355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Занимательно о космогонии » Текст книги (страница 9)
Занимательно о космогонии
  • Текст добавлен: 26 сентября 2016, 15:21

Текст книги "Занимательно о космогонии"


Автор книги: Анатолий Томилин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 9 (всего у книги 15 страниц)

Расчеты на ЭВМ показывают, что во время перемешивания должно происходить резкое увеличение потока нейтрино, после чего его интенсивность также резко спадает и потом в течение длительного срока постепенно нарастает снова, подбираясь к нормальному уровню.

А теперь представим себе, что сравнительно недавно в недрах Солнца произошло перемешивание. Наши приборы должны регистрировать уменьшившийся поток нейтрино. (Как это было в опыте Р. Дэвиса.) А свет? Свет мы еще долгие годы будем получать от Солнца прежний, пока результаты процесса перемешивания не скажутся на внешней оболочке светила. Но наступит время, когда его количество начнет уменьшаться, а поток нейтрино к той поре, возможно, восстановится.

Если согласиться с тем, что описанное явление в жизни Солнца периодически повторяется, а от количества света, как известно, зависит жизнь на Земле, то не поискать ли в прошлом каких-либо указаний на то, что такие или похожие явления уже были?

Оказалось, можно! Каждые 250 миллионов лет на поверхности нашей планеты наступают ледниковые периоды. Предположения о причинах, их вызывающих, существуют разные. Правда, увязывая Великие Обледенения с циклами перемешивания, специалисты наталкиваются на некоторые затруднения. Но тут виновата прежде всего неоднозначность «времени Кельвина – Гельмгольца», о котором мы уже говорили, хотя есть основания считать эти затруднения временными. А пока гипотеза «перемешивания» признается далеко не всеми, и проблемы, с нею связанные, находятся в состоянии дискуссии.

Пока теоретики спорят, развивающаяся наука на базе новой техники подбрасывает им все новые и новые факты. Наблюдая солнечные вспышки, экипаж «небесной лаборатории» «Скайлэб» обнаружил любопытное явление. Оказалось, что одна солнечная вспышка может вызвать другую на ином удаленном участке солнечной поверхности. При вспышке образуется гриб, подобный грибу ядерного взрыва. Во время одного из сеансов наблюдения астронавты неожиданно увидели в короне Солнца огромный «пузырь». Скорее всего что он возник как результат мощной вспышки на другой, невидимой с Земли солнечной стороне.

Фотографируя протуберанцы, астронавты «Скайлэба» и советские космонавты с «Салюта-4» обнаружили немало нового и пока не объяснимого в деятельности нашего светила. Однако пока мы должны констатировать, что никаких прямых экспериментальных подтверждений, что в его недрах бушует именно термоядерный пожар, нет! Но ведь все теории построены именно на этом предположении. Как же относиться к ним? Вот так и относиться, не принимая ничего на веру. Наука и вера – понятия несовместимые. Впрочем, тут уж автор начинает эксплуатировать рецепты «законов Паркинсона», гласящие, что «любое утверждение становится истиной после 1227 повторений». Почему именно после 1227? А попробуй, проверь…

Звезды в ассортименте

Ассортиментом в торговле называют набор различных видов и сортов товаров. Мы, конечно, торговать звездами не собираемся. Но в наши дни астрономических конкурсов в вузы торговли подобные термины особенно популярны. А мы с вами стремимся к доходчивости и занимательности.

Итак, для сравнения звезд между собой у нас есть один эталон – Солнце. Солнце – рядовая звезда. Солнце – мерило звезд. Но прежде чем начать работу по сравнению, неплохо, пожалуй, внести некоторые уточнения. Касаются они прежде всего блеска Солнца и звезд. Вот как выглядят, например, эти величины для нашего светила и ряда хорошо знакомых звезд северного неба:

Солнце –26 m,8

Сириус –1 m,43

Вега +0 m,04

Полярная +2 m,01

(Приведенные цифры могут несколько отличаться в зависимости от выбранного справочника.) Здесь буква m, как мы уже говорили, называется звездной величиной. Интервал в одну звёздную величину соответствует разнице в блеске двух объектов в 2,512 раза. Эта величина связана с психофизиологическим законом Вебера – Фехнера. Закон утверждает, что если раздражающий фактор меняется в геометрической прогрессии, то соответствующее ему ощущение изменяется в арифметической прогрессии. У нас раздражающий фактор и есть блеск звезды.

Пользуясь указанным соотношением, легко вычислить, что Полярная звезда кажется нам в шесть раз слабее Веги, Вега – в четыре раза слабее Сириуса и так далее. Однако видимый блеск звезд зависит не только от их действительной светимости, но и от расстояния. Поэтому для сравнения между собой по силе света звезды надо прежде всего отодвинуть на одинаковое стандартное расстояние. Оно выбрано в десять парсек, или 32,6 светового года. Приведенная к этому расстоянию звездная величина называется абсолютной – и обозначается буквой М.

А теперь по всем правилам отодвинем избранные четыре звезды на требуемое расстояние и посмотрим, что произойдет.

Батюшки! Как изменилась картина! На первое место вышла Полярная, которая стала светить куда ярче Сириуса. Обогнала его и Вега. А Солнце? Где наше солнышко? Оно почти незаметно из такой дали. Чтобы окончательно убедить читателя в относительности того, что он видит на небе, приведем еще один пример. В созвездии Орион есть звезда Ригель, по наблюдаемой яркости она занимает седьмое место. Но если сравнить ее истинную светимость с солнечной, окажется, что Ригель светит примерно в 23 тысячи Солнц.

По диаметру наше Солнце тоже весьма средненькая звездочка. Бывают и больше, даже весьма «и больше». Такие светила, как VV Цефея, S Золотой рыбы и Эпсилон Возничего имеют диаметры в тысячи раз больше, чем у Солнца. Можете вы представить себе звезду, диаметр которой равен поперечнику всей солнечной системы, ограниченной орбитой Плутона? При этом масса такого светила превышает массу нашего Солнца всего в несколько десятков раз, иначе звезда будет неустойчивой?

Значит, любой сверхгигант – это одна видимость. Чтобы не оказаться чересчур тяжелым, он имеет плотность, которая вполне может поспорить с тем высоким вакуумом, которого мы достигаем в электронных приборах, откачивая из них воздух на дорогостоящих насосах.


А встречаются и звезды-крошки с диаметром в 15–20 километров, но с массой, опять же ненамного отличающейся от массы Солнца. Подумайте сами, какая у них может быть плотность! Позже, когда разговор пойдет о сверхплотных телах, некоторые ошеломляющие цифры мы приведем…

Весьма существенно различаются звезды и по цвету. Это только невнимательному глазу кажутся они все одинаковыми. Астрономы разбили все существующие оттенки звездного цвета на 13 баллов и внимательно следят за их изменениями. Почему это так важно? Потому что цвет меняется соответственно температуре поверхности звезды. Из всех известных до сего дня наблюдаемых звезд самая холодная Хи из созвездия Лебедя. Цвет ее темно-красный, а температура порядка 1600 градусов по шкале Кельвина. Наиболее же горячими оказываются ядра планетарных туманностей; судя по голубовато-белому цвету, температура их доходит до 100 тысяч градусов.

Но самой главной характеристикой и температуры, и физико-химического состояния звезд являются их спектры поглощения. Вид звездного спектра зависит от многих причин. Тут и различия физических свойств звездной атмосферы из-за разных температур и давлений, и различия в химическом составе, влияют на спектр магнитные и электрические поля звезды, скорость ее вращения и многие другие причины. Очень важно, конечно, разобраться, что, как, от чего и насколько зависит, увидеть все важнейшие характеристики звезды как на ладони. Звездные спектры оказывают в этом деле ученым неоценимую услугу.

Сначала казалось, что безбрежный звездный океан вообще не может быть классифицирован в человеческом понимании. Но постепенно выяснилось, что большинство звезд можно объединить в сравнительно немногое количество классов. Сейчас принята так называемая гарвардская спектральная классификация. В ней десять классов, обозначенных латинскими буквами: O, B, A, F, G, K, M( N, R, S). Студенты, чтобы запомнить порядок следования спектральных классов, придумали мнемоническую фразу, действующую безотказно: «Один Бритый Англичанин Финики Жевал Как Морковь». Пройдут годы, можно забыть, чем отличается один спектральный класс от другого, но всегда при виде вышеуказанной последовательности букв магическая фраза вспыхивает в памяти, как огненные письмена на пиру валтасаровом. Правда, остаются еще три дополнительных класса холодных звезд N, R, S, но то ли на них фантазии не хватило, то ли слишком редко встречались они студентам на экзаменах. Скоро, однако, десяти классов оказалось мало. Пришлось каждый разбить еще на десять подклассов. Получилась длинная спектральная лесенка из сотни ступенек. Не все они заполнены равномерно. Есть пустые, а есть и такие, на которых как в автобусе в часы «пик».

Самые горячие звезды объединены в класс О. В следующих классах температура снижается.

В начале нашего столетия два астронома Эйнар Герпшпрунг в Дании и Г. Рессел, о котором мы уже говорили, независимо друг от друга составили любопытные зависимости. На диаграммах они отложили по горизонтальной оси спектральные классы, а по вертикали – светимости, или абсолютные звездные величины. Можно было ожидать, что все поле диаграммы равномерно засеется точками звезд. На деле же получилось совсем не так. Подавляющее большинство звезд расположилось длинным хвостом по диагонали от верхнего левого угла диаграммы к нижнему правому. Эту диагональ назвали главной последовательностью, на которой где-то в середине ее затерялось наше Солнце.

Прежде всего на диаграмме расположились сверхгиганты и яркие гиганты. В левой части главной последовательности собрались горячие голубые звезды. За ними по степени уменьшения температуры вправо и вниз расположились белые звезды, потом желтые карлики, ниже красные звезды, и, наконец, совсем уж тусклые красные карлики заняли нижний угол диаграммы.

Результаты этой работы вызвали в астрономическом мире прямо-таки ликование. Ну еще бы: ведь в те годы считалось, что главным источником энергии звезды является ее гравитационное сжатие. И диаграмма вроде бы подтверждала эту гипотезу. Сжимаясь, каждая звезда проходила все этапы эволюции: от протозвезды к мрачному багрово-красному сверхгиганту, потом, по мере дальнейшего разогрева, ее цвет становился желтым и звезда получала название желтого гиганта, после чего она становилась голубовато-белой, ослепительно яркой; и горячей. С этого момента энергии сжатия на нагрев хватать переставало, и звезда, перейдя в разряд желтых карликов, начинала потихоньку остывать, становясь последовательно желтым карликом, красным карликом и в конце концов черным карликом. На этом жизненный путь звезды заканчивался!

Очень стройная гипотеза и диаграмма «Г – Р», как стали ее называть специалисты по именам создателей, весьма наглядно представляла этот путь. Разогреваясь, звезда двигалась в верхней части диаграммы справа налево, пока не достигала начала диагонали. Затем, в процессе остывания, начинала скользить по главной последовательности вниз. Тут все находило объяснение; даже незначительный разброс масс. Действительно, если все стадии развития проходила одна и та же звезда, то не мудрено, что массы сверхгигантов немногим отличаются от масс карликов. Не то что объемы звезд, или их плотности…

Однако любая гипотеза хороша, пока не высказана вслух. Скоро обнаружилось, что существует немало звезд, не влезающих в главную последовательность. Диаграмма «Г – Р» распалась на ряд иных последовательностей. А там и эволюция звезд оказалась куда сложнее, чем спокойное сжатие и скольжение по главной последовательности от тепла к холоду. Звезды, сидящие совсем рядом на диагонали, вопреки ожиданиям не обнаруживали никаких родственных черт. Тут были и старые, заслуженные ветераны неба и молодые, недавно образовавшиеся светила. Потом А. Эддингтон, исполненный самых лучших намерений, решил хоть как-то рассчитать соотношение «масса – светимость». И пришел к неожиданному выводу, что карлики в принципе могут быть горячее гигантов.

В общем, что ни год, то все новые и новые несоответствия гипотезы «скользящей эволюции» лишали астрономов покоя. В конце концов от нее пришлось отказаться. Но диаграмма-то «Г – Р» была построена по данным наблюдения! И поэтому она осталась. Мало того, она по-прежнему играет чрезвычайно важную роль в астрофизике, став даже богаче содержанием и… увы, сложнее. Читатель сам увидит, как ее призрак будет стоять за многими рассуждениями, которые ожидают его в последующих разделах нашей книги Нет, в науке, как в образцовом хозяйстве, ничто не пропадает бесследно. Можете поверить.

Классическое направление звездной космогонии

В середине XX века специалисты по звездной астрономии разработали более или менее надежные способы оценки возрастов отдельных скоплений. Началась новая жизнь и у диаграммы «Г – Р». Астрономы стали строить ее не для всех звезд, скажем, Галактики, сразу, а для отдельных скоплений, в которые входят звезды-ровесники. Это дало множество интересных сведений.

К нашим дням все звездное множество, входящее в Галактику, астрономы разбили на пять основных типов звездного населения.

Крайнее население первого типа объединяет самые горячие звезды спектральных классов Ои В, а также очень молодые галактические скопления и ассоциации. Сюда же относится и такой строительный материал, как космическая пыль и межзвездный нейтральный водород. В следующую группу населения того же первого типа входят обычные звезды спектральных классов Aи F, красные сверхгиганты и галактические скопления. И наконец, последняя, третья, группа населения первого типа объединяет старые звезды главной последовательности и гиганты спектральных классов Gи K.


Население второго типа разделено на две группы. Первая объединяет белые карлики, а также многие типы переменных звезд. Вторая – это имеющие почтенный возраст шаровые скопления и субкарлики.

Уже по одному виду приведенной классификации можно догадаться о схеме эволюции звезд, которой придерживаются ее авторы. Они явно исходят из того, что все молодые скопления и ассоциации соседствуют с большими массами строительного материала: пыли и газа. Эти астрономы являются сторонниками классических гипотез, утверждающих образование звезд «из газопылевых комплексов путем конденсации рассеянного вещества». Гипотезы эти разработаны достаточно подробно и отличаются лишь силами да механизмами действия тех сил, которым их авторы отдают предпочтение.

Говоря о классическом направлении звездной космогонии, важно отметить, что весь процесс рождения нового светила можно разделить на два этапа. Первый – сжатие и переход от газопылевого облака к протозвезде. И второй – включение в ее недрах термоядерных источников энергии. Но прежде всего нужно решить вопрос – почему бы это вдруг облаку, состоящему из рассеянных частиц пыли и газа, перейти в неустойчивое состояние и начать сжиматься?

Изучением условий устойчивости небесных тел занимался в свое время небезызвестный уже нам Дж. Джинс. Он был крупным физиком-теоретиком, интересующимся, в частности, вопросами излучения и кинетической теорией газов. И можно смело сказать, что именно успехи в физике заложили фундамент его будущих астрономических работ.

Из условий существования разреженной газовой туманности в межзвездной среде нетрудно сделать вывод, что есть три возможности. Первая: сохраняя равновесие, оставаться в неизменном состоянии. Вторая – рассеяться в пространстве. И третья – начать сжиматься. Все зависит от того, что больше: собственное (тепловое) движение молекул, создающее внутреннее давление, которое стремится разогнать и рассеять туманность, или суммарное притяжение всей массы вещества.

Дж. Джинс, используя свои знания в области газовой динамики, сумел вывести математический критерий неустойчивости таких туманностей. Требования оказались достаточно жесткими. Чтобы газовая туманность в межзвездном пространстве начала сжиматься, масса ее при определенной плотности должна быть примерно в тысячу раз больше солнечной. Только тогда силы тяготения в ней станут превышать газовое давление. Читатель вправе возразить: звезд с такими массами не бывает. Сколько раз мы говорили, что даже самые массивные могут быть ненамного тяжелее Солнца. А может быть, облако, сжимаясь, запасает материал сразу на целую ассоциацию звезд?

Попробуем представить себе, как это происходит. Гигантский газопылевой комплекс сжимается сначала как единое целое. По мере загустевания критерий неустойчивости начинает выполняться и для отдельных его частей. И тогда первоначальная туманность дробится. После чего каждая часть продолжает сжиматься отдельно и вполне самостоятельно образует свою протозвезду.

Теперь давайте выберем одно из сгущений, близкое по массе к тому, из которого могло некогда образоваться Солнце, и проследим за его эволюцией дальше. Подобную задачу решали многие теоретики. И целый ряд ее этапов подробно рассчитан.

Прежде всего, что представляет собой выбранная нами часть сжимающейся пылевой туманности? Масса ее должна быть близка к солнечной. Значит, при нормальной плотности она будет иметь радиус порядка десятых долей парсека. Математически его можно записать так: 1 парсек = 3,26 светового года = 3,083 · 10 13километров, следовательно, одна десятая парсека равна 3 083 000 000 000 километров.

Для дальнейшего сжатия туманности нужно, чтобы давление тяготения и в некоторой степени давление окружающего газа продолжало оставаться выше собственного внутреннего давления, вызванного тепловым движением частиц. Тогда через некоторое время туманность достигнет критической плотности и перейдет в следующую категорию – в протозвезду. Температура газа должна бы при этом повышаться, но теоретики утверждают, что она остается примерно постоянной из-за сильного охлаждения межзвездной средой.

Это очень грустное обстоятельство, потому что темное, холодное, сжимающееся облако почти ничем не выдает своего существования в глубинах вселенной. Наиболее интенсивным в этот период может быть инфракрасное излучение линии молекул водорода. Но, как назло, именно оно не доходит до земных наблюдателей, поглощаясь атмосферой Земли. Придется подождать постройки астрономической обсерватории на Луне. Или поискать другого подтверждения предполагаемых ранних фаз сжатия. Вот, например, несколько лет назад радиоастрономы обнаружили непонятное излучение с длиной волны 18,3 сантиметра. Откуда оно приходит на Землю? Чем порождается? Дело в том, что, уловив радиоволны любой частоты из космоса, исследователи в конце концов находят их источники. А тут, как ни бились, как ни искали, – ничего! В полном отчаянии кто-то из особенно эмоциональных радиоастрономов предложил назвать это излучение «мистериум». Но делу это не помогло. И вдруг советский астрофизик И. Шкловский, известный своей способностью к генерированию самых невероятных гипотез, предположил, что это и есть как раз излучение в линии двухатомной молекулы гидроксила (ОН), которое дают сжимающиеся протозвезды. Интересное предположение. Но насколько успешно удалось на этот раз пристроить «бесхозные радиоволны», покажет будущее. Если эта идея подтвердится, стоит признать, что она была блестящей.

Итак, протозвезда готова! На этом условимся считать, что начальный этап сжатия газопылевого облака закончился.

После прохождения состояния критической плотности процесс сжатия ускоряется. Через некоторое время он уже идет со скоростью свободно падающего тела. Пыль и газ наперегонки мчатся к центру сгущения. А дорога до него не близкая. Помните, мы говорили о радиусе облака…

Слово опять берут математики. Они подсчитали, что протозвезде с массой Солнца нужно примерно 200 тысяч лет, чтобы сконцентрироваться в небесное тело требуемой «звездной» плотности. Во время такого интенсивного сжатия освобождается много гравитационной энергии. Пыль и газ за ее счет разогреваются, и сжимающаяся протозвезда излучает все больше и больше электромагнитных волн, правда, пока все в том же невидимом инфракрасном диапазоне.

Постепенно в центре протозвезды пыль начинает плавиться. Молекулы газа распадаются на атомы. Атомы ионизируются. Вещество протозвезды переходит в состояние плазмы. И как только освобождающейся гравитационной энергии становится достаточно, чтобы нагреть и превратить в плазменный шар всю протозвезду, бурное устремление вещества к центру прекращается. Происходит одна-другая короткие вспышки яркостью в тысячу Солнц, и протозвезда снова темнеет. На этом этапе согласно теории японского физика Ч. Хаяши протозвезда бурно «кипит», как кастрюля с космическим супом, разогревая свои недра. И лишь когда температура в центре достигнет этак примерно миллионов восьми градусов, «включаются» термоядерные реакции. С этого момента протозвезда, как говорят специалисты, «садится» на главную последовательность и начинает жизнь нормальной звезды.

После того как протозвезда превратилась в звезду, жизнь ее идет веселее. Процессы, происходящие в недрах звезд, сложны и зависят, конечно, от многих факторов, но от массы они зависят, пожалуй, прежде всего. Нам с вами проще, мы остановились на рассмотрении обычной звезды, звезды солнечного типа. Проще и интереснее потому, что судьба Солнца наверняка должна интересовать и волновать нас значительно больше, чем судьба, скажем, какой-нибудь Даби или «Счастье убийцы», как некогда называли Бету из созвездия Козерога, удаленную от нас на расстояние едва ли не двухсот пятидесяти световых лет.

С началом термоядерных реакций в звезде начинается «выгорание» водорода в протонных реакциях. При этом можно считать, что радиус светила и его светимость остаются постоянными достаточно продолжительное время. Это большое счастье. За этот срок возле одного из известных нам небесных тел, именно Солнца, зародилась жизнь и даже достигла кое-каких успехов в своем развитии. И впереди у человечества еще есть время для процветания. По данным современной науки, наша вселенная существует, по крайней мере, 10 миллиардов лет. И за этот срок даже самые старые звезды, меньшей массы, чем Солнце, не «выжгли» еще всего водорода из своих недр. Но в конце концов это, к сожалению, произойдет. К этой далекой поре температура в недрах Солнца, по расчетам Э. Эпика, возрастет до 400 миллионов градусов. Вид реакций в его ядре сменится, и светило наше может вспыхнуть. Хотя может и не вспыхнуть.

Дальнейший ход эволюции представляет для нас меньший интерес. После того как запасы «горючего» кончатся, термоядерные процессы прекратятся, звезда снова начнет сжиматься и будет это делать до тех пор, пока не превратится в железный белый карлик. Белый карлик медленно остынет, проходя последовательно стадии красного карлика, инфракрасного и, наконец, черного карлика. Вот тогда наступит полный конец. Все!

Конечно, в приведенной картине образования звезды из диффузной материи не все обстоит гладко. Например, по данным наблюдений в Галактике очень мало водорода: всего около 2 процентов общей массы. А теория считает, что звезды произошли именно из этого популярного газа. При наличии же такого мизерного количества строительного материала в Галактике всякое звездообразование должно бы давно закончиться. Между тем те же наблюдения говорят, что в нашей системе немало молодых и очень горячих голубых гигантов и сверхгигантов. В то же время надо признаться, что нигде, ни в одном уголке Галактики, астрономы никак не могут обнаружить ни единой протозвезды. А если оные образуются из газа, то вполне законно было бы ожидать их среди звездной молодежи в ассоциациях…

Увы, все, что было обнаружено до сих пор в этом плане, оказывалось желаемым, которое принималось за действительное. Не совпадает и спокойный характер концентрации газа в протозвезду с наблюдаемыми взрывами, сопровождаемыми могучими выбросами материи, которые обнаружили астрономы в ядрах галактик.

И наконец, большим недостатком рассмотренной гипотезы, недостатком, который признается даже всеми ее сторонниками, является то, что, даже объяснив удовлетворительно некоторые из имеющихся фактов, она не сумела пока предсказать ни одного нового открытия. А их в последние годы было сделано немало. С гипотезой, претендующей на переход в ранг теории, таких конфузов случаться не должно…

В 1946 послевоенном году недалеко от Еревана на склоне годы Арагац началось строительство Бюраканской астрофизической обсерватории. Под ее куполами собрался коллектив талантливых и увлеченных молодых людей, руководителем которых стал В. Амбарцумян. И там, продолжая свои исследования горячих звезд-гигантов ранних спектральных классов Oи B, а также переменных звезд-карликов типа Тиз созвездия Тельца, В. Амбарцумян заметил, что молодые звезды располагаются вовсе не хаотично, а имеют некоторую тенденцию к скучиванию. Бюраканцы назвали новые коллективы O-ассоциациями и T-ассоциациями.

Но вот что было странно. Ассоциации занимали такой большой объем пространства, что силы взаимного тяготения между их членами должны были быть очень слабыми. Одновременно собственные скорости движений звезд оказались такими большими, что им достаточно было бы всего нескольких сотен тысячелетий или миллионов лет, чтобы вообще выйти из такого коллектива.

А теперь попробуем вслед за В. Амбарцумяном сделать некоторые выводы. Не кажется ли вам, что приведенные факты говорят о том, что подобные союзы – образования недавние и, с точки зрения галактической, весьма кратковременные? А тот факт, что состоят такие ассоциации из молодых очень горячих звезд часто двойных и кратных систем, не наводит ли на мысль, что все они недавно родились тесной группой, а теперь стремятся разлететься из родного гнезда, но пока еще не успели этого сделать? И наконец, коль скоро они стремятся разлететься, то не участвовала ли при их рождении какая-то сила, сообщившая им начальную скорость, достаточную, чтобы преодолеть Ньютоновы силы притяжения?..

Вывод напрашивается не один. И каждый носит буквально революционный характер, потому что в корне противоречит устоявшейся классической точке зрения.

Во-первых, вопреки представлению о древности всех звезд получается, что часть из них рождается и сегодня. А во-вторых, что рождаются звезды не в одиночку, а группами и целыми коллективами.

Докладывая в 1947 году на общем собрании Академии наук СССР результаты этих исследований, В. Амбарцумян поставил и главный вопрос: из чего же образуются все эти молодые звезды и как идет процесс коллективного звездообразования?

Можно было, конечно, предположить существование больших темных дозвездных облаков диффузной материи и попытаться представить грандиозное действо рождения звезд в рамках классического направления. Но то, о чем говорил с трибуны молодой член-корреспондент АН СССР, не имело ничего общего с классикой. Он предполагал, что в глубинах вселенной существуют сверхплотные тела, которые делятся на части, образуя звездные ассоциации обнаруженного типа.

В 1950 году В. Амбарцумян и Б. Маркарян за открытие звездных ассоциаций описанного типа получили Государственную премию.

Высказанная ими гипотеза породила лавину критики. Известный специалист по физике звезд и туманностей московский астроном Б. Воронцов-Вельяминов подверг сомнению вообще существование ассоциаций молодых небесных тел. Он считал, что полосы темной пыли и газа в Галактике просто скрывают от нас часть далеких звезд-гигантов, оставляя в промежутках своеобразные «коридоры видимости». И то, что дано нам увидеть в этих «коридорах», бюраканцы принимают за «рассеянные ассоциации». Свои сомнения Б. Воронцов-Вельяминов основывал на довольно значительном количестве ошибок, обнаруженных им в предварительных результатах бюраканских астрономов. Страсти накалялись. Обе позиции обросли сторонниками. Настала пора большой открытой дискуссии. И она состоялась в мае 1952 года в Москве на Втором совещании по вопросам космогонии.

Основной тезис противников нового взгляда заключался в том, что никто из астрономов нигде не видел сверхплотных тел, из которых должны, как то считает В. Амбарцумян, образовываться звезды. Но ведь, несмотря на признанность классической гипотезы, описать туманность, в недрах которой видны зарождающиеся светила, ее сторонники тоже не могли!

Многие участники совещания воспользовались возможностью рассказать об итогах своих исследований, в результате чего астрономы познакомились с интересной теорией образования звезд из диффузной материи, выдвинутой ленинградскими профессорами А. Лебединским и Л. Гуревичем. Академик В. Фесенков рассказал об исследованиях звездных цепочек, обнаруженных им с помощью великолепного нового телескопа, установленного на Алма-атинской обсерватории. Он наметил также возможный ход эволюции различных галактических туманностей, из которых, по его мнению, возникали звезды.

На совещании выступили многие специалисты. И в конце концов идеи, которые защищал В. Амбарцумян, победили. Большинство участников согласились с существованием звездных ассоциаций. Однако в пылу полемики главный вопрос, ради которого была организована дискуссия, то есть вопрос о происхождении звезд, оказался несколько оттесненным и забытым.

В принятом решении была признана «плодотворность представления о том, что процесс группового звездообразования продолжается и в настоящее время».


    Ваша оценка произведения:

Популярные книги за неделю