355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Занимательно о космогонии » Текст книги (страница 4)
Занимательно о космогонии
  • Текст добавлен: 26 сентября 2016, 15:21

Текст книги "Занимательно о космогонии"


Автор книги: Анатолий Томилин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 4 (всего у книги 15 страниц)

Падение небулярной гипотезы

Начало штурма

Помните, рассуждения П. Лапласа начинались с перечисления особенностей солнечной системы. Затем он построил гипотезу, наилучшим образом, как ему казалось, объясняющую все указанные особенности. Но именно с них начались у небулярной гипотезы неприятности.

Еще при жизни П. Лапласа В. Гершель обнаружил, что два спутника открытого им Урана обращаются вокруг своей планеты в обратном направлении, а плоскости их орбит почти перпендикулярны плоскости орбиты самой планеты. Это явно противоречило условиям Лапласа. Однако творец небулярной гипотезы, готовя книгу к переизданиям – а надо отметить, что только при его жизни она переиздавалась пять раз, – не счел нужным обратить внимание на досадную новость. А между тем обратным движением обладали и другие, вновь открытые спутники планет. Более того, сам Уран летел по орбите «лежа ка боку и чуть-чуть вниз головой». А значит тоже обладал обратным вращением. Такое же подозрение высказывали наблюдатели по поводу Нептуна.

Это уже был скандал. А тут еще выяснилось, что кольцо Сатурна не сплошное, а составное, и внутренние его части вращаются быстрее самой планеты. Спутник Марса – малыш Фобос – тоже обгонял свою планету. Этого механизм образования солнечной системы, предложенный П. Лапласом, выдержать не мог.

В конце концов в орбиту яростных дискуссий оказались втянуты не только вопросы, касающиеся небесной механики, но и астрофизики. Короче говоря, небулярную гипотезу следовало спасать! Для этого много было предпринято героических попыток. Сегодня расположить их все в хронологическом порядке почти невозможно, настолько они переплелись. Но на главных стоит остановиться. Очень уж они интересны.

Космогоническая гипотеза Жерве-Огюста-Этьена-Альбы Фаи

Французский астроном, член Парижской академии наук Ж. Фаи был преисполнен намерений укрепить гипотезу соотечественника П. Лапласа. Для этого следовало прежде всего узаконить обратное движение планет. Но он увлекся и вместо простых дополнений к взглядам П. Лапласа выступил со своим вариантом небулярной гипотезы глобального характера.

Прежде всего французский астроном допустил «предвечное существование хаоса» в виде холодной и темной туманности. П. Лапласа вопрос, откуда она взялась, не волновал. Ж. Фаи же решил «попросить у бога, как это сделал Декарт, рассеянную материю и силы ею управляющие». Так писал он сам.

Правда, заявив довольно туманно о своей приверженности к божественному вмешательству, дальше он эту тему развивать не стал. Дальше дело идет само собой. По мере сжатия материя нагревается и в конце концов начинает светиться, как это наблюдается у туманностей. При этом он предполагает, что в процессе сжатия «хаос» пронизывают «потоки летящей материи». Встретившись, одни из них образуют вихри – родоначальники спиральных туманностей, недавно открытых английским наблюдателем В. Парсонсом (лордом Россом); другие вихри являются причиной образования звездных систем. Главным типом таких образований Ж. Фаи считает двойные и кратные системы. Он настаивает, что это исключительная редкость среди звездных миров. Лишь там, где встречные потоки материи прошли стороной, облака «мелких раскаленных телец» постепенно сгущаются, образуя планетные системы.


Ж. Фаи придумывает такой механизм планетообразования, который объясняет прямое вращение Меркурия, Венеры, Земли, Марса и Юпитера с Сатурном, но допускает обратное направление вращения для оставшихся Урана и Нептуна.

Получается это у него так. Начало процесса он видит в постепенном образовании кольцевых сгущений, начиная с внутренней области туманности по направлению к периферии. В медленно вращающемся, как единое целое, облаке скорости движения частиц нормально росли с удалением от центра. И потому родившиеся в густом месиве первозданной туманности первые шесть планет получили нормальное прямое вращение вокруг своих осей. Одновременно с ними или несколько позже сконцентрировалось в центре и будущее Солнце. После чего закон действующих в системе сил должен был измениться. Теперь начинает преобладать центральное притяжение, обратно пропорциональное квадрату расстояния. Оставшиеся частицы движутся теперь не как составные части единого целого, а по кеплеровским орбитам. Скорость их с удалением от центра падает. И потому сформировавшиеся в более позднюю эпоху крайние планеты должны были получить обратное вращение.

Таким образом, Земля и пять ее собратьев оказались старше Солнца, а Уран и Нептун – моложе. Французского космогониста особенно радовало то обстоятельство, что, по библейской легенде, Земля также была сотворена раньше Солнца.

Приведенный пример особенно нагляден в качестве образца спекулятивного мышления. Гипотеза Ж. Фаи не только не смогла освободить небулярный принцип от недостатков Лапласовой теории, но и внесла в него умозрительные допущения и свои трудности. Эпоха качественных рассуждений с помощью придуманных для данного случая логических построений заканчивалась. Наступало время математических моделей.

Дуэль Джорджа Говарда Дарвина и Александра Михайловича Ляпунова

Интересно отметить, что династия Дарвинов возвела служение науке в традицию рода. Первый из них – Эразм Дарвин (1731–1802), известный шотландский поэт, был одновременно и неплохим естествоиспытателем. Младший из клана, Чарлз Дарвин, внук и тезка всемирно известного бородатого джентльмена, который, объехав на корабле «Бигль» земной шар, подарил человечеству теорию видов, по сей день достойно представляет английскую физику.

Работа Джорджа Говарда Дарвина (1845–1912) посвящена вопросам эволюции двойной планеты «Земля – Луна». Он задался целью выяснить космогоническое влияние приливов, порождаемых Луной в недрах Земли, и соответственно тех, что вызывает Земля в Луне. Эти приливные волны, движение которых направлено в сторону, противоположную вращению Земли, тормозят нашу планету, понемногу удлиняя ее сутки. Согласно вычислениям примерно за 100 тысяч лет мы теряем одну секунду. Такое замедление кажется пустяком, но именно торможение за счет внутренних приливов было выдвинуто в качестве одного из средств спасения гипотезы Лапласа. С помощью механизма приливов Д. Дарвин пытался объяснить и изменение направления вращения планет.

Первоначально все планеты имели обратное вращение, говорил он. Однако планеты, сконцентрировавшиеся из раскаленного газообразного вещества, первое время находились в жидком состоянии. Тогда приливные процессы происходили в них во много раз сильнее, чем это можно наблюдать сегодня. Приливные волны так тормозили молодые небесные тела, что те в конце концов почти остановились в своем вращении. Теперь, повернувшись одной стороной к Солнцу, они делали один оборот вокруг своей оси за год. Если к этому времени планета охладилась и затвердела, то характер ее движения мог сохраниться на долгое время. Если же процесс охлаждения и сжатия ее продолжался, то по законам механики должна была непрерывно расти и скорость ее вращения. То есть планеты постепенно начинали вращаться в прямую сторону.

Из всего сказанного Д. Дарвин делал вывод; указанный механизм заставил вращаться в прямом направлении ближайшие к Солнцу планеты, тогда как удаленные от него, значительно меньше подвергаемые действию приливных сил, сохранили первичное направление вращения в обратную сторону.

Работа Д. Дарвина была, пожалуй, самой серьезной поддержкой небулярной гипотезы. Многие из его выводов справедливы, особенно для ближайших к Солнцу планет – Меркурия и Венеры.

Рассматривая проблему эволюции системы «Земля – Луна», Д. Дарвин пришел к выводу, что некогда довольно большое раскаленное до жидкого состояния небесное тело, имеющее грушевидную форму и двигающееся по орбите нашей Земли, разорвалось на две части. Большая часть образовала Землю, меньшая – Луну. Согласно этой теории разделение грушевидной фигуры на две части возможно лишь в том случае, если фигура устойчива. В противном случае она должна разлететься вдребезги. Д. Дарвин произвел математический анализ, который показал, что грушевидная фигура устойчива.


Но полностью согласиться с этим анализом трудно, так как расчеты были слишком приближенными. Строгое исследование проблем устойчивости, пригодное для космогонических целей, оказалось чрезвычайно трудоемким, и провести его удалось лишь нашему соотечественнику, замечательному математику Александру Михайловичу Ляпунову (1857–1918).

А. Ляпунову было 27 лет, когда он защитил в Петербургском университете магистерскую диссертацию по теме «Об устойчивости эллипсоидальных форм равновесия вращающейся жидкости».

Работа была посвящена трудной проблеме выяснения устойчивой формы небесных тел. В то время предполагалось, что все твердые небесные тела обязательно прошли через жидкую фазу, и значение мемуара русского математика для космогонии трудно переоценить. К сожалению, работы, написанные на русском языке, с большим трудом находили дорогу к западным читателям. Пребывала в малой известности и диссертация А. Ляпунова.

Примерно в те же годы вопросом, какую форму принимают вращающиеся однородные жидкости, находящиеся в равновесии, занимался выдающийся французский математик Анри Пуанкаре. Он независимо от А. Ляпунова пришел к тому же выводу, который содержался в магистерской диссертации русского коллеги. В отличие от мемуара А. Ляпунова работа А. Пуанкаре не осталась неизвестной. Она произвела огромное впечатление на научный мир. Д. Дарвин был в восторге. Еще бы, мало того, что теория Пуанкаре подтверждала гипотезу, а затем и теорию Д. Дарвина, она позволила английскому астроному выдвинуть еще одно предположение об образовании двойных звезд.

Согласно этой гипотезе однородная, жидкая, вращающаяся вокруг своей оси звезда, охлаждаясь, будет сжиматься и соответственно увеличивать скорость своего вращения, последовательно изменяя форму. При дальнейшем охлаждении вращающееся тело должно разорваться, образовав две звезды.

Последний вывод противоречил результатам А. Ляпунова. Русский математик решил поставленную задачу заново, получив убедительное доказательство, что грушевидная фигура неустойчива. Значит, она не может разделиться на два тела. Александр Михайлович опубликовал свои результаты на французском языке. Между ним и Д. Дарвином завязалась многолетняя полемика. Чтобы убедить мир в своей правоте, А. Ляпунов в одиночку предпринимает гигантскую вычислительную работу, каждый шаг которой тщательно описывает в издаваемых французских мемуарах. К 1914 году титанический труд был успешно закончен и справедливость выводов А. Ляпунова доказана. Увы, ни А. Пуанкаре, ни Д. Дарвина уже не было в живых. Спасти гипотезу Лапласа им не удалось.

А. Ляпунов посвятил науке всю свою жизнь. О его работоспособности ходили притчи. Большинство коллег знали его как постоянно хмурого, сурового и чрезвычайно замкнутого человека, без друзей, с очень ограниченным кругом знакомых. Его лаконичность была беспредельна. А между тем под этой сухой и такой педантичной оболочкой билось верное, очень нежное сердце и горячий темперамент.

В 1918 году, оказавшись в Одессе один, с умирающей от туберкулеза женой на руках, А. Ляпунов застрелился в день смерти своего единственного друга – жены, оставив в завещании просьбу быть похороненным вместе с нею.

Последний толчок и крах небулярной гипотезы

К 1900 году противоречий в небулярной гипотезе Лапласа накопилось уже столько, что стало очевидно: наступает время ее замены! Однако для окончательного ее падения нужен был толчок. Нужен был такой факт, который, будучи всем абсолютно ясным, не находил бы никакого объяснения в рамках существующей гипотезы. И таким фактом оказалось распределение моментов количества движения в солнечной системе.

Что такое «момент количества движения», он же «кинетический момент», он же «угловой момент»? Прежде всего это одна из важнейших динамических характеристик движения материальной точки или целой механической системы. Особенно важно понятие о «моменте количества движения» при изучении вращения тел. Для планет – это векторное произведение массы небесного тела на скорость его движения по орбите и на расстояние от Солнца. Отсюда произошло и название самой величины: ведь произведение массы на скорость мы называем количеством движения, а векторное произведение количества движения небесного тела на радиус орбиты – момент количества движения.

Если же ни времени, ни охоты к расчетам нет, придется поверить на слово. Примем момент количества движения для Земли за единицу, тогда для Солнца он будет примерно в двадцать раз больше. Запишем: Солнце – 20, Земля – 1.

Дальше моменты количества движения для остальных планет распределяются так:

Меркурий – 0,02

Венера – 0,07

Марс – 0,13

Юпитер – 722,0

Сатурн – 293,0

Уран – 64,0

Нептун – 94,0

Плутон – 1,2.

Всего, если сложить, получается 1174,42!


1174,42 у планет против 20,0 у Солнца? Но как могло получиться, что массивное центральное светило оказалось обладателем менее 2 процентов общего момента количества движения, а более 98 процентов пришлось на долю легковесных планет? Объяснить этот факт небулярная гипотеза Канта – Лапласа никак не смогла, и он оказался ее могильщиком.

Это означало, что от самой идеи постепенной эволюции солнечной системы следовало перейти к какой-то иной.

Но к какой?


Планетная космогония

Планетезимали Ф. Мультона и Т. Чемберлина

В 1905 году американский астроном профессор Ф. Мультон вместе с коллегой, тоже профессором Чикагского университета, только геологом, Т. Чемберлином опубликовали новую гипотезу происхождения солнечной системы. Они предположили, что некогда наше Солнце, еще не имевшее планетной свиты, встретилось с другой одинокой звездой. Чужое светило прошло настолько близко от нашего, что из недр Солнца поднялась громадная приливная волна раскаленных сжатых газов. Она устремилась вслед за пришелицей. Впоследствии из этой материи образовались большие планеты.

С противоположной стороны Солнца, где приливные силы были значительно меньше, извержения были слабее. Массы газа, удержанные полем притяжения Солнца, не смогли улететь далеко и образовали близко расположенные малые планеты земной группы.

Механизм образования планет из раскаленного солнечного вещества Ф. Мультон и Т. Чемберлин видели таким. Сначала путем конденсации из клубов газа образовались бесчисленные тела небольших размеров, – создатели новой гипотезы назвали их «планетезималями». Планетезимали быстро охладились и затвердели. Часть из них, отделившись от первоначальной компании, ушла в самостоятельный полет по собственным орбитам. Остальные, сохранив привязанности, остались в составе больших роев, которые постепенно под действием сил тяготения собрались в твердые ядра – зародыши будущих планет. Ядра облетали Солнце в гуще образовавшихся планетезималей по довольно вытянутым орбитам. Это означало, что скорости их на одних участках пути были больше, на других меньше. Пролетая через безбрежное море планетезималей, ядра собирали их и увеличивались в размерах. И конечно, каждый захваченный обломок либо притормаживал ядро, если оно двигалось быстрее его, либо, наоборот, подгонял, если ядро двигалось медленнее обломка. В соответствии с выравниванием скоростей менялись и формы орбит ядер. Они становились менее вытянутыми.


Гипотеза Мультона – Чемберлина устраняла трудность в объяснении распределения моментов количества движения. Кроме того, прилетевшая со стороны звезда связывала как-то наше Солнце с остальным звездным миром и включала его в историю общей жизни Галактики. Но были в ней и определенные недостатки. Прежде всего трудно было понять, какие силы, кроме притяжения, помогли выбросу массы газов из Солнца. Может быть, удастся приспособить к этой роли световое давление, открытое русским физиком П. Лебедевым?

По мнению большинства специалистов, силы лучистого отталкивания вполне способны конкурировать с ньютоновским тяготением. Однако после расчетов надежды, возрожденные тонким экспериментом П. Лебедева, сменились разочарованием. Предположения были правильны, но… только для тел микроскопических размеров. Астрономы подсчитали, что всего огромного потока излучения Солнца едва хватит на то, чтобы удержать против сил тяготения массу астероида диаметром едва ли в 15 километров.

Необъяснимо было и предположение Ф. Мультона и Т. Чемберлина, что газовые массы вылетели из Солнца не сплошной непрерывной струей, а отдельными клубами, как бы в результате серии взрывов. Были и другие критические замечания в адрес гипотезы американских профессоров.

Кое-кто начинал понимать, что объяснить столь грандиозное и сложное явление, как образование солнечной системы, с помощью одних только сил тяготения скорее всего не удастся. И тогда скандинавский физик К. Биркеланд занялся исследованием «возможности вытекания заряженных частиц из Солнца и образования из них колец, радиусы которых зависят от отношения электрического заряда частиц к их массе».

Выводы К. Биркеланда убедительными не получились. Слишком велик был еще разрыв между теориями электромагнитного и гравитационного полей, чтобы можно было сразу надеяться на успех такого нового подхода к проблеме.

«Сигара» Джемса Джинса

В 1917 году в Англии вышел из печати труд молодого астронома Дж. Джинса, озаглавленный «Движение масс, находящихся под действием приливных сил, с дальнейшим приложением к космогоническим теориям».

А спустя два года появляется и его фундаментальное сочинение «Проблемы космогонии и звездной динамики». В этой работе Дж. Джинс обобщил весь опыт, достигнутый небесной механикой. И как некогда П. Лаплас начинал свой трактат с критики гипотезы Бюффона, так и Дж. Джинс начинает с критики П. Лапласа.

Читатель может вознегодовать, «почему опять с П. Лапласа? Почему не с Ф. Мультона и Т. Чемберлина? Неужели каждый раз мы будем начинать от Адама?». Дело в том, что к планетезимальной гипотезе американцев Дж. Джинс относился не слишком серьезно. Она не давала объяснения происхождению спутников. Не объясняла, почему орбиты большинства спутников мало наклонены к орбитам самих планет. Кроме того, являясь специалистом в области газовой динамики, Дж. Джинс был твердо уверен, что выброшенные газовые массы ни в коем случае не могли самостоятельно сконденсироваться в плотные планетезимали. Вот рассеяться в пространстве они могли, потому что у облака газа размером в планетезималь масса слишком мала, чтобы силы взаимного притяжения превысили обычное газовое давление. Вывод важный. Он еще понадобится нам в будущем, и потому стоит его запомнить.

Дж. Джинс остановился на теории Лапласа как на примере, с его точки зрения, принципиально невозможного механизма образования планет. Ну а если планетная система не может образоваться постепенно из туманности, то остается только катастрофа. «Tertium non datur», как говаривали древние римляне. – «Третьего не дано!» И читатель узнаёт из книги Дж. Джинса о такой же встрече Солнца с неизвестной звездой, как это уже было у Ф. Мультона и Т. Чемберлина.

Переходя к описанию своей гипотезы формирования планетной системы, английский астроном с самого начала заявляет, что это событие – чистая случайность, почти чудо. По приблизительной оценке вероятность такой встречи не больше чем один случай на триллион звезд – условие практически невозможного события. То есть в нашей Галактике, насчитывающей всего сто миллиардов звезд, ожидать второй подобной встречи нечего и думать. Впрочем, обстоятельства эти Дж. Джинса нисколько не волновали. «…Звезды очень редко приближаются друг к другу, – говорил он позже, – и почти невероятно редкий случай для двух звезд подойти настолько близко, чтобы родились планеты. Планеты, а также, можно полагать, и жизнь чрезвычайно редки во вселенной. Мы можем рассматривать это с удовлетворением или нет, по нашему выбору».


Солнце, по Дж. Джинсу, сначала было обыкновенной одиночной звездой, которая вполне нормально прошла все стадии своего развития. А потом, несколько миллиардов лет назад, ее путь пересекла другая, наверное, более крупная звезда. Если бы наше Солнце по всей глубине было однородно, оно вытянулось бы, превратившись в эллипсоид. Но поскольку плотность его с глубиной растет, то на поверхности образовались большие приливные горбы, превратившиеся в конические выступы. И когда расстояние между Солнцем и проходящей звездой стало приближаться к пределу Роша, из вершины приливного конуса, как из вулкана, началось бурное извержение солнечного вещества. Гигантская струя по форме должна была напоминать сигару, утолщенную в середине, потому что самое сильное извержение происходило в тот момент, когда звезда была наиболее близко. «Сигара» впоследствии распалась на отдельные сгустки. Причем из толстой средней ее части образовывались планеты-гиганты, а из тонких кончиков – планеты земной группы.

Дж. Джинс все предусмотрел и рассчитал. Момент количества движения планетам был передан проходящей звездой; она же задала им и прямое направление обращения; орбиты их сначала были вытянутыми, эллиптическими, но постепенно под влиянием торможения в остатках первоначальной газовой материи округлились; когда же из газообразного состояния планеты перешли в жидкое, те же приливные силы образовали у каждой из них систему спутников.

Оставались необъясненными лишь кометы и малые планеты – астероиды, – которых в то время было открыто уже достаточно много. Для них Дж. Джинс не стал изобретать ничего нового. Кометы, считал он, захвачены во время их странствий, а астероиды, в основном располагающиеся в пространстве между орбитами Марса и Юпитера, являются осколками некой большой планеты. Когда-то она подошла слишком близко к Юпитеру, и приливные силы разорвали ее тело на части. Правдоподобно? А почему бы и нет? Вспомните работы Э. Роша…

Все было очень хорошо. Гипотеза Дж. Джинса в рекордный срок завоевала умы и сердца современников. Специалистам она нравилась строгостью, можно сказать, математичностью рассуждений; неспециалистам – наглядностью, а также тем, что в ней было немало знакомого и привычного наряду с новым и необыкновенным. Именно такое сочетание, как известно, особенно привлекает, возбуждая любознательность.

Новая гипотеза вошла во все учебники. Ни слова против не сказали и теологи с богословами. Кстати, а почему?

Да потому, что утверждение Дж. Джинсом исключительности образования планетной системы и еще большей исключительности – почти на грани чуда – зарождения на ней жизни лило воду на обветшавшее колесо религии. В общем, святые отцы, утомившись от аплодисментов, потирали ладошки.

Были, конечно, слабые места и в этой работе. Например, процесс образования спутников, а также объяснение вращения планет вокруг оси. Вот как пытался Дж. Джинс решить первую проблему. Согласно гипотезе начальное обращение планет было очень медленным. И когда вновь сформированные планеты в первый раз проходили через перигелий, силы притяжения Солнца вырвали из них часть вещества, превратившегося затем в их спутники.

Однако большинство спутников настолько малы, что если бы они в начальный момент состояли из газа, то тут же рассеялись бы. Ведь сила притяжения в малых массах значительно уступает внутреннему газовому давлению. Читатель помнит, что это вытекало из теории самого Дж. Джинса. Значит, спутники сразу должны были быть либо жидкими, либо твердыми. Ученого не смущал тот факт, что из жидкого тела вырвать множество маленьких спутников невозможно. Самое большее, на что способны приливные силы, это создать один большой спутник, вроде нашей Луны. Твердое же тело при таких обстоятельствах просто все рассыпалось бы на части. Нет, тут что-то было не так…

Еще хуже обстояли дела с объяснением вращения планет вокруг своей оси. Некогда приливная теория Д. Дарвина приписывала возникновение вращения планет главным образом обратному падению на их поверхности части вещества, исторгнутого при образовании спутников. Но чтобы привести, например, во вращение Юпитер, масса упавшего вещества должна была равняться примерно 1/ 15массы всей планеты, что раз в четыреста должно было превышать массу всех его спутников, вместе взятых…

Так постепенно стали накапливаться скептические замечания и по поводу этой великолепной гипотезы.


    Ваша оценка произведения:

Популярные книги за неделю