Текст книги "Занимательно о космогонии"
Автор книги: Анатолий Томилин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 11 (всего у книги 15 страниц)
Так как же все-таки рождаются звезды?
Рождение, эволюция и внутреннее строение звезд – вопросы, неразрывно связанные друг с другом. Это, пожалуй, самые крайние рубежи сегодняшней астрофизики, наиболее интересные и актуальные проблемы звездной науки. Читатель уже мог составить себе определенное мнение о сложности исследований мира звезд. Ведь, кроме множества кропотливых наблюдений, каждая модель требовала и требует такого непостижимого количества вычислений, которое не под силу не только одному человеку, но и целому коллективу отдельно взятого научного учреждения. Только эра быстродействующих электронно-вычислительных машин открыла новые горизонты для решения этой проблемы. Эволюция звезд состоит из цепи очень сложных процессов. Это представляли себе ученые даже первой половины нашего столетия. Гигантские газовые атомные реакторы – именно так, с целью популяризации, можно назвать звезды – оказались не только весьма разнообразными, но и склонными к усложнению с возрастом. Мы уже говорили о том, что проблемы звездной эволюции разрабатываются специалистами многих стран. Причем в последние годы наметилась тенденция к кооперированию в коллективы уже не просто отдельных астрономов и астрофизиков внутри одного научного учреждения, но и самих учреждений в международные союзы. А поскольку такое объединение связано всегда с выбором наиболее важных направлений исследования, то об организации одного из них стоит, может быть, рассказать подробнее.
В 1972 году Академия наук СССР подписала двусторонние соглашения о совместных исследованиях по проблеме «Физика и эволюция звезд» с академиями наук Венгрии и Индии.
В 1973 году в Варшаве подписано Соглашение о многостороннем сотрудничестве между академиями наук социалистических стран (НРБ, ВНР, ГДР, ПНР, СРР, СССР и ЧСР) по той же проблеме. Несколько месяцев спустя представители дружественных академий собрались в городе Циолковского – Калуге. Состоялось учредительное совещание. Участники наметили пути совместных исследований по шести наиболее актуальным направлениям науки о звездах, разделив эти направления по интересам между академиями наук.
Самое первое направление исследований называется «Ранние стадии эволюции звезд». Оно «включает в себя расчеты гидродинамического сжатия облака межзвездной материи, образования протозвезды, загорания ядерных источников энергии и, наконец, расчет самых ранних стадий эволюции с учетом ее взаимодействия с окружающей средой».
Задачу координировать исследования в этой области приняла на себя Чехословацкая академия наук. Причем в завершающей стадии работ предполагается сопоставить полученные результаты расчета с результатами специальных наблюдений.
Польская академия наук взяла на себя курирование второй темы – «Изучения поздних стадий эволюции звезд». Поздними стадиями астрофизики называют те периоды звездной жизни, когда в недрах газового шара уже действуют различные источники энергии и звезда, усложняя свое строение, раздувается, превращаясь в красный гигант. Сюда же можно отнести и расчет моделей «предсверхновой» и «сверхновой» звезды, когда они вдруг в миллиарды раз увеличивают свою светимость и сбрасывают газовую оболочку, теряя часть массы.
Венгерская академия наук является координатором темы, посвященной вообще свойству нестационарности в жизни звезд. Наблюдения показали, что среди звездного населения существуют объекты как регулярно, так и спорадически меняющие свои параметры: блеск, цвет, спектр. Между тем удовлетворительного объяснения причин этих изменений пока нет. Вот почему нестационарность была выделена совещанием в отдельную проблему.
Весьма интересным типом небесных объектов являются звезды, обладающие аномально сильными магнитными полями, – так называемые «магнитные звезды». Сегодня пришло уже время объединить разрозненные результаты наблюдений воедино и разработать модели механизмов генерации магнитных полей. Желательно также окончательно определить степень влияния магнитных полей на структуру и эволюцию звезд. Эту важную и актуальную тему координирует Академия наук ГДР.
Следующей темой широкого фронта исследований является эволюция тесных звездных систем. Ведь двойные звезды составляют почти половину всех массивных звезд нашей Галактики. Расчеты и наблюдения последних лет показали, что в процессе эволюции материя, истекающая из более массивной раздувающейся звезды, может либо окружить оба компонента единой светящейся оболочкой, либо сформироваться в струи, либо вообще перейти в состав второго компонента пары. А почему? Участники совещания пришли к выводу, что настало время, во-первых, систематизировать полученные данные о двойных звездах, затем провести расчеты эволюции тесных двойных систем и, наконец, сравнить результаты расчетов с наблюдениями. Координатором этой темы является Академия наук СРР.
Мы уже не раз говорили о важности исследований групп звезд. Несмотря на различие их свойств, звезды, входящие в ассоциации и скопления, имеют, по-видимому, одну очень важную общую характеристику – примерно одинаковый возраст. Значит, всестороннее их изучение позволит проверить многие гипотезы и теоретические расчеты, а следовательно, внесет определенность и в наши представления о процессах звездообразования. Эту тему и направление координирует Академия наук Болгарии.
Поскольку в Советском Союзе разрабатываются многие из указанных направлений, то координация всех направлений возложена на Академию наук СССР. Такое объединение усилий обещает весьма интересные результаты решений многих важных проблем современной астрофизики и космогонии.
Читатель наверняка чувствует, что раздел, касающийся звездной космогонии, подходит к концу. Пора сделать вывод, а у нас не только богатый набор гипотез, но есть даже две противоположные концепции. Первая, пока все еще более распространенная, рассматривает процесс созидания как конденсацию разреженной материи, и вторая, считающая, что образование звезд происходит в результате взрывоподобного распада сверхплотных тел. Какой же из двух точек зрения отдать предпочтение?
Нет хуже той ситуации, когда приходится проявлять самостоятельность. Особенно если это касается теории происхождения звезд. И у одной, и у другой концепций имеются «за», имеются и «против». Может быть, будет легче, если сравнить эти «за» и «против»? Давайте попробуем в заключение выстроить некоторые из-них друг за дружкой в форме «возражений-утверждений» по основным направлениям спора. Скажем так:
1. Звезды рождаются и в наше время!
Раньше классическая концепция утверждала, что все звезды Галактики возникли одновременно.
Новая концепция с самого начала не приняла это утверждение. И вот по существующим сегодня взглядам звезды продолжают зарождаться и в наше время.
2. Звезды рождаются группами!
Приверженцы новой концепции, выдвинувшие это утверждение, основываются на наблюдениях. Среди молодых звезд, объединенных в ассоциации, много неустойчивых кратных систем. Да и сами эти ассоциации непрерывно расширяются, являясь союзами весьма непрочными. Это дает основания полагать, что образование звезд происходит группами в единых центрах.
Специалисты, исповедующие классическую концепцию, возражают. Они говорят, что никаких звездных ассоциаций, якобы объединяющих молодые горячие сверхгиганты, не существует. В составе же объединений, приводимых в качестве примеров, наряду с молодыми наблюдается немало и старых холодных звезд. Для утверждения существования ассоциаций молодых звезд пока накоплено слишком мало данных. Кроме того, если даже согласиться с разбеганием звезд, входящих в такой коллектив, то причиной этого явления вполне мог бы быть, например, взрыв «сверхновой». Такой взрыв, выбросив из скопления значительную массу вещества, мог бы перевести всю систему в неустойчивое состояние.
Резюмируя, скажем, что, несмотря на существующие разногласия, идея группового рождения звезд побеждает. И сегодня даже сторонники классического направления в космогонии разрабатывают механизмы образования не звезд-одиночек, а сразу целых коллективов.
3. Что является исходным материалом при образовании звезд?
Классическая концепция: звезды образуются за счет гравитационной конденсации диффузной материи. Не исключено, что значительную роль в процессах формирования играют электромагнитные силы.
Новая концепция: в 1952 году академик В. Амбарцумян писал: «Каждая тесная группа звезд должна возникать в ассоциации из одного тела дозвездной природы. Эти предполагаемые тела можно назвать протозвездами». Что такое протозвезды, современная наука конкретно не знает. Предполагается, что это сверхплотные тела достаточно большой массы, состоящие из материи неизвестной нам формы. Возможно, это ее дозвездная стадия.
4. Если согласиться, что звезды рождаются не поодиночке, то и протозвезды должны обладать массами во много раз большими, чем, например, масса Солнца. Возможно ли это?
Сторонники классической концепции отвечают на этот вопрос уклончиво. Они говорят так: теория пока не дает вывода условий устойчивости для подобных масс. Результаты наблюдений тоже не дают пока возможности сказать, что кто-нибудь видел эти сверхплотные образования. Значит…
А вот что говорят сторонники новой концепции: «В природе могут существовать сверхплотные статические звездные конфигурации с массами порядка галактической и выше». Так пишет известный теоретик из Бюраканской обсерватории Г. Саакян. Кроме того, в 1963 году наблюдатели открыли квазары, а сегодня они заняты поисками «черных дыр». Почему бы не предположить, что это и есть сверхплотные образования?
Да, похоже, что по этому вопросу сторонники обеих концепций решительно расходятся.
5. Какому механизму звездообразования отдается предпочтение?
Классический механизм: образование звезд происходит путем гравитационного сжатия крупной туманности. Сначала она сжимается целиком. А затем, когда критерий неустойчивости Дж. Джинса начинает выполняться для отдельных ее частей, туманность дробится на отдельные сгустки, дающие начало протозвездам.
Сторонники новой концепции считают, что основным процессом образования звезд на современной стадии развития Галактики является их возникновение в результате взрыва из единого сверхплотного тела.
Взрыв во вселенной вообще является закономерным скачкообразным переходом накопившихся количественных изменений в новое качественное состояние.
Конечно, это только принципиальная канва диалога между представителями разных точек зрения. На самом деле в нем и содержания и убедительности значительно больше. Здесь же он приведен лишь в качестве примера для того, чтобы в заключение сказать, что пока вопрос выбора той или иной концепции является делом вкуса.
Большим достоинством нового подхода школы В. Амбарцумяна к космогоническим явлениям можно считать отведение главной роли нестационарным объектам в развитии вселенной и взрывным процессам. Новая точка зрения постепенно укрепляется, растет у нее и число сторонников. Это и понятно. «Спокойная картина медленно меняющегося мира, в котором состояния всех объектов почти стационарны, – писал В. Амбарцумян, – полностью гармонировала со стройными механическими представлениями о вселенной, развитыми на основе небесной механики и только что зародившейся астрофизики…» То было время спокойного XIX века. Но вот на смену ему пришел век XX, век сокрушительных катаклизмов в обществе, в науке и технике. Покой и устойчивость сменились напряженной нервной жизнью, полной больших и малых потрясений. Они коснулись всех аспектов общественной жизни, не оставили в стороне ни одного человека. Должно было смениться и мировоззрение. Новая гипотеза советской космогонической школы словно сама родилась из нового ритма нашей жизни. А вот окажется ли она более справедливой, чем существующая классическая концепция, этот спор может разрешить только время. Ну что же, звездам торопиться некуда…
Космогония галактик
Туманности или галактики
Это самый молодой раздел науки о происхождении и развитии небесных тел и их систем. Молодой, потому что только в нашем XX столетии новая мощная астрономическая техника позволила подтвердить предположение о существовании других галактик – огромных звездных систем, вроде нашей Галактики, – насчитывающих в своем составе сотни миллиардов звезд, объединенных, как правило, в различные коллективы. Еще 100 лет назад многие астрономы считали нашу Галактику вообще единственной системой во вселенной. За ее пределами – пустота. Как огромный пчелиный рой висит Галактика среди пустого Ньютонова пространства без конца и без края. Рой этот по форме напоминает жернов или чечевицу. Кроме отдельных звезд и звездных скоплений, в состав Галактики входило довольно большое количество «косматых объектов», как называли в прошлом столетии маленькие туманные пятна на небе неизвестной природы и непонятного состава. Правда, В. Гершель сумел разглядеть в некоторых из них звезды, но большинство их оставалось мутными пятнышками, неразличимыми ни в какой инструмент. Их так и назвали – «туманности». Интересовали они специалистов не очень сильно. Спорили в основном по частному вопросу, являющемуся следствием космогонических разногласий: является ли хорошо наблюдаемая туманность в созвездии Андромеды газовым зародышем будущей планетной системы, входящей в состав Галактики, как то утверждал еще П. Лаплас, или это самостоятельная звездная система, удаленная от нас на такое расстояние, что не может быть разложена на звезды ни одним из имевшихся инструментов?
В конце XIX столетия астрономы получили в руки новое мощное оружие исследования – спектральный метод. Свет звезд, пропущенный через призму спектроскопа, давал практически непрерывный спектр, пересеченный темными линиями поглощения. Нагретый же до свечения газ в тех же условиях имел спектр линейчатый.
Спектр туманности Андромеды, полученный в 1899 году, оказался непрерывным. Вам кажется, что вопрос можно закрыть? Что звездный состав туманности доказан? Ничуть не бывало. Спор только начинал разгораться по-настоящему. Почему бы не предположить, говорили сторонники небулярной природы туманности, что перед нами скопление холодного газа, которое светится не само, а только отражает свет звезд? Потому и спектр его непрерывный…
Позвольте, сокрушались противники, но где же те звезды, свет которых туманность отражает?
Звезд не было.
Лишь в 1917 году астрономы Р. Кертис и Г. Ричи заметили в туманности Андромеды несколько ярких точек. Словно крохотные искорки вспыхнули они и через несколько дней исчезли. Наблюдатели решили, что это могли быть новые звезды, заметные в моменты наибольшего блеска. По величине зафиксированного блеска нашли они и расстояние до них. Оно показалось чудовищно большим – раз в пятнадцать больше диаметра всей Галактики. Это был важный результат, ибо говорил он о том, что туманное пятнышко спиральной структуры, расположенное в созвездии Андромеды и имеющее каталожный шифр NGG-224 – внегалактический объект!
Возник «великий спор» – являются ли вообще все туманности внегалактическими объектами или принадлежат к населению нашей Галактики? Эти разногласия уже захватывали столь принципиальные вопросы строения мира, что не могли оставить равнодушным никого из астрономов. В 1920 году в Вашингтоне была даже организована дискуссия между двумя представителями разных точек зрения на этот счет. X. Шепли стоял на позициях «длинной шкалы» расстояний, его противник X. Кертис ратовал за расстояния короткие. Но разрешить противоречия могли только дальнейшие исследования.
И вот в 1923 году молодой астроном Э. Хаббл, получив возможность работать на самом большом в те времена телескопе на обсерватории Маунт-Вилсон, навел его двух с половиной метровое зеркало на туманность Андромеды. Наконец-то! На фотопластинке по краям туманности отчетливо виднелись звезды. К концу того же года Э. Хаббл отыскал там и переменную звезду, похожую по своим свойствам на цефеиду. А цефеиды как раз служили земным наблюдателям для определения расстояний до звезд, и «Великий спор» был закончен. Туманность Андромеды находилась за пределами нашей Галактики и имела явно звездный состав.
Вы спросите: а как же остальные туманности? В остальных в те годы пока звезд не обнаружили. Можно было бы, конечно, считать, что все однотипные объекты, скажем, спиральной структуры, имеют одинаковый состав, например, являются звездными системами. Но существовали туманности и других видов… В общем, тут надо было еще поработать.
Помните, в главе, посвященной планетной космогонии, мы довольно много внимания уделили работам великолепного английского астронома Дж. Джинса? Тогда разговор шел о происхождении солнечной системы. На самом же деле труды этого астронома охватывали и звезды, и туманности. Его исследования относились к 1916–1919 годам, когда звездный состав NGG-224 еще не был доказан и все туманности полагали состоящими из газа.
Вначале, по мнению Дж. Джинса, существовало пространство, занятое равномерно распределенным разреженным газом; неким первичным хаосом плотностью этак 10 -30г/см 3, или 10 -15г/км 3. Ну что же, если читателю удастся представить себе столь жидкий туман, можно позавидовать его воображению.
По каким причинам в этом «всемирном киселе» начали возникать первичные сгущения и неравномерности, обсуждать смысла нет. Причин может быть много, ими занимается раздел физики под названием «газовая динамика». Исследуя теорию гравитационного сжатия и вращения таких первичных облаков газа, Дж. Джинс пришел к выводу, что на ранней стадии образуются туманности правильной сферической формы. Затем, продолжая сжиматься, а следовательно, и ускоряя свое вращение, такая туманность сплющивается. Постепенно с краев эллиптического диска начинается истечение вещества, которое образует спиральные витки. Причину образования спиральных рукавов Дж. Джинс видел в приливах, которые вызывались гравитационными полями соседних туманностей. А уж повышенная плотность вещества в спиральных ветвях служила для образования в них звезд.
В 1925 году, когда Дж. Джинс впервые изложил свою теорию образования спиральной структуры туманностей, американский астроном Э. Хаббл составил первую классификацию туманностей. Прежде всего он разделил их на три большие группы: неправильные, эллиптические и спиральные.
Оставив в стороне первый тип туманностей, он выстроил все остальные в некоторую последовательность форм. Причем началом последовательности явились как раз сферические туманности. Э. Хаббл присваивает им индекс Е0, что означает «эллиптические – нулевого сжатия». Дальше, в соответствии с соотношением большой и малой полуосей эллипсоидов, шли классы Е1, Е2, … Е7. Более сплюснутых туманностей Э. Хаббл найти не сумел.
Затем шли две ветви туманностей спиральных. Одна ветвь объединяла нормальные спирали, другая – пересеченные.
Дж. Джинс был очень доволен хаббловской классификацией. Она лила воду на его мельницу, полностью соответствуя нарисованной им последовательности эволюции туманностей. Да и Э. Хаббл, несмотря на то, что старался не связывать классификацию с эволюцией, в глубине души был уверен в том, что Дж. Джинс прав. В общем, все было очень хорошо. Классификация Хаббла и гипотеза Джинса стали классическими и вошли во все учебники. Правда, с формированием спиральных структур галактик гипотеза Дж. Джинса справлялась не так успешно. Но первая половина гипотезы – превращение шаровых скоплений газа в эллиптические – сомнений почти не вызывала. И вдруг… Это «вдруг» относится ко времени, когда вторая мировая война шла к своему концу: шел 1944 год. А началось все раньше.
В начале 30-х годов в Соединенные Штаты из Германии с Гамбургской обсерватории приехал упоминавшийся уже нами астроном В. Бааде. Насовсем ли он приехал или временно, сейчас за давностью времени сказать трудно. Известно лишь одно – с 1931 года он прилежный сотрудник обсерватории Маунт-Вилсон, и это вполне разумно, поскольку любезному фатерланду было в ту пору не до звезд. Американцы же предоставили немцу возможность пользоваться 2,5-метровым рефлектором, несмотря на то, что подданство В. Бааде сохранял германское. И насколько это было разумно – неизвестно. Впрочем, стань он к 1941 году американским гражданином, не случилось бы, может быть, и того «вдруг», ради которого мы заинтересовались далеко не астрономическими подробностями жизни этого специалиста высокого класса.
24 июня 1941 года президент США Ф. Рузвельт сделал заявление о поддержке Советского Союза в войне с фашистской Германией. Подданный «тысячелетнего рейха» В. Бааде был объявлен местными властями «союзником врага», и ему было запрещено покидать пределы обсерватории. Потом был Пирл-Харбор и введение обязательного затемнения в Лос-Анджелесе и прилегающих к нему городах. Астроном В. Бааде, пользуясь особенно темными ночами, фотографировал избранные небесные объекты. И вот наступил день, когда, просматривая пластинки, на которых остались изображения эллиптических туманностей, В. Бааде обнаружил, что они тоже состоят из звезд. Сомнений в этом не было. Он даже растерялся, прежде чем почувствовал радость по поводу открытия. Ведь оно означало, что теорию Дж. Джинса следовало отправить в архив. Помните, все рассуждения английского астронома были основаны на том, что уж эллиптические туманности – это точно газовые образования, которым еще предстоит долгий путь эволюции, прежде чем в них появятся первые звезды. Теперь же фундамент под всем зданием стройной и красивой теории Дж. Джинса рассыпался. Космогонистам предстояло все начинать сначала.