355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Занимательно о космогонии » Текст книги (страница 12)
Занимательно о космогонии
  • Текст добавлен: 26 сентября 2016, 15:21

Текст книги "Занимательно о космогонии"


Автор книги: Анатолий Томилин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 12 (всего у книги 15 страниц)

Нормальные галактики должны бы рождаться так…

40-е годы нашего столетия ознаменовались многими любопытными открытиями в области звездной астрономии, открытиями, которые сыграли решающую роль в космогонии галактик. Несмотря на гибель теории, трещины в фундаменте космогонических воззрений Джинса – Хаббла, основная идея происхождения галактик путем конденсации газового вещества держалась непоколебимо и сомнений не допускала. Споры велись по вопросам частного порядка. И прежде всего о направлении эволюции.

Исследуя звездный состав галактики Андромеды, В. Бааде обнаружил, что светила, свободно располагающиеся в ее спиральных ветвях, существенно отличаются от тесно скученных звезд ядра. Примерно такая же картина наблюдалась и в других звездных системах, включая и нашу собственную. Это позволило В. Бааде разделить звездное «население» нашей Галактики на два типа. К первому типу он отнес звезды из спиральных рукавов. Туда же вошли члены рассеянных скоплений и вообще звезды, тяготеющие к экваториальной плоскости нашей системы. Они получили название звезд плоской составляющей. Ко второму типу отошли звезды ядра, тесных шаровых скоплений, а также некоторые типы звезд, окружающих центр Галактики наподобие ореола. Их назвали звездами сферической составляющей. Ко второму типу населения отнеслись и звезды эллиптических галактик.

Позже работы других специалистов усложнили эту классификацию, разбив население обоих классов еще на подклассы. Но принцип, предложенный В. Бааде, сохранился до наших дней.

Тремя годами позже описанных исследований советские астрономы Б. Кукаркин и П. Паренаго доказали, что звезды сферической составляющей старше звезд плоской составляющей. Теперь, научившись различать звезды по возрасту, можно было попробовать разделить и галактики на молодые и старые образования. Тут-то и начались неожиданности. Получалось, что спиральные галактики населены более молодыми звездами, чем эллиптические. Значит, и сами они должны были быть более юными. А классическое хаббловское направление эволюции утверждало обратное: что именно эллиптические системы, вырождаясь, превращаются в спиральные. Короче говоря, новые открытия требовали немедленного пересмотра старых правил.

Положение усугубилось после выступления известного американского астронома X. Шепли. По его данным, наибольшее количество молодых ярких сверхгигантов обнаруживается вообще в галактиках неправильной формы; в тех самых, которые вообще даже не вошли в классификацию Хаббла. А тут еще подоспела новая работа Б. Кукаркина, обращавшая внимание ученых на скопления галактик, в которые входили звездные системы самых различных форм.

Из всего этого напрашивались новые выводы. Во-первых, что никакого перехода от одного вида галактик к другому не существует и что звездные системы уже образовались такими, какими мы их видим. А во-вторых, что, может быть, и среди галактик уместно предположить механизм коллективного рождения, как это имело место в космогонии звезд.


Новые результаты наблюдений, как полагается, вызвали и новую вспышку интереса и творчества у теоретиков. В главе о планетной космогонии мы уже знакомились с гипотезой К. Вейцзеккера о турбулентном механизме образования солнечной системы. Но гипотеза немецкого специалиста охватывала все разделы космогонии, включая и происхождение галактик. По его мнению, в период, предшествовавший возникновению звезд, мир представлял собой хаос из «диффузной газовой материи, находящейся в сильной турбуленции». Это означало, что повсюду в первозданном тумане бушевали гигантские вихри.

Ну как тут не согласиться с утверждением, что всякое новое – это хорошо забытое старое! Вспомните Р. Декарта. В гипотезе французского философа вселенная тоже была сначала наполнена вихрями. Правда, они не назывались красивым словом «турбуленция», не было и столь убедительной математики. Р. Декарт не знал подробностей описания последующих стадий развития, но идея… Согласитесь – идея была «один к одному».

Так же как некогда у Р. Декарта, во вселенной К. Вейцзеккера под воздействием завихрений появились первые сгущения, первые облака пыли и газа неправильной формы. Облака вращались вокруг своей оси, сплющивались по ходу вращения и превращались в спиральные галактики. Обратите внимание – в спиральные, а не в эллиптические, как полагалось по канонам Джинса – Хаббла. Из центра диффузная материя под действием центробежных сил перемещалась к краям, уплотнялась. В спиральных рукавах возникали неоднородности. Так продолжалось до тех пор, пока в недрах этих неоднородностей не вспыхнули первые звезды. Они нагревали своими лучами окружающий газ, и процесс звездообразования сначала затормозился, а затем прекратился и вовсе. Спиральные галактики стали постепенно терять свои рукава, превращаясь в устойчивые эллиптические системы.

Интересно, что скорость такой эволюции, по мнению К. Вейцзеккера, соответствовала размерам галактик: маленькие проходили свой путь быстрее, большие – медленнее. Этого требовал турбулентный характер развития газовых масс, и с этого-то начинались все несоответствия и противоречия в его гипотезе.

В намеченную схему не укладывались скопления галактик, состоящие из разных по форме и по величине систем. Кроме того, по гипотезе К. Вейцзеккера все звезды в каждой галактике должны были образовываться примерно в одно время. Но тогда было непонятно, почему так много молодых и горячих звезд видят наблюдатели в «старых спиральных галактиках»? Нет, так просто поставить с ног на голову устойчивую схему эволюции Джинса – Хаббла космогонисты позволить не могли…

Следующим важным теоретическим шагом явилась теория, разработанная шведским астрономом Бертилем Линдбладом – председателем Международного астрономического союза 1948–1952 годов. Исследуя звездные системы, имеющие форму эллипсоида вращения, он вывел строгие математические условия, при которых в экваториальных областях эллипсоидов образуются зоны недостаточной механической устойчивости. Звезды, находящиеся в этой зоне, могут срываться со своих круговых орбит и разлетаться, образовывая спиральные ветви. При этом неустойчивость только усугубляется. И со временем большая часть уже не только звезд, но и газовой материи эллипсоида (или, можно считать, ядра галактики) переходит в спиральные рукава.

Прекрасная математическая теория Б. Линдблада во многом обогатила науку. Методы, разработанные шведским астрономом, применяются в динамике звездных систем по сей день. Но согласиться с его эволюцией галактик специалисты тоже не могли.

Прежде всего, если звезды переходят в спиральные рукава из ядра, то, очевидно, они должны быть в спиралях либо такими же по возрасту, как и оставшиеся в ядре либо старше. Однако все наблюдатели в один голос заявляли, что спиральные рукава населены молодыми и горячими сверхгигантами и гигантами, тогда как в ядре преобладают старые звезды второго типа населения, то есть субкарлики, звезды типа RR Лиры и старые светила, объединенные в шаровые скопления.

Затем, по теории Б. Линдблада, спиральные галактики должны вращаться спиралями вперед, то есть раскручиваясь. Однако наблюдения и здесь говорили об обратном. Вообще его выводы, оторванные от практики результатов наблюдений, носили слишком абстрактный характер. Увлечение математической стороной вопроса в ущерб наблюдательным данным – недостаток не одного Б. Линдблада. Словно в противовес словам Ф. Бэкона, которые мы взяли эпиграфом к книге, глава Кембриджской школы космогонистов Ф. Хойл заявил: «Трудность состоит не в том, чтобы выдумать схему процесса, а в том, чтобы выбирать между различными представляющимися возможностями».

Очень интересной была гипотеза, разработанная в начале 50-х годов двумя ленинградскими учеными – А. Лебединским и Л. Гуревичем. Они считали, что образование галактик из разреженного диффузного вещества происходит неодновременно. Некоторые только начинали образовываться, когда другие уже существовали. Причем процесс образования был таким: сначала возникало гигантское сгущение разреженного вещества – протогалактика; затем такая протогалактика начинала сжиматься примерно так, как описал этот процесс еще Дж. Джинс: гигантское вращающееся облако сплющивалось, приобретало энергетически выгодную спиральную структуру; в спиральных ветвях образовывались звезды, после чего галактика снова разбухала в толщину, превращаясь в эллиптическую.

Недостатком приведенной теории являлось прежде всего то, что протогалактик никто не видел. Кроме того, оба автора так и не объяснили процесса возникновения спиральной структуры сжимающегося облака. А это была едва ли не одна из важнейших задач космогонии тех лет.

В 1958 году за решение этой проблемы принялся тоже ленинградец – астроном Т. Агекян. По его данным получалось, что эллиптические галактики могут развиваться от более плоских форм к шарообразным. Опять противоречие Джинсу – Хабблу. При этом эллиптические образования ни в коем случае не переходят в спиральные. Спиральные же галактики со временем сплющиваются, но и они не имеют права превращаться в эллиптические.

Подтверждается вывод, что классы галактик зависят не от стадии эволюции, на которой находятся, а от тех условий, в которых начиналось их образование.

Механизм, предложенный Т. Агекяном, нашел широкое применение для изучения эволюции ядер галактик, а также звездных систем меньшего масштаба.

Американский исследователь Ф. Цвикки предположил, что спиральные галактики все-таки образуются из сгущений других видов. Представим себе, говорил он, сближение двух или нескольких туманностей. Ясно, что в результате гравитационного, а может быть и какого-то иного, взаимодействия у облаков появятся выступы, которые потянутся как в сторону встретившегося сородича, также соответственно и в противоположную. Но встретившиеся туманности скоро разойдутся. А длинные рукава, отставая в своем вращении от ядер, закрутятся в спирали.

Что ж, предложенный механизм правдоподобен. Но вряд ли он выдержит испытание на вероятность. Слишком редкими могут быть встречи в межзвездном пространстве и слишком многочисленны спиральные галактики.

Все перечисленные выше гипотезы, в которых главную роль играют гравитационные силы, создавались и жили в основном до начала 60-х годов. Но постепенно все большее внимание астрофизики уделяли магнитным полям. И в классическом направлении космогонии галактик начинают звучать новые мотивы.

Магнитные поля в галактиках

В 1945 году известный уже нам английский астроном Ф. Хойл опубликовал свою гипотезу, согласно которой диффузная первоматерия Галактики сконцентрировалась под воздействием магнитного поля в два рукава, отходящие от центральной части, располагающиеся вдоль магнитных силовых линий. Вращение закрутило их в спираль, и с тех пор магнитное поле Галактики удерживает разреженное газообразное вещество в спиральных рукавах. Но на звезды сил его не хватает. И потому звезды все время выходят из рукавов, заполняя пространство между ними.

Если принять гипотезу Ф. Хойла, то в спиралях должны находиться молодые звезды, а в промежутках – старые. Интересно отметить, что наблюдения полностью подтвердили этот вывод. Правда, тут довольно трудно точно определить первородство: что было раньше – теория, которую подтвердили наблюдения, или результаты наблюдений, под которые подвели теорию.

Коллеги Ф. Хойла астрономы X. Бонди и Т. Голд предложили свою версию образования спиральных рукавов из межзвездного газа, захваченного Галактикой в ее странствиях по межгалактическим просторам. Но это все частности. А главное, надо было сначала доказать, что в Галактике вообще существует магнитное поле. Ведь ни наблюдать, ни тем более измерить его пока никому не удавалось. А вдруг его вообще не существует? Впрочем, кто ищет, тот всегда что-нибудь да находит.

Сначала два астронома: один в Советском Союзе – В. Домбровский, а другой в Соединенных Штатах – В. Хильтнер обнаруживают любопытное явление: свет от звезд, проходя по лучу зрения, то есть по линии звезда – глаз наблюдателя, оказывается поляризованным. И чем больше на пути луча света темной материи, тем выше степень его поляризации. «Почему бы это? – рассуждали астрофизики. – Что из того, что темная материя задерживает лучи? Она должна просто ослаблять их, а не поляризовать!..»

Единственное объяснение, до которого додумались специалисты, заключалось в предположении, что темная материя состоит из скопления длинненьких остреньких, как иголочки, пылинок. Под действием магнитного поля пылинки одинаково ориентируются в пространстве и… поляризуют свет.

М-да, так себе объяснение, прямо скажем. Не больно-то убедительное, но попробуйте подыскать лучше. Во всяком случае, косвенное подтверждение существования магнитных полей в Галактике есть!

Позже, когда обнаружили мощные взрывы в ядрах галактик, а в нашей собственной нашли источники радиоизлучения и поток тяжелых элементарных частиц, стало возможным считать, что существование магнитного поля в Галактике и галактиках доказано окончательно. Не будь его сдерживающих сил, все частицы давным-давно разлетелись бы в межгалактическом пространстве.

В 1964 году на XII съезде Международного астрономического союза профессор Ян Оорт (Голландия) прочел весьма любопытный доклад «Строение и эволюция галактической системы». Касаясь поведения заряженных частиц, докладчик сказал: «Их скорость (имеются в виду космические лучи.  – А. Т. ) так велика, что если бы они не удерживались магнитными полями, то покинули бы систему за время порядка 100 тысяч лет». Я. Оорт говорит о значении магнитных полей в «жизни» звездной системы уже как о само собой разумеющемся факте.

Правда, он тут же сокрушается, что пока роль, которую играют эти поля в динамике межзвездного газа, совершенно неясна. Голландский профессор вообще считает, что «в данный момент мы, как кажется, знаем больше о том, чего нельзя объяснить, чем о том, что положительного они (магнитные поля.  – А. Т. ) дают для понимания сложных явлений, наблюдаемых в этом газе».

Опираясь на неоднородность наблюдаемого распределения плотности вещества в обозримом пространстве, Я. Оорт считает, что галактики «образовались из неоднородностей в расширяющейся вселенной». Эти неоднородности могли расширяться только до определенной стадии. Пока не набрали необходимой массы и не стали под действием собственной гравитации сжиматься. Дальше тип образующейся галактики зависел уже от величины углового момента протогалактики.

При быстром вращении центробежные силы не позволяли диффузному веществу сгуститься плотно. Его оставалось довольно много во внешних областях, и галактика получалась спиральной.

При медленном вращении первоначальной неоднородности галактика получалась эллиптической. Именно в данном последнем типе образования имелись возможности для перехода всего вещества в звезды. Это был важный вывод, потому что, как обнаружил Б. Кукаркин, только спиральные галактики богаты диффузным веществом; в эллиптических его не наблюдается совсем. Эллиптические галактики состоят из одних звезд. Я. Оорт считает, что первичные звезды образовывались в галактике сначала совершенно хаотично. Под действием начальных неоднородностей гравитационного поля они многократно перемешивались и лишь постепенно, под действием сил взаимного притяжения, собирались к центру.

Это предположение хорошо согласовывалось с наблюдениями. Действительно, ведь сферической составляющей звездного населения являются старые звезды. Часть оставшегося газа, не сконцентрировавшегося в звезды на раннем этапе, образовала скорее всего в плоскости Галактики тонкий диск с более плотной концентрацией к центру. Здесь тоже стали образовываться звезды. Сначала в ядре, где газ был плотнее, а потом и на периферии.

Постепенно процесс звездообразования замедлялся. Конечно, не исключено, что он, может, продолжается и сейчас. Но скорость его должна быть чрезвычайно малой.

И опять предполагаемый механизм подтверждается результатами наблюдений. В ядре Галактики звезды постарше, а совсем молодые, образовавшиеся во второй период эволюции, распределялись в спиральных рукавах.

Теперь становится понятным, почему все звезды, родившиеся из газа, который собрался в плоский диск, соответствуют наблюдаемому в Галактике населению одного только первого типа.

Отныне сомнений в том, что магнитные поля у галактик есть, ни у кого не возникало. Прониклись космогонисты уважением и к роли магнитных сил в процессах эволюции. Вот если бы еще понять, откуда магнитные поля взялись.

Тут придется еще вернуться к гипотезе Ф. Хойла. Некогда он высказался в общем виде о том, что, дескать, магнитное поле галактики – это общее межгалактическое магнитное поле, усиленное сжатием диффузного вещества при его конденсации, а затем закрученное вращением образовавшихся галактик. Эту идею подхватили и разработали московский астрофизик Н. Кардашев и английский радиоастроном Дж. Пиддингтон. У них получалось, что звездные системы уже рождаются с готовым магнитным полем.

Затем советский физик С. Пикельнер, используя аппарат космической электродинамики, попытался нарисовать картину образования спиральных рукавов. Получилось неплохо. Более того, сквозь контуры предварительного чертежа стала проглядывать новая магнитно-гравитационная гипотеза. Она содержала смелые решения, много интересных выводов, но и только: количественно концы с концами не сходились. Для поддержания спиральных рукавов магнитные поля должны были быть гораздо более сильными, чем те, которые существуют в галактиках. «Мы, кажется, начинаем понимать кое-что в основных чертах распределения и движения звезд и даже чувствуем, что имеем некоторый набросок картины того, как могла возникнуть и эволюционировать наша звездная система. Кроме того, мы можем понять, почему межзвездный газ концентрируется в тонкий слой и почему этот слой вращается. Но на этом кончается наше понимание поведения газовой составляющей Галактики.

Мы не понимаем ни происхождения ее спиральной структуры, ни даже того, каким образом эта структура может сохраняться.

Мы не знаем причин движения газа прочь от ядра в центральных областях и не знаем, почему плотность газа так низка вблизи 4 кпс от центра.

Мы не знаем, почему в быстро вращающемся диске ядра вещество, по-видимому, находится в состоянии, отличном от того, которое мы встречаем в других местах.

Мы не знаем также, почему этот диск имеет исключительно резкую внешнюю границу.

Мы не знаем, ни из чего состоит галактическая корона, ни того, как надо интерпретировать удивительные систематические движения газа вне галактической плоскости… Мы как будто еще стоим на пороге мира, в котором видим чудесные явления, но не можем их понять».

Этими словами профессор Я. Оорт заключил не только свой доклад, но и представления науки 60-х годов о роли магнитных полей в деле эволюции нашей Галактики, а значит, и других звездных архипелагов. Действительно, стоит взглянуть на фотографию какой-нибудь галактики, как сразу видно, что спиральные рукава охватывают ядро не более чем в полтора оборота. А почему не больше? По расчетам, они должны бы закручиваться куда сильнее. Более того, в гамма-галактиках, по Б. Воронцову-Вельяминову, имеются и закручивающиеся и раскручивающиеся ветви.

Да и направления магнитных силовых линий по наблюдениям разных астрономов пока не совпадают. Одни показывают их в одну сторону, другие – в другую. И каждый, естественно, считает себя правым. Однако сказать сегодня определенно, что спиральные ветви действительно располагаются только вдоль силовых линий магнитного поля Галактики, пока нельзя.

Строго говоря, магнитное поле в туманности должно бы, по идее, препятствовать ее конденсации, а следовательно, и звезды не должны бы в ней образовываться.

Автор понимает, что такое заключение похоже на старый анекдот. Когда к послу одной из могучих держав пришли посетители, навстречу им вышел секретарь посольства и перечислил 64 причины, согласно которым посол не мог сегодня никого принять.

– Кроме того, – добавил секретарь, вздохнув, – господин посол не может вас принять сегодня потому, что он вчера умер…

Умерла ли в конце концов магнитная гипотеза? Может быть, и нет, но претендовать на роль «единственно правильной» сегодня она уже не может.


В последние годы активно разрабатывается учеными новая волновая гипотеза. Читатель наверняка замечал, как при волнении на море всякий плавающий мусор прибивается к берегу. В то же время сама вода остается на месте. Так же, возможно, и в Галактике некие гравитационные волны захватывают медленные звезды, относящиеся к первому типу населения, и уплотняют их. Во всяком случае, первые решения уравнений, в которых были увязаны плотность вещества в Галактике, гравитационный потенциал и скорости звезд в соответствии с расстоянием от центра, дали уравнение спирали. Не значит ли это, что волновое возмущение плотности в виде спирали – образование устойчивое и может сохраниться при вращении Галактики? Тогда, может быть, хоть волновая гипотеза поможет решить «проклятый вопрос» о спиральных рукавах?

Впрочем, волновая гипотеза еще только набирает темпы. Сегодня рано говорить о ее результатах. Но уже тот факт, что она привлекла внимание специалистов самых разных стран, говорит о возможной ее плодотворности.


    Ваша оценка произведения:

Популярные книги за неделю