355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Занимательно о космогонии » Текст книги (страница 15)
Занимательно о космогонии
  • Текст добавлен: 26 сентября 2016, 15:21

Текст книги "Занимательно о космогонии"


Автор книги: Анатолий Томилин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 15 (всего у книги 15 страниц)

Так как же все-таки рождаются галактики вообще!

Первоначальная хаббловская классификация галактик устарела; особенно после появления знаменитой работы В. Бааде о звездных населениях. По мере накопления новых данных о галактиках, Э. Хаббл сам не раз пытался пересмотреть свою классификацию и дополнить ее. Но работа его была прервана смертью.

В 1957 году астрономы У. Морган и М. Мейол предложили новую классификацию. В основе ее лежал указанный еще Э. Хабблом критерий роста концентрации яркости ядер, но при этом направление эволюции у них получилось обратным хаббловскому. Они разделили все многообразие внегалактических объектов на 7 классов. К первому были отнесены неправильные галактики без видимого ядра. Дальше, по мере возрастания яркости ядра, шли классы второй, третий, четвертый, пятый и шестой, объединяющие в себе и спиральные галактики. Причем одновременно с ростом класса ослабевала степень закрученности спиральных рукавов. Седьмой класс объединял уже различные типы галактик эллиптических. Определенным прогрессом в новой классификации можно было считать то, что если раньше спектральный класс галактикам приписывался по суммарному излучению всех имеющихся в ней звезд, то теперь У. Морган и М. Мейол попытались ответить на вопрос – какие типы звезд вносят наибольший вклад в интегральное излучение.

Естественно, что, отдав столько времени и сил изучению активности ядер галактик, В. Амбарцумян должен был тоже предложить свою классификацию. И он это сделал, разбив существующие объекты на 5 классов по степени космической активности. В первый вошли галактики без заметного ядра и даже без заметного сгущения в центре. К ним относятся многие иррегулярные галактики, в том числе, вероятно, и наша соседка – галактика Магеллановы Облака, а также карликовые эллиптические галактики, вроде той, которую обнаружили в созвездии Скульптора.

Во второй класс он объединил галактики со спокойным, не очень ярким ядром. К ним можно отнести нашу Галактику, галактику Андромеды – M 31 и галактики M 33 и NGC 5194.

Напомним, что буква М в шифре галактик означает их принадлежность к каталогу Мессье, а «NGC» – означает «Новый общий каталог», составленный Д. Дрейером. Могут встретиться и галактики, имеющие перед порядковым номером буквы «С». Это значит, что их следует искать в дополнении к новому общему каталогу.

К третьему классу отнесены галактики тоже со спокойными, но уже значительно более яркими ядрами, например NGC 4303 и NGC 3162.

К четвертому классу относятся галактики, подобные сейфертовским. Они обладают не просто яркими, но и возбужденными ядрами.

И наконец, к пятому классу отнесены те звездные системы, в которых почти вся яркость сосредоточена в ядре. К ним можно причислить «компактные» галактики Цвикки, некоторые «голубые галактики» и квазары.

Астрономы из Армении считают, что именно изучение ядер галактик сулит наибольший прогресс в решении таких принципиальных вопросов, как возникновение и эволюция этих звездных систем.

В 1964 году В. Амбарцумян говорил, что считает эволюцию идущей в направлении от стадии эллиптической галактики с молодым ядром и богатым звездным населением второго типа по Бааде. По мере развития такой галактики светимость ее ядра должна возрастать; постепенно в ней начинают формироваться новые подсистемы; из материи, выброшенной в пространство ядром, создаются спиральные рукава; и галактика переходит в стадию спиральных систем (или спиральных с перемычкой). На этом этапе в них образуется звездное население первого типа, по Бааде. Постепенно затем яркие ядра спиральных галактик тускнеют и системы переходят в новую фазу иррегулярных галактик.

Сотрудник Амбарцумяна Л. Мирзоян признает, что «в настоящее время гипотеза возникновения галактик в результате деятельности плотных, массивных ядер, естественно, не может еще объяснить все физические и динамические свойства галактик. Например, при возникновении галактик из тел небольшого объема трудно пока объяснить огромные вращательные моменты, наблюдаемые у ряда галактик. Эта гипотеза встречается и с другими менее серьезными трудностями». Однако, несмотря на это, Л. Мирзоян полон оптимизма. Он вполне солидарен с В. Амбарцумяном, который уверен, что «изучение взрывов и других проявлений нестационарности в галактиках ведет нас к решению проблем происхождения и эволюции галактик, а также к решению проблемы превращения незвездных тел, находящихся в ядрах галактик, в обычные звезды и туманности».

В 1967 году английский астроном М. Райл, сравнив спектры квазаров и радиогалактик, высказал мысль, что и те и другие – просто разные стадии эволюции одних и тех же объектов. Ведь и те и другие представляют собой двойные системы, только с разными расстояниями между компонентами. При этом мощность радиоизлучения у тесных пар явно больше. Гипотеза М. Райла заключалась в том, что радиоисточник начинает свою жизнь в виде очень тесной пары, а может быть, и одиночного объекта большой активности. Постепенно, примерно за сто тысяч лет, облака плазмы, выброшенные ядром и дающие существенную долю наблюдаемого радиоизлучения, уходят и рассеиваются. Естественно, что при этом «радиояркость» объекта значительно падает.

В 1970 году советский астроном Л. Озерной, основываясь на мысли, что каждая галактика в процессе нормального развития может вдруг перейти в возбужденное состояние, построил любопытную диаграмму. В ней по горизонтальной оси отложен порядок нормального развития галактик (от неправильных к спиральным, затем к эллиптическим и т. д.), а по вертикали даны возможные переходы в возбужденное состояние от каждой формы. При этом эллиптические галактики переходят в возбужденном состоянии в мощные радиогалактики, а спиральные – в сейфертовские. Этот переход происходит через промежуточные состояния, которыми могут быть «компактные» галактики.

« N-галактики» и квазары – объекты, уже находящиеся в крайне возбужденном состоянии. Промежуточными положениями для них Л. Озерной считает стадии «компактных» галактик Цвикки и квазагов. А вот исходные их формы пока неизвестны. На новой диаграмме нашлось место всем существующим сегодня разновидностям галактик. Но что ждет ее завтра?


В том же году два других советских специалиста – В. Комберг и Р. Сюняев предложили иную схему развития галактик. По их мнению, на самой ранней стадии образования формируются сначала из больших скоплений диффузной материи квазизвездные объекты: квазары, квазаги, либо еще какие-нибудь «кваги». В таком, детски-возбужденном состоянии небесные объекты существуют сравнительно недолго, не более миллиона, ну, десятка миллионов лет. Затем наступает юность – промежуточное состояние. Неизвестные «кваги» переходят в ядра сейфертовских галактик, квазары превращаются в «компактные» галактики Цвикки, а квазаги – в ядра « N-галактик». Юность галактик длится примерно на порядок больше времени, чем детство. Затем начинается их зрелость. Внегалактические объекты переходят в основную стадию своего существования, которая длится около 10 миллиардов лет. Из сейфертовских галактик получаются спиральные, из «компактных» – эллиптические, а ядра « N-галактик» становятся ядрами мощных радиогалактик.

И Л. Озерный и В. Комберг с Р. Сюняевым считают хаббловские типы галактик нормальным состоянием внегалактических объектов. Сегодня отдать предпочтение какой-нибудь одной из рассмотренных схем эволюции пока трудно. Скорее всего в споре двоих прав будет кто-то третий. Тот, который потом уступит свое место четвертому, а четвертый пятому и так далее, потому что процесс познания бесконечен и, вопреки всевозможным пророкам заката человеческой культуры, вряд ли когда-нибудь серьезно нам надоест.

На службе новая техника…

Помните, начиная разговор о «ненормальных» галактиках, мы привели целый список новых внегалактических объектов. Большинство из них так далеки от Земли и от Галактики, что сведения, которыми располагают о них специалисты, буквально ничтожны. Между тем новые объекты явно играют немаловажную роль в космогонии. Это легко видеть хотя бы из последних гипотез. Да и вообще для составления новых схем эволюции любых небесных объектов нужно прежде всего нащупать их взаимосвязи. А это значит – нужен максимум информации о самих объектах. Но мало того, что они далеко. Главное богатство Земли, счастье ее обитателей – атмосфера – горе для астрономов. Ни инфра-, ни ультра-, ни рентгено-, ни гамма-лучи не пробиваются через ее толщу. Все вредное для органической жизни излучение надежно гасится атмосферой. А ученым оно нужно!

За последние годы среди специалистов постепенно выкристаллизовалось мнение, что основным диапазоном электромагнитных волн, с помощью которых происходит большинство энерговыделений в Галактике и вселенной, – это инфракрасное излучение. Интересно? Очень! А увидеть его с поверхности Земли нельзя. Что делать?

Затем, по выражению директора Крымской астрофизической обсерватории академика А. Северного, именно ультрафиолетовое и рентгеновское излучение нашего светила – ключ к загадкам его внезапных вспышек. А ведь Солнце – звезда! Из звезд же состоят и галактики. Но, увы, и из этого интересного диапазона у поверхности Земли ничего не выцарапать, не говоря уже о гамма-лучах. Где же выход?

И вот в январе 1975 года на околоземной орбите развернул свою деятельность «Научно-исследовательский институт широкого профиля». Именно так квалифицировала пресса работу советских космонавтов А. Губарева и Г. Гречко на борту станции «Салют-4».

За месяц командировки за пределы атмосферы космонавты провели огромный объем работ, уделив немало полетного времени астрономическим, астрофизическим и радиофизическим исследованиям.

На борту станции был установлен криогенный инфракрасный телескоп-спектрометр ИТС-4. Такая аппаратура впервые выведена на орбиту. А холод криостата, в который был помещен приемник излучения, в сотни раз повышает чувствительность приборов, обеспечивая получение уникальной информации. Предназначался прибор для исследования и создания инфракрасных «портретов» Земли и других планет, для исследования вещества в межпланетном и межзвездном пространстве на молекулярном уровне и для наблюдения далеких, нестационарных объектов, находящихся в плоскости Галактики. Ведь именно исследования этих последних должны помочь понять законы, управляющие жизнью Галактики и галактик.

Кроме того, космонавты много занимались наблюдениями Солнца, используя орбитальный солнечный телескоп с коротковолновым дифракционным спектрометром для ультрафиолетовых лучей ОСТ-1. Помните слова А. Северного о ключе к загадкам солнечных вспышек?

На борту станции «Салют-4» был установлен и комплекс аппаратуры для серьезного исследования рентгеновского излучения. Его создатели назвали свое детище «Филином». За один виток орбитальной станции «Филин» обозревал полосу звездного неба шириной примерно в 10 градусов, фиксируя все, что попадало в сектор его обзора. Информация тут же передавалась на Землю. Так что сам «Салют-4» – это, можно сказать, головной экспериментальный отдел большого НИИ, наземная часть которого состояла из массы острозавидующих космонавтам научных сотрудников, с нетерпением ожидающих своей доли информации. Впрочем, «Салют-4» никого не обидел. Объема новых сведений, переданных А. Губаревым и Г. Гречко, хватит их наземным коллегам на несколько лет интенсивной и, будем надеяться, плодотворной работы.


Рентгеновская астрономия вообще очень молодая отрасль древней науки о звездах. Ведь первый, после Солнца, космический источник рентгеновского излучения – Скорпион Х-1 – был обнаружен лишь в 1962 году. С тех пор было проведено всего несколько экспериментов с помощью аппаратуры, поднятой за пределы атмосферы на геодезических ракетах и на советских спутниках. В 1970 году американские специалисты запустили первый специализированный спутник «УХУРУ» для наблюдения, систематизации и отождествления источников рентгеновского излучения с оптическими и радиообъектами. И хотя аппаратура на борту этого спутника была еще весьма несовершенной, результаты его работы оказались неплохими. Каталог «УХУРУ» содержал богатую информацию о 163 источниках рентгеновского излучения. Из них 108 были доселе неизвестны.

Собранная спутником информация позволила сделать интересный вывод: в космосе существуют тесные двойные системы, один из компонентов которых – источник рентгеновского излучения. При этом два таких источника (Геркулес Х-1 и Центавр Х-3) являются рентгеновскими пульсарами. Если согласиться с тем, что строгая периодичность излучения обусловлена у них так же, как и у обычных радиопульсаров, быстрым вращением объекта вокруг своей оси, то размеры их должны быть крошечными. Значит, плотность вещества должна быть огромной. Это позволяет предположить, что оба названных рентгеновских пульсара являются нейтронными звездами. Иначе обстоит дело с источником рентгеновского излучения Лебедь Х-1. По расчетам, плотность его должна быть еще большей, чем у названных выше объектов. А это значит, что Лебедь Х-1 может оказаться «черной дырой»!

Более сорока рентгеновских источников из последнего каталога «УХУРУ» отождествлены с внегалактическими объектами. Их изучение продолжили американские искусственные спутники ОСО-7 и «Коперник», а также космический экипаж небесной лаборатории «Скайлэб», запущенной в 1973 году.

В 1973 году по результатам работы счетчиков гамма-квантов, установленных на спутниках Земли, специалисты обнаружили непонятные короткие вспышки гамма-излучений низких энергий, обладающие большой интенсивностью. Возникло предположение, что источники их находятся вне солнечной системы, и не исключено, что и вне пределов Галактики. При этом кратковременность вспышек также говорила о небольших, по-видимому, размерах самих источников. Сейчас теоретики считают возможными кандидатами в источники гамма-вспышек прежде всего нейтронные звезды, которые согласно построенным недавно теориям способны на внезапные извержения радиоактивного вещества из своих недр.

Как всегда, новые средства, призванные помочь в объяснении старых загадок, задают и свои – новые. В этом, наверное, заключается один из законов развития, законов прогресса…

Заключение

В заключение автор хотел бы сказать, что он старался изложить гипотезы и в такой последовательности, чтобы они могли бы представить не столько само «действо», участниками которого являются окружающие нас миры, сколько наш собственный, человеческий подход к их познанию.

Перед глазами читателя прошло много идей, много гипотез и теорий. Где же истина? – вправе он спросить. Однозначного ответа нет. Нет в космогонии единой точки зрения, одинаково приемлемой представителями разных направлений. Каждый из них на вопрос об истине ответит по-своему. Плохо, когда нет никакого ответа. Но и много разных тоже не лучше. Особенно когда самый последний ненадежен. Если часы пробили тринадцать раз, то возникает сомнение не в истинности хода времени, а в правильности хода часов…

Сколько мудрых, уважаемых людей бились над тем, чтобы понять заветный механизм происхождения миров. Привлекали к этому наисовременнейшие достижения разума. Но проходило время, и хитроумные построения оказывались сначала наивными, потом неправильными. Им на смену приходили новые; приходили, чтобы разделить судьбу предшествующих…

Плохо это или хорошо? Космогония в поиске. Значит, высок в ней потенциал жизненных сил. А такая наука молода. В ней непочатый край работы, великолепных трудностей и блестящих находок.

В сегодняшней космогонии обширнейшее поле приложения молодых сил. Нас ждут новые гипотезы, новые теории. Конечно, они будут опровергнуты и заменены следующими. Но каждая из них продвигает нас шаг за шагом вперед по бесконечной спирали познания мира.



Содержание

Введение … 3

Когда мир строили боги

От мифов к натурфилософии … 5

Господь бог, Птолемей и проблема алгоритма … 14

Вселенную конструируют философы

Точка опоры … 20

Жорж-Луи Леклер граф де Бюффон и первая настоящая гипотеза космогонии … 24

Небулярная гипотеза Иммануила Канта … 29

Великолепная пятерка … 33

Пьер-Симон Лаплас и седьмое примечание к «Изложению системы мира» … 37

«Изложение системы мира» – популярное произведение без единой формулы и без единого чертежа … 40

Падение небулярной гипотезы

Начало штурма … 45

Космогоническая гипотеза Жерве-Огюста-Этьена-Альбы Фаи … 46

Дуэль Джорджа Говарда Дарвина и Александра Михайловича Ляпунова … 48

Последний толчок и крах небулярной гипотезы … 52

Планетная космогония

Планетезимали Ф. Мультона и Т. Чемберлина … 54

«Сигара» Джемса Джинса … 57

Дополнения Гарольда Джеффриса и крах «катастрофической» концепции … 61

В поисках новых путей … 65

Солнечная система, какой мы ее знаем сегодня … 72

Свежие течения космогонии

Гипотезы, гипотезы, гипотезы … 79

Время строить и время разрушать … 99

Звездная космогония

Две концепции … 107

Рядовая звезда – Солнце … 109

Солнце без гипотез и теория «термояда» … 115

Звезды в ассортименте … 125

Классическое направление звездной космогонии … 130

Новые мехи для нового вина … 139

«Черные» и «белые дыры» вселенной … 146

Так как же все-таки рождаются звезды? … 153

Космогония галактик

Туманности или галактики … 160

Нормальные галактики должны бы рождаться так … 165

Магнитные поля в галактиках … 171

А как рождаются галактики «ненормальные»? … 177

«Машина времени» вселенной … 188

Так как же все-таки рождаются галактики вообще? … 199

На службе новая техника … 203

Заключение … 207


Анатолий Николаевич Томилин

А. Томилин – преподаватель института, член Союза писателей. «Занимательно о космогонии» не первая книга этого автора. Молодые читатели неоднократно встречали его имя на страницах журналов и научно-художественных сборников. Его перу принадлежит несколько произведений, выпущенных издательством «Детская литература», в том числе книжка «Небо Земли», а также книги «Занимательно об астрономии» и «Занимательно о космологии», вышедшие в «Молодой гвардии».

Новая книга А. Томилина, которую издательство предлагает своим читателям, посвящена также одной из фундаментальных наук о вселенной.



    Ваша оценка произведения:

Популярные книги за неделю