355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Антонио Дуран » Истина в пределе. Анализ бесконечно малых » Текст книги (страница 9)
Истина в пределе. Анализ бесконечно малых
  • Текст добавлен: 26 сентября 2016, 15:40

Текст книги "Истина в пределе. Анализ бесконечно малых"


Автор книги: Антонио Дуран


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 9 (всего у книги 12 страниц)

«Скромность есть добродетель, но излишняя робость есть недостаток»

С 1691 года Ньютону все чаще советовали опубликовать свои работы. Наиболее настойчивым был Джон Валлис; он особенно настаивал на публикации Epistolae prior и Epistolae posterior.

В 1695 году он известил Ньютона о том, какое признание получил Лейбниц за открытие своего метода исчисления: «От ваших друзей из Голландии мне стало известно, что ваши флюксии были встречены там с великим одобрением под наименованием дифференциального исчисления Лейбница. <…> Вы недостаточно заботитесь о своей репутации и о репутации страны, если позволяете, чтобы подобные ценности находились рядом с вами неподвижно, пока кто-то другой не снискает славу, которая должна принадлежать вам. Я позаботился о том, чтобы добиться справедливости по этому вопросу, и теперь жалею, что не опубликовал эти два письма слово в слово». Валлис продолжал настаивать: «Скромность есть добродетель, но излишняя робость, особенно в наше время, есть недостаток». Два года спустя Валлис сообщил Ньютону, что собирается опубликовать Epistolae prior и Epistolae posterior, если только не получит явного на то запрета от Ньютона. В итоге письма были опубликованы в полном объеме в 1699 году в одном из томов собрания сочинений Валлиса по математике. В него также были включены копии ответных писем Лейбница. Валлис получил разрешение Лейбница на публикацию этих писем заранее и потратил на это намного меньше усилий, чем на получение разрешения от Ньютона.

Из писем Ньютона и Лейбница, опубликованных Джоном Валлисом, стало очевидно, что Ньютон первым открыл свой метод исчисления. 

Эта публикация изменила положение дел в споре за первенство: Валлис, пусть и не совсем точно, продемонстрировал, какими результатами располагали Ньютон и Лейбниц в 1676 году. Важнее всего было то, что впервые были преданы гласности документы, доказывающие, что Лейбниц опубликовал свою версию раньше, но Ньютон совершил открытие первым, сообщив об этом, пусть и неявно, Лейбницу по его просьбе. Летом 1699 года Лейбниц пишет: «Валлис попросил у меня разрешения на публикацию моих старых писем. <… > Поскольку мне нечего опасаться… я подтвердил, что он может публиковать все, что посчитает нужным». Очень скоро оказалось, что Лейбниц напрасно считал, что ему «нечего опасаться».


«По когтям узнают льва»

В тот же период произошел инцидент, который в высшей степени способствовал обострению дискуссии. Речь идет о знаменитой задаче о брахистохроне, предложенной Иоганном Бернулли в июне 1696 года. В ней требовалось найти кривую, двигаясь по которой исключительно под действием силы тяжести, тело пройдет путь из точки A в точку B за наименьшее время. В мае 1697 года Лейбниц опубликовал присланные ему решения задачи. Всего было получено четыре решения, авторами которых были сам Лейбниц, маркиз Лопиталь, Якоб Бернулли и автор задачи, Иоганн Бернулли. Также было прислано решение неизвестного автора, которое было впервые опубликовано в январе 1967 года в журнале «Философские записки». Как мы знаем, этим неизвестным автором был Ньютон. Увидев простое решение этой задачи, содержавшее всего 77 слов, Иоганн Бернулли угадал автора. Он сказал: «Tanquam ex ungue leonem» – «По когтям узнают льва». Во всех решениях, за исключением предложенного Лопиталем, искомой кривой являлась циклоида.

Продолжение истории, о котором мы расскажем далее, зафиксировано в воспоминаниях племянницы Ньютона и в переписке Иоганна Бернулли и Лейбница. Возможно, целью задачи, предложенной Иоганном Бернулли, было подтвердить возможности ньютоновского анализа бесконечно малых. В письме Иоганну Бернулли, датированном февралем 1697 года, Лейбниц писал, что только он сам, братья Бернулли, маркиз Лопиталь и Ньютон были способны решить эту задачу, так как в то время только им был известен анализ бесконечно малых, необходимый для ее решения. Именно по этой причине, как объяснял Лейбниц, эту задачу в свое время не смог решить Галилей: ему был неизвестен математический анализ.

Таким образом, неизвестным автором решения был не кто иной, как Ньютон, который в то время занимал должность смотрителя Монетного двора и не отошел от научной деятельности. Ньютон получил письмо с задаче о брахистохроне 29 января 1697 года. По рассказам его племянницы, письмо попало в руки Ньютона в четыре часа дня, когда тот усталый вернулся из Монетного двора – в то время полным ходом шла чеканка монет нового образца.

Спустя 12 часов, то есть в четыре часа утра, решение было готово. Племянница Ньютона не знала, что он вполне мог отыскать решение в глубине своей памяти и вспомнить, что искомой кривой является циклоида. Как пишет Уайтсайд, Ньютон должен был заметить, что задача схожа с задачей о поиске тела вращения, обладающего наименьшим сопротивлением течению однородного потока. Эту задачу он решил более десяти лет назад, когда работал над «Началами».

Но история на этом не заканчивается. Когда Лейбниц представлял полученные решения задачи о брахистохроне, он упомянул, что заранее знал, кому удастся найти решение: «Разумеется, не будет недостойным указать, что задачу удалось решить только тем, на кого я указал наперед. В действительности это те, кто достаточно глубоко проник в тайны нашего дифференциального исчисления. Так, наряду с братом автора [задачи] и маркизом Лопиталем из Франции я упомянул… господина Ньютона». Лейбниц не включил в список Фатио де Дюилье, и, кроме того, из его фразы можно было сделать вывод, что Ньютон является его учеником.


Фатио атакует, Лейбниц контратакует

Фатио не смог стерпеть подобной ремарки. Он подготовил ответ и опубликовал его в Лондоне в 1699 году. В нем говорится: «Достопочтенный господин Лейбниц, быть может, задастся вопросом, от кого он узнал об использованном им исчислении. Во всех отношениях его общие принципы и большинство его правил открыл я сам, начиная с апреля 1687 года и в течение последующих лет. В то время я думал, что никто, кроме меня, не использовал это исчисление. Господин Лейбниц не был бы менее неизвестен мне, если бы его вообще не существовало. Он может похвастаться многими учениками, но я не вхожу в их число. Это станет известно, если будут опубликованы письма, которыми я обменивался с достопочтенным господином Гюйгенсом. Однако факты таковы, что первым это исчисление открыл Ньютон много лет назад. Лейбниц, второй, кто открыл исчисление, мог заимствовать что-либо у Ньютона, но это я оставляю на суд тех, кто видел письма господина Ньютона и его рукописи. Ни скромнейшее молчание Ньютона, ни неизменное тщеславие Лейбница, который при каждом удобном случае приписывает себе авторство этого исчисления, не обманут никого, кто изучит доступные материалы подобно тому, как это сделал я».

Возможно, дело еще более омрачила дружба Фатио и Ньютона. Лейбниц мог посчитать, что Ньютон убедил Фатио обвинить его в плагиате, хотя Фатио вполне мог действовать самостоятельно, желая понравиться Ньютону.

Несмотря на прямое обвинение в плагиате, скандал не спешил разгораться. Лейбниц опубликовал ответ в журнале Acta eruditorum и отметил, что обвинения Фатио могли быть продиктованы кем-то другим: «Прошу простить меня, если не отвечу на все ваши утверждения, пока вы не докажете, что не действуете по чьему-либо указанию, и в особенности по указанию Ньютона, с которым я никогда не враждовал». Лейбниц настаивал на том, что методы анализа были открыты им независимо: «Что же до меня, то я при каждом удобном случае заявлял о его [Ньютона] значительных заслугах, и это известно ему, как никому другому. Он также объявил об этом публично, когда в 1687 году в своих «Началах» опубликовал некоторые свои геометрические открытия, которые совершили мы оба. При этом никто из нас не приписывал себе заслуг другого, но объяснял открытия лишь результатом собственных измышлений, которые я изложил десять лет назад».

Решение Ньютона включить в «Оптику» (этот труд был опубликован в 1704 году) два приложения, в особенности то из них, что было посвящено задаче о квадратуре, несомненно, было продиктовано желанием прояснить ситуацию, создавшуюся после обвинений, выдвинутых Фатио. Причиной также были неоспоримые успехи Лейбница в области анализа: благодаря ему и его ученикам, Якобу и Иоганну Бернулли, а также маркизу Лопиталю, математический анализ в последнее десятилетие XVII века превратился в мощное средство, доступное любому желающему изучить его. Как писал Альфред Руперт Холл, автор самого полного исследования, посвященного полемике Ньютона и Лейбница, «наиболее существенные разногласия между ними были связаны с оценкой математического анализа: был ли он всего лишь логичным продолжением уже известных методов анализа или чем-то особенным, радикально отличавшимся от всего, что было известно до этого. Ньютон не считал математический анализ чем-то особенным, хотя, разумеется, осознавал значимость своих открытий. Можно с уверенностью сказать, что не последнюю роль в этом сыграли успех Лейбница и его последующая слава. Лейбниц считал математический анализ гигантским шагом вперед, сравнивая его с появлением алгебры; с созданием анализа математика изменилась бесповоротно».

В предисловии к «Оптике» Ньютон объясняет, почему он добавил к своей работе примечания, которые не вошли во второе издание, опубликованное в 1717 году: «В письме, написанном господину Лейбницу… я упомянул о методе, благодаря которому нашел некоторые общие теоремы, связанные с квадратурой криволинейных фигур. <…> Так как несколько лет назад я предоставил ему рукопись, содержащую эти теоремы, а затем обнаружил, что часть ее содержимого была скопирована, я, пользуясь случаем, публикую свою рукопись». Прямое обвинение в плагиате, выдвинутое Ньютоном, было направлено не Лейбницу, а шотландскому врачу Джорджу Чейни, который в 1703 году опубликовал книгу, где перечислил и систематизировал различные результаты, связанные с вычислением квадратур, авторами которых были Ньютон, Лейбниц, Джеймс Грегори, Иоганн Бернулли и Джон Крэг, Лейбниц подготовил краткое изложение «Рассуждения о квадратуре кривых» для Acta eruditorum и опубликовал его без указания имени автора в январе 1705 года. Хотя он впоследствии отрицал авторство этой статьи, один из биографов Лейбница Эдуард Гурауэр в середине XIX века обнаружил рукопись этой статьи с подписью Лейбница. Фраза, ставшая причиной полемики, звучит так: «Когда некая величина изменяется непрерывно, как, например, изменяется линия при движении описывающей ее точки, эти мгновенные изменения называются дифференциалами. <…> И, как следствие, появилось дифференциальное исчисление и обратное ему сумматорное исчисление. Элементы этого исчисления были опубликованы его изобретателем, господином Готфридом Вильгельмом Лейбницем. <…> Вместо дифференциалов Лейбница господин Ньютон применил и всегда применял флюксии. <…> Он элегантно использовал эти флюксии в своих «Математических началах», равно как и Оноре Фабри в своем Sinopsis geometrica заменил последовательное движение по методу Кавальери».

Как бы то ни было, эти строки написаны не с целью задеть кого-либо. Тезис «вместо дифференциалов Лейбница господин Ньютон применил и всегда применял флюксии» не предполагает, что дифференциал был открыт раньше, чем флюксия. Тем не менее Лейбниц использует латинское изречение, допускающее двойное толкование: adhibet, semperque adhibuit можно перевести как «применил и всегда применял» или «заменил и всегда заменял». Во втором случае фраза приобретает совершенно другую окраску, которая только усилится, если принять во внимание упоминания о Фабри и Кавальери: Ньютон в этом случае играет роль Фабри, Лейбниц – роль Кавальери. Фабри интерпретировал неделимые Кавальери в терминах флюксий. Не хотел ли Лейбниц сказать, что Ньютон интерпретировал дифференциал, введенный Лейбницем, в терминах флюксий?

Возможно, что Лейбниц не осознавал, что его фраза допускает двойное прочтение. По мнению Холла, наиболее вероятно, что он допустил «оговорку по Фрейду». Лейбниц позднее говорил, что это прочтение его слов было вызвано исключительно желанием развязать ссору. Он прояснил, что кто бы ни был автором этого документа, он использовал выражение adhibuit применительно к Ньютону, а применительно к Фабри использовал substituit. Следовательно, в случае Ньютона слово adhibuit следует понимать как «применять», и эти глаголы по отношению к Ньютону и Фабри употреблялись в совершенно разном смысле. Таким образом, не могло идти речи о каком-либо их сравнении. Как видим, стороны подробно рассматривали каждое слово, словно речь шла о городской войне дом на дом или улица на улицу.

Статья Лейбница сначала осталась без ответа. Возможно, Ньютон и его сторонники не сразу распознали двойное толкование фразы или, что более вероятно, они попросту не читали статью.

ОТВЕТ ЧЕЙНИ

Когда Ньютон в своей «Оптике» указал, что некоторые из его результатов были «скопированы», он имел в виду книгу Джорджа Чейни. Однако эта ремарка несколько несправедлива, поскольку Чейни не только скопировал результаты Ньютона, но и высказал похвалу в его адрес и совершенно искренне отметил: «Заявляю, что все, что было опубликовано другими приблизительно за последние 24 года касаемо этих и других схожих методов, является лишь повторением или следствием того, что господин Ньютон сообщил своим друзьям или опубликовал». На эти слова Лейбниц строго возразил: «Вы неумело пытаетесь приписать Ньютону авторство метода рядов с неопределенными коэффициентами, которые определяются путем сравнения членов ряда. Однако я опубликовал этот метод [в 1693 году], когда ни я, ни кто-либо другой, по меньшей мере публично, не заявлял о том, что господин Ньютон создал этот метод». И еще: «Возможно, господин Ньютон совершил некоторые открытия раньше, чем я, равно как и я совершил некоторые открытия раньше него. Разумеется, я не встретил никаких указаний на то, что ему было известно дифференциальное исчисление или нечто подобное раньше, чем мне».


Появление «обезьяны Ньютона»

Тем не менее три года спустя ответ последовал. Он был подписан именем шотландского математика Джона Кейля, который, скорее всего, стал неустанным автором нападок на Лейбница по решению самого Ньютона: «Боевой конь, – как пишет Ф. Мэнюэль, – столь ярый, что Ньютону порой приходилось натягивать вожжи». Иоганн Бернулли называл Кейля «обезьяной Ньютона». Хотя английское слово «аре», которое использовал Бернулли, также можно перевести как «подражатель», мы предпочли буквальный перевод, так как именно это значение имел в виду сам Бернулли.

ДЖОН КЕЙЛЬ (1671-1721)

Джон Кейль родился в декабре 1671 года в Эдинбурге. Он учился в Эдинбургском университете, где его наставником был Давид Грегори. Кейль находился в первых рядах сторонников недавно опубликованной ньютоновской философии. Он окончил Оксфорд, куда перешел при содействии Грегори, когда тот возглавил кафедру в этом университете. Кейль занимал этот пост с 1712 года до своей смерти в августе 1721 года. Он был избран членом Королевского общества в 1700 году. Кейль неустанно пропагандировал философию Ньютона, занимая в группе его сторонников особое место, будучи наиболее ярым участником дискуссий.

В начале 1709 года Кейль на страницах «Философских записок» обвинил Лейбница в плагиате: «Все эти предположения являются следствием известнейшей арифметики флюксий, которую, вне всяких сомнений, первым изобрел доктор Ньютон, в чем легко может убедиться всякий, кто ознакомится с письмами, опубликованными Валлисом. Эта же арифметика, но под другим названием и с другими обозначениями была впоследствии опубликована доктором Лейбницем».

«Философские записки» были журналом Лондонского королевского общества, поэтому обвинение в адрес Лейбница прозвучало, можно сказать, от имени всего Королевского общества. Поскольку Лейбниц, начиная со своего первого визита в Лондон в 1673 году, был членом Общества, в 1711 году он потребовал опровержения заметки Кейля. Лейбниц, скорее всего, не осознавал, что на спор об авторстве анализа бесконечно малых оказали влияние критики метафизических основ ньютоновской теории тяготения, принадлежавшие к числу сторонников Лейбница. С подобной критикой порой выступал и сам Лейбниц. К сожалению для него, когда он попросил защиты и поддержки в Королевском обществе, президентом которого был Ньютон, то не совсем понимал, что спор осложнит националистская подоплека и критика теории тяготения Ньютона, с которой выступали ученые континентальной Европы. Националистский подтекст прямо или косвенно присутствует во многих письмах и документах, опубликованных участниками спора. Например, Уильям Джонс в 1711 году писал Роджеру Котсу: «Мне особенно не о чем вам рассказать, разве что немцы и французы нападают на философию сэра Исаака Ньютона…». Лейбниц писал Иоганну Бернулли в 1713 году: «Уже много лет тщеславные и напыщенные англичане, включая достойнейших из них, не теряют возможности лишить авторства немцев и выдать их открытия за свои. <…> Теперь они хотят лишить Николаса Меркатора из Гольштейна славы первооткрывателя ряда и раздосадованы мной, поскольку я защищаю прекрасного человека и моего друга».

Гравюра, на которой изображено заседание Королевского общества, президентом которого был Ньютон, в Крейн-Корт. 

Вместо письма с объяснениями, которое Лейбниц попросил у Кейля, он получил совершенно иной ответ. На очередном заседании общества 24 мая 1711 года под руководством Ньютона были зачитаны новые обвинения, выдвинутые Кейлем в адрес Лейбница. Кейль писал: «Разумеется, заслуги Лейбница в области познания огромны, я признаю это, равно как и никто, кто прочел его труды, не может отрицать, что Лейбниц является экспертом в самых непонятных разделах математики. Поскольку он обладает столь неоспоримыми достоинствами, я не понимаю, почему он желает отнять заслуги других. <…> Так, поскольку этот блестящий персонаж подал апелляцию в Королевское общество и желает, чтобы я публично признал, что не имел намерений оклеветать его, я должен показать, чтобы снять с себя обвинения, что господин Ньютон является первым и истинным изобретателем арифметики флюксий, или дифференциального исчисления, что он отправил четкие и понятные указания по этому методу господину Лейбницу, и последнему не составило труда создать аналогичный метод».


Лейбниц попадает в недобрые руки Королевского общества

Когда Лейбниц получил письмо Кейля, то написал ответ, признавая, что математический анализ был открыт совместно: «Нет причины, по которой вам следовало бы сообщить, опровергнув восстановленный им [Кейлем] мой способ познания вещей, тому, который не имеет достаточно опыта, чтобы судить о том, как совершаются открытия. Моим друзьям известно, что я следовал своим путем и преследовал другие цели. С вашей стороны бессмысленно приводить в пример журнал Acta из Лейпцига в оправдание ваших слов, поскольку я не нахожу в нем ничего, что я позаимствовал бы у кого-либо. Напротив, каждому воздается по его заслугам. Я и мои друзья в различных случаях заявляли, что блестящий первооткрыватель флюксий совершил открытие собственными силами, использовав те же базовые принципы, что и мы. У меня есть не меньше прав, чем у него [Ньютона] заявлять, что именно я являюсь автором открытия».

Лейбниц обратился в Королевское общество с просьбой защитить его от нападок Кейля: «Я взываю к вашему чувству справедливости, чтобы решить, следует ли прекратить пустые и несправедливые оскорбления или нет. Считаю, что сам Ньютон не одобрил бы этого, поскольку он является достойным человеком и знаком с истинным положением дел. Надеюсь, что он свободно выскажет свое мнение по этому вопросу».

Следует привести мнение Ньютона о тех, кто совершил открытие с опозданием: «У того, кто совершил открытие вторым, нет прав на него. Единственное право принадлежит первооткрывателю, даже если второй совершил открытие независимо от него. Взять права первооткрывателя и разделить их между ними было бы несправедливо». Более того: «Тот, кто совершил открытие вторым, недостоин чести. У него нет прав и титулов. Что же мы в этом случае можем сказать о тех, кто даже не может с определенностью доказать, что именно они совершили открытие вторыми?»

Судьба Лейбница была предрешена. Чтобы успокоить спорящих, пишет Вестфолл, «Лейбниц предложил неожиданное решение для Ньютона и сам воззвал к справедливости Королевского общества. Точку в этом вопросе должно было поставить Общество». Была создана комиссия из друзей и защитников Ньютона. Чтобы создать какое-то подобие беспристрастности, в комиссию также вошел представитель Пруссии в Лондоне. Однако он стал членом комиссии лишь за неделю до того, как был вынесен окончательный вердикт, и, следовательно, не принимал особого участия в работе. Состав комиссии держался в секрете и стал известен лишь в середине XIX века.

Чтобы проверить все документы и вынести вердикт, комиссии потребовалось 50 дней. Итоговое заключение практически полностью составил сам Ньютон. Оно содержало четыре пункта и хотя не включало явных обвинений в плагиате в адрес Лейбница, в нем выражались достаточные сомнения, чтобы можно было сделать именно такой вывод. Последний пункт гласил: «Дифференциальный метод есть то же, что и метод флюксий, за исключением названия и нотаций. Господин Лейбниц назвал дифференциалами величины, которые господин Ньютон назвал моментами, или флюксиями, и обозначил их буквой d, в то время как господин Ньютон это обозначение не использовал. Поэтому мы считаем, что будет правильнее рассматривать вопрос не о том, кто открыл тот или иной метод, а о том, кто является первооткрывателем этого метода. Мы считаем, что те, кто считают господина Лейбница первооткрывателем, недостаточно осведомлены или не осведомлены вовсе о переписке, которую он вел много лет назад с господином Коллинзом и господином Ольденбургом, а также о том, что господин Ньютон создал этот метод за 15 лет до того, как господин Лейбниц опубликовал его в Acta eruditorum. По этим причинам мы признаем, что первооткрывателем является Ньютон, и считаем, что господин Кейль, утверждавший это же самое, не нанес господину Лейбницу никакого оскорбления».

Вердикт комиссии был дополнен документами и письмами, которые в нем упоминались (они были соответствующим образом отредактированы в интересах Ньютона), и опубликован Королевским обществом под названием Commercium epistolicum D. Johannis Collins, et aliorum de analysi promota в 1712 году. Было сделано несколько копий, которые не поступили в продажу, а были целенаправленно разосланы определенным людям. В 1722 году, спустя шесть лет после смерти Лейбница, Ньютон выпустил второе, расширенное издание, которое на этот раз поступило в продажу.

Commercium epistolicum был дополнен предисловием Ньютона, в котором «для удобства читателя» излагалась суть диспута.

«Если бы вы действовали по справедливости, вы уведомили бы меня о том, что Общество собирается подробно рассмотреть этот вопрос, – жаловался Лейбниц спустя полтора года после публикации этого однобокого заключения комиссии. – Вы должны были предоставить мне возможность изложить мою точку зрения и сообщить, не считаю ли я подозрительным кого-либо из судей. Вердикт был вынесен после того, как была выслушана лишь одна из сторон, поэтому заключение очевидно недействительно».

Документы, включенные в Commercium epistolicum, по разным причинам неадекватно отражали суть спора и поставили Лейбница в очень неудобное положение. Иоганн Бернулли заподозрил, что документы могли быть подделаны, о чем он уведомил Лейбница в 1714 году: «Некоторые из этих писем, изложенные в Commercium epistolicum, кажутся мне очень подозрительными. Если они не полностью сфабрикованы, то по меньшей мере отредактированы и фальсифицированы».

Лишь в середине XIX века, когда было выпущено собрание математических трудов Лейбница, появилось документальное подтверждение тому, что он совершил открытие анализа независимо от Ньютона. В некотором роде Commercium epistolicum и математические труды Ньютона, опубликованные с опозданием в начале XVIII века, склонили чашу весов на сторону Ньютона. Тем не менее в математическом споре победу одержал Лейбниц: благодаря своим последователям братьям Бернулли, а затем Эйлеру дифференциальное исчисление Лейбница совершило триумфальное шествие на протяжении XVIII века, и в начале XIX века даже англичане признавали преимущество математиков континентальной Европы.

ОДИН СПОР, ДВЕ ТОЧКИ ЗРЕНИЯ

Ньютон неизменно придавал дискуссии драматизм. Причиной этому, по мнению Ф. Мэнюэля, была травма, нанесенная ему разрывом с матерью в детстве: «Когда у него пытались что-то отнять, он реагировал неистово и с ненавистью, вызванной этой первой и серьезной потерей». Лейбниц также очень серьезно относился к спору, однако при случае позволял себе упоминать о нем в шутливой форме: «Невозможно сообщить полную информацию вкратце и невозможно избежать того, что судьи часто зевают, когда рассматривается столь длительное и объемное дело, как наше. Однако… можно поступить подобно обувщику из Лейдена… Он не упускал случая посетить публичные диспуты в Университете. Наконец кто-то из его знакомых спросил, знает ли он латынь. «Нет, – ответил он,– и я не возьму на себя труд изучить ее». – «Но почему вы неизменно приходите в эту аудиторию, где все дискуссии ведутся на латыни?» – «Поскольку мне нравится быть судьей в спорах».– «Но как вы можете судить, если не знаете, о чем идет речь?» – «У меня есть другой способ определить, на чьей стороне правда».– «Каков же этот способ?» – «Когда я вижу, как кто-то сердится и впадает в ярость, я заключаю, что он неправ».


    Ваша оценка произведения:

Популярные книги за неделю