оказывается не в состоянии испускать свет, не сможет увидеть ни один внешний наблюдатель. Очень удачное название для такого невидимого объекта – черная дыра – предложил в 1969 г. американский астрофизик Джон Уилер.
Через несколько лет после Митчелла аналогичные расчеты выполнил французский ученый Пьер Лаплас, включивший их в свою знаменитую книгу «Система мира». Однако из последующих изданий своей книги упоминание об этой идее он исключил. Понять Лапласа можно: к тому времени принадлежащая Ньютону корпускулярная теория света утратила популярность. Верх одержала теория Гюйгенса, согласно которой световые лучи имеют волновую природу. А то, что гравитационные силы должны действовать на волны, из теории Гюйгенса не следовало. В результате идея Митчелла была позабыта почти на двести лет.
Положение мало изменилось, даже когда была создана теория относительности Эйнштейна. Согласно этой теории, скорость света при любых условиях остается постоянной – 300 тысяч километров в секунду. Ракета, взлетевшая с поверхности Земли и не набравшая первой космической скорости, будет замедляться до тех пор, пока снова не упадет обратно. Иное дело кванты света – фотоны, их скорость измениться не может. Как же тогда гравитация способна воздействовать на свет?
ЖИЗНЬ ЗВЕЗД
Чтобы понять механизм возникновения черных дыр, надо вспомнить, как рождаются и живут звезды. Образуются они внутри космических газовых облаков. Если масса вещества в этом облаке превышает критическую величину, которая определяется теорией гравитации Ньютона, то все атомы в этом облаке начинают падать к его центру. Так возникает протозвезда.
При сжатии облака потенциальная энергия его атомов в поле сил гравитации переходит в кинетическую, и температура газа быстро возрастает. Начиная с некоторого порога, величина температуры и плотности газа возрастают настолько, что в нем вспыхивает термоядерная реакция – происходит синтез гелия из ядер водорода. Но согласно формуле Эйнштейна Е = mс 2, часть вещества при этой реакции превращается в энергию. В недрах нашего Солнца, например, за одну секунду в энергию превращается около 4 миллионов тонн водорода. Солнцу этой энергии хватит еще на миллиарды лет спокойного существования.
У других звезд иная судьба. Если масса звезды в десять раз превышает солнечную, то ее светимость будет в тысячи раз больше, и, следовательно, она намного быстрее израсходует свой запас водорода. Что ждет ее дальше?
Если масса звезды, в недрах которой закончилось ядерное топливо, превышает массу Солнца на 25 %, то она будет сжиматься до тех пор, пока ее плотность не достигнет 10 8– 10 9кг/м 3. Это очень высокая плотность – наперсток с таким веществом весил бы на Земле несколько тонн. Такие звезды имеют небольшой размер и называются белыми карликами. У самой яркой звезды нашего неба Сириуса есть такой спутник. Судьба более массивных звезд, в недрах которых прекратилась термоядерная реакция и обусловленные ею высокие температуры и давление не могут больше противостоять гравитационным силам сжатия, еще более драматична. Сила сжатия достигает такой величины, что протоны сливаются с электронами, превращаясь в нейтроны, лишенные электрического заряда. Возникает нейтронная звезда. Ее средний радиус всего 10 км, а плотность 10 18кг/м 3– наперсток с такой плотностью потянул бы в земных условиях на несколько миллиардов тонн!
Продолжая вращаться вокруг своей оси, такая звезда испускает электромагнитное излучение в радио-, оптическом и рентгеновском диапазонах. А поскольку поверхность ее не вполне однородна, ее излучение пульсирует – в некоторых случаях с периодом порядка сотых долей секунды.
Когда в 1967 г. первая из таких звезд была обнаружена английской обсерваторией Джодрел-бэнк в Кембридже, то наблюдавшие ее Д. Белл и Э. Хьюиш первоначально подумали, что им удалось принять сигналы от внеземной цивилизации. Удостоверившись в естественном происхождении импульсов излучения, они назвали их источник пульсаром. И лишь потом теоретики отождествили пульсар с предсказанным ранее объектом – нейтронной звездой.
ГОРИЗОНТ СОБЫТИЙ
В 1916 г. немецкий физик-теоретик Карл Шварцшильд исследовал решения общей теории относительности, незадолго до этого опубликованной Эйнштейном. Ему удалось показать, что если тело массой М сжать в сферу, радиус которой меньше некоторой критической величины, то пространство-время вблизи этого радиуса искажается настолько сильно, что свет не может покинуть эту сферу. Позднее эту критическую величину назвали радиусом Шварцшильда. Четырехмерное пространство-время, замкнутое в сфере с таким радиусом, удерживает внутри себя материальные объекты и сигналы любой природы, ничего не выпуская наружу. Область пространства, ограниченную радиусом Шварцшильда, вторично открытую на кончике пера, ученые и назвали черной дырой.
Как только степень сжатия угасающей звезды достигает шварцшильдовского радиуса, она должна исчезнуть для внешнего наблюдателя. Эту границу черной дыры назвали горизонтом событий – никакие сведения о том, что происходит за этой чертой, не могут поступить к внешнему наблюдателю.
Любой внешний объект, достигнувший этой границы, никогда уже не сможет вернуться назад. Его ожидает вечное падение к центру черной дыры. Горизонт событий – граница, которая имеет всего одну сторону.
Теоретически в черную дыру может превратиться любой объект. Например, для звезды с массой нашего Солнца радиус Шварцшильда равен 3 км, а для гипотетического астрофизического объекта с массой Земли – всего 1 см. Плотность вещества такого «землеподобного» объекта оказалась бы чудовищно большой – Ю 30кг/м 3! И неудивительно: чтобы уравновесить наперсток с таким веществом, на весы пришлось бы положить саму Землю.
К счастью для нас, нынешнее состояние Вселенной таково, что ни Солнце, ни Земля превратиться в черные дыры не могут. Звезды, масса которых превосходит солнечную вдвое или втрое, в конце жизни становятся белыми карликами или нейтронными звездами.
Но известно достаточно много более массивных звезд. Некоторые из них, завершая свой жизненный цикл, имеют вполне реальный шанс превратиться в черные дыры. Черная дыра с массой, на порядок превосходящей солнечную, будет иметь радиус около 30 км и плотность 10 14кг/м 3.
Однако теория не исключает существования и еще более массивных черных дыр. Если допустить, что центральная часть галактики имеет массу в сто миллионов солнц и сколлапсирована в черную дыру, то ее горизонт событий будет иметь радиус около 300 миллионов километров, т. е. вдвое больше радиуса земной орбиты. А плотность вещества внутри такой дыры будет совсем невелика она равна плотности воды.
На самых ранних стадиях существования нашей Вселенной могли возникнуть еще более удивительные объекты – черные дыры микроскопических размеров. Могли существовать даже мини-дыры размером с атомное ядро, но с массой земной горы приличных размеров. Вполне возможно, что некоторые из подобных удивительных мини черных дыр дожили и до наших дней. Остается только найти способ, чтобы их обнаружить.
ПУТЕШЕСТВИЕ В НЕДРА
Теоретики затрудняются предсказать, что происходит за горизонтом событий, внутри черной дыры. Чтобы хотя бы в некоторой степени разобраться в этом вопросе, поставим смелый мысленный эксперимент – снарядим в окрестность черной дыры пилотируемую экспедицию. Что предстоит испытать отважным астронавтам?
Если масса черной дыры не очень велика, то, приближаясь к горизонту событий, астронавты попадут в сферу действия могучих приливных сил. Эти силы обусловлены различием гравитационного воздействия на различные участки протяженного тела. Поэтому, чтобы с первых шагов не сорвать нашу экспедицию, выберем черную дыру достаточно большой массы – в этом случае величина приливных сил будет не очень значительной.
Передатчик, установленный на борту нашего звездолета, непрерывно посылает сигналы постоянной частоты. Эту частоту астронавты выверяют по собственным часам. Расчет, выполненный по формулам теории относительности, позволяет предсказать удивительный эффект: с приближением звездолета к горизонту событий интервалы между сигналами будут все время увеличиваться – с точки зрения земного наблюдателя. Но сами астронавты этих изменений не заметят ход их часов останется прежним.
Наконец, в тот момент, когда звездолет достигнет горизонта событий, с нашей точки зрения его часы остановятся навсегда – для нас звездолет будет казаться вечно зависшим над границей черной дыры. Те же самые события будут восприниматься совершенно иначе астронавтами, находящимися на борту звездолета. Их часы будут идти в прежнем темпе. Звездолет продолжит падение по направлению к центру черной дыры, но теперь для него пространственная координата – радиус – будет выполнять функцию времени. Что ждет наших астронавтов, решившихся на этот отчаянный шаг – пересечь горизонт событий? Некоторые теоретики утверждают: их путешествие будет невероятно увлекательным – они попадут в другую Вселенную. Возможен и другой теоретически мыслимый вариант: они окажутся в той же самой Вселенной, но в совершенно иной исторической эпохе. Быть может, в далеком прошлом, а может – ив будущем. Не является ли черная дыра машиной времени? Кто знает…
НУЖНО ЛИ НАЗЫВАТЬ ИХ ЧЕРНЫМИ?
Если вблизи черной дыры находится какое-то другое небесное тело или просто сильно разреженный межзвездный газ, то они будут притягиваться ею и падать, словно в бездонную пропасть. Масса черной дыры будет при этом возрастать, возрастет и площадь горизонта событий. То же самое произойдет, если сольются две черные дыры.
А вот уменьшиться площадь горизонта событий не может ни при каких обстоятельствах. В этом отношении ее поведение напоминает фундаментальное свойство совершенно другой физической характеристики – энтропии. Второе начало термодинамики гласит: в любом физическом процессе энтропия только увеличивается либо остается постоянной. Но точно так же ведет себя и горизонт событий черной дыры.
Теоретики воспользовались этой аналогией, чтобы лучше разобраться в свойствах черных дыр. Проводя эту параллель и приписывая черной дыре конечное значение энтропии, приходится признать, что в этом случае черная дыра должна также иметь и конечную температуру. Но если у черной дыры есть температура, то она должна излучать тепловую энергию, т. е. делать то, на что она не способна в принципе. Возник, казалось бы, почти неразрешимый парадокс!
Снять этот парадокс сумел английский физик-теоретик Стивен Хокинг, рассмотревший квантовые свойства черных дыр. Один из основных постулатов квантовой механики – соотношения неопределенности Гейзенберга – гласит: нельзя одновременно с высокой точностью определить координаты и скорость частицы. Чем точнее мы определяем координаты, тем более неопределенным оказывается значение скорости. И наоборот: попытка поточнее измерить скорость неизбежно ведет к тому, что значения координат все более и более размываются в пространстве. То же самое происходит с измерением энергии частицы в некоторый момент времени.
Развивая этот подход, Хокинг показал, что вблизи горизонта событий должны испускаться частицы – фотоны, электроны и нейтрино, причем распределение их энергии по спектру должно соответствовать излучению абсолютного черного тела. Это «черное тело» не следует путать с самой черной дырой – близким к «черному» спектром излучения обладает, например, наше Солнце.
Каков же механизм того, что черная дыра, которая никак не может испускать никаких частиц, все-таки делает это? Здесь вступает в игру еще один физический объект, которого мы пока не упоминали, – квантовый вакуум. Космическое пространство снаружи горизонта событий нельзя считать абсолютной пустотой: из соотношений Гейзенберга следует, что он буквально «кипит» частицами, которые на ничтожно малое время возникают, чтобы тут же исчезнуть, аннигилировать.
Рассмотрим пары частиц и античастиц – из-за краткого времени жизни их называют виртуальными, – которые возникают в квантовом вакууме на горизонте событий. Приливные силы в этой области настолько велики, что могут инициировать еще более быстрый процесс – разбегание пары частица-античастица. При этом один из партнеров вследствие разбегания может оказаться за горизонтом событий и тогда аннигиляция пары, нормальная в обычных условиях, оказывается невозможной. В результате некоторое количество оставшихся «одинокими», а потому переставших быть виртуальными частиц может вылететь из окрестности черной дыры и быть зарегистрированным внешним наблюдателем. В результате черная дыра, с его точки зрения, перестает быть по-настоящему черной, т. е. невидимой.
«Классическая» черная дыра, полностью изолированная от остальной части Вселенной, должна существовать вечно. Иное дело «светящаяся» черная дыра – теряя энергию в соответствии с механизмом, указанным Хокингом, она в конце концов должна будет полностью испариться.
Правда, время жизни такой черной дыры сильно зависит от ее массы. Например, черная дыра с массой, равной солнечной, просуществует 10 66лет, т. е. практически вечно. Другой будет судьба черных дыр с малой массой. По расчетам Хокинга, гигантские флуктуации плотности в первые моменты после Большого Взрыва могли привести к возникновению черных мини-дыр микроскопических размеров, например, с радиусом порядка 10 -13см и массой 10 12кг. Температура такой первичной черной дыры составляла бы 10 11градусов, а мощность испускаемых ею электронов, фотонов и других частиц – примерно 6 миллионов кВт, как у самых крупных современных гидроэлектростанций.
Время жизни микроскопической черной дыры будет небольшим, и ее существование завершится взрывным выбросом остатков ее массы и энергии. По некоторым оценкам, энергия, которая должна выделиться при таком взрыве, эквивалентна взрыву 10 миллионов водородных бомб мощностью в одну мегатонну тротилового эквивалента каждая. По другим оценкам, эта энергия должна быть намного больше.
Астрофизикам очень хочется наблюдать процесс такого взрыва. Наблюдение за этим гипотетическим процессом несомненно обогатило бы физику новыми, совершенно нетривиальными знаниями. Единственное условие, взрыв должен произойти подальше от Земли. Близкий взрыв был бы смертельно опасен для всего живого – мощность возникающего при этом жесткого гамма-излучения достигает многих тысяч мегаватт.
А КАК НАСЧЕТ БЕЛЫХ ДЫР?
Уравнения общей теории относительности, из которых следует возможность существования черных дыр, симметричны по отношению к направлению хода времени. Эти уравнения можно использовать для расчета процессов, направленных в будущее, но точно так же и для процессов, направленных в противоположную сторону, т. е. в прошлое.
Черные дыры образуются в результате коллапса – гравитационного схлопывания вещества, которое затем оказывается скрытым за горизонтом событий. Нельзя ли предположить, что при обратном ходе времени процесс коллапса пойдет в противоположном направлении, т. е. возникнет объект, не поглощающий, а выбрасывающий вещество? Такой объект логично назвать белой дырой.
По мнению теоретиков, существование белых дыр могло бы объяснить некоторые космические явления, сопровождающиеся большим выделением энергии: квазары, феномен «взрывающихся галактик» и другие. Эти проблемы исследовал отечественный астрофизик И. Д. Новиков, который предположил, что белые дыры могли бы возникнуть в первые минуты существования нашей Вселенной после Большого Взрыва, когда плотность вещества была экстремально высока.
Но есть и другие процессы, которые могут приводить к возникновению белых дыр. Если в какой-либо другой Вселенной происходит схлопывание, коллапс вещества в черную дыру, то в нашей Вселенной это может привести к возникновению белой дыры. Этот гипотетический эффект – следствие симметрии уравнений теории Эйнштейна относительно времени. Если такой эффект соответствует реальности, то он хорошо укладывается в концепцию множественности миров, которые существуют полностью изолированно друг от друга, а единственный способ контакта между ними состоит в использовании этого весьма экзотического канала, образованного парой черной и белой дыр.
Однако последующие более обстоятельные исследования этой проблемы привели теоретиков к выводу, что белых дыр в нашей Вселенной, скорее всего, нет.
СУЩЕСТВУЮТ ЛИ ЭТИ ОБЪЕКТЫ?
У теоретиков этот вопрос сомнений не вызывает: черные дыры обязательно должны существовать. Но решающее слово принадлежит наблюдателям. А у них уверенности значительно меньше: обнаружение черных дыр – задача не из простых.
Один из способов решения этой задачи – использование эффекта гравитационной линзы. Из теории относительности следует, что луч света, проходя вблизи массивного тела, будет испытывать отклонение. Черная дыра, размеры которой относительно невелики, а масса, напротив, весьма значительна, в состоянии сфокусировать лучи света, идущие от расположенного за нею источника. В зависимости от того, как расположены относительно друг друга этот источник, черная дыра и наблюдатель, регистрируемое изображение источника будет иметь разную форму – кольца, двух полумесяцев, сдвоенное изображение и т. п.
И действительно, в одном случае наблюдается сдвоенное изображение одного и того же квазара. Однако роль гравитационной линзы при этом играет, скорее всего, массивная галактика, лежащая на пути идущего к нам от этого квазара света. Но возможны и иные случаи.
Еще один способ обнаружения черных дыр – по их сильному воздействию на другие звезды, находящиеся поблизости. Черные дыры должны заметным образом искажать траекторию этих звезд. А сами черные дыры должны проявлять себя как мощные и компактные источники излучения.
В настоящее время астрофизики называют целый ряд таких источников, которые, возможно, и являются черными дырами. Один из них – мощный источник рентгеновского излучения в созвездии Лебедя – Лебедь Х-1. Он совпадает с горячим голубым сверхгигантом, который представляет собой двойную звезду. Один компонент этой системы – видимая звезда с массой, в 20–30 раз превышающей солнечную. Масса невидимого компонента с периодом обращения около 6 земных суток превышает солнечную на порядок, т. е. значительно больше предела, установленного для белых карликов и нейтронных звезд. С большой степенью вероятности можно считать, что этот объект и является черной дырой.
Высказана и такая гипотеза: черный спутник может быть и у нашего Солнца. Судя по данным некоторых астрофизических наблюдений, Солнечная система в целом испытывает небольшое ускорение, которое можно объяснить влиянием массивного невидимого тела. Этим телом может быть черная дыра с массой, значительно превышающей массу Солнца, находящаяся от него на расстоянии 9000 астрономических единиц.
МОГУТ ЛИ ЧЕРНЫЕ ДЫРЫ ПРИГОДИТЬСЯ НА ПРАКТИКЕ?
Прочитав этот вопрос, кое-кто из читателей, возможно, усмехнется: ну для чего понадобятся эти ни с чем не сходные и крайне экзотические объекты? И ошибется. Высказано немало интересных предложений, как можно было бы использовать черные дыры для решения насущных прикладных задач.
Вот одна из таких идей: черную дыру, находящуюся неподалеку от Солнца, можно было бы использовать для снабжения Земли электроэнергией. Одна из технических реализаций этой идеи выглядит следующим образом. Допустим, что мини черную дыру удалось доставить на геостационарную орбиту, находящуюся на расстоянии 36 ООО км от поверхности Земли. Испускаемую этой черной дырой энергию можно преобразовать в микроволновое излучение, сфокусированный поток которого будет направлен на Землю. Нам останется только преобразовать его в электрический ток промышленной частоты.
Но если удастся обнаружить подобную черную дыру где-нибудь не слишком далеко от Солнца, то как доставить ее на геостационарную орбиту? Можно «подогнать» к ней астероид, более массивный, чем сама дыра. Сделать это возможно с помощью установленных на нем реактивных двигателей. А когда черная дыра начнет падать на астероид под действием сил тяготения, ему следует придать ускорение в нужном направлении, используя те же двигатели.
Известны и еще более необычные предложения по использованию черных дыр на практике. Если черные дыры, словно пуповина, связывают между собой различные Вселенные, то их можно применить для полетов между ними. Н. С. Кардашев высказал даже предположение, что развитые космические цивилизации уже использовали этот способ, чтобы покинуть нашу Вселенную. Именно по этой причине астрономы до сих пор так и не смогли обнаружить никаких следов их пребывания в нашем мире.
Так что черные дыры – это не только один из самых уникальных объектов, с которыми имеет дело современная астрофизика. Нельзя исключить, что в следующем тысячелетии люди научатся применять их для своих хозяйственных нужд. А поскольку черные дыры родились на кончике пера теоретика, мы можем утверждать вслед за великим ученым: нет ничего более полезного для практики, чем хорошая теория.
«Самое прекрасное и глубокое переживание, выпадающее на долю человека, – это ощущение таинственности».
Альберт Эйнштейн