Текст книги "Занимательно о космогонии"
Автор книги: Анатолий Томилин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 8 (всего у книги 15 страниц)
Звездная космогония
Две концепции
Пожалуй, следует начать с того, что в современной науке о происхождении и эволюции звезд и звездных систем существуют два резко выраженных противоположных и враждующих между собой направления. Одно из них старое, классическое, в основе которого лежит небулярный принцип, то есть взгляд на образование звезд из разреженного диффузного вещества путем постепенного сжатия первоначальной туманности. Второе направление новое, возглавляемое советской школой академика В. Амбарцумяна, исходит из прямо противоположного взгляда «об образовании звезд и звездных систем в результате фрагментации массивных и плотных (а может быть, даже сверхплотных) тел».
Такой ощутимый раскол лагеря космогонистов говорит прежде всего об определенном кризисе науки, о том, что накопленные сведения переросли старые умозрительные гипотезы, но еще недостаточны для убедительного подтверждения гипотез новых.
Трудность заключается в том, что в ряде случаев одни и те же факты могут быть с равным успехом объяснены с позиций взаимно исключающих друг друга теорий. Состояние не новое для астрономической науки. Вспомните, как в XV веке небесные явления объяснялись одновременно с птолемеевских и коперниковских позиций и как в силу молодости и неразработанности новой теории птолемеевский алгоритм оказывался точнее…
Не исключено, что и в звездной космогонии сейчас сохраняется положение, близкое к тому, что наблюдалось в астрономии пять столетий назад.
На стороне классической гипотезы – традиция и добротные математические теории.
На стороне гипотезы В. Амбарцумяна – новый взгляд и целый ряд удачно предсказанных новых фактов, не находящих удовлетворительного объяснения в рамках старых теорий.
В последние годы благодаря бурному развитию новой техники астрономы получили множество данных о самых разных фазах космогонических процессов в Галактике и за ее пределами. Но ни один из них не позволяет точно сказать: «Вот, смотрите, это происходит образование молодой звезды!»
Более того, новые наблюдения позволили сделать прямо противоположный вывод о том, что преобладающими процессами во вселенной являются не процессы сгущения, слияния и концентрации, а скорее наоборот: взрывы, распад и дезинтеграция. Эти результаты и привели к созданию новой концепции о плотных (и сверхплотных) прототелах, являющихся источниками звездообразования. Но хотя подобные объекты и должны бы быть весьма впечатляющими даже по масштабам метагалактики, ни одного из них пока не удалось обнаружить астрономам с помощью непосредственных наблюдений. Чему же верить? Какой точке зрения отдать пальму первенства?
Ну, о «вере в науку» больше говорить не стоит, а вот о «пальме первенства»… Может быть, как обычно, истина лежит где-то посередине? Может быть! Но пока она не найдена. И чтобы понять, ради чего ломаются копья, нужно, пожалуй, обновить в памяти сам предмет спора и вспомнить сначала, что такое звезды, что мы знаем о них наверняка и по какому принципу мы, люди, пытаемся их классифицировать.
Рядовая звезда – Солнце
«…Солнце является единственной звездой, у которой все явления могут быть детально изучены», – писал американский астроном Джордж Эллери Хейл, получивший золотую медаль Королевского астрономического общества за метод фотографирования поверхности Солнца и другие работы. В истинности сказанного нет оснований сомневаться и сегодня. И хотя, описывая Солнце и звезды, мы вторгаемся в сферу астрономии и даже астрофизики, другого выхода у нас нет. Солнце действительно является типичной рядовой звездой и вполне может служить меркой – критерием для остальных светил.
Некогда древние мудрецы провозгласили: «Ex nihilo nihil fit» – «из ничего ничто не родится». Прекрасный лозунг материалистического взгляда на мир. Не от него ли произошла великая идея сохранения вещества и энергии, ставшая краеугольным принципом науки? Еще Михаил Васильевич Ломоносов говаривал, взвешивая свои реторты с химическим зельем: «Ежели от одного сколько убавится, то к другому столь прибавится…»
Наблюдая Солнце, Вильям Гершель не раз задумывался над тем, сколько огненной энергии отдает наше светило в окружающее пространство. Отдавать-то отдает, а откуда берет? В. Гершель красиво назвал этот вопрос «великой тайной». Он не нашел на него ответа и оставил, перейдя к другим наблюдениям.
Скромный гейльброннский доктор Юлиус Роберт Майер и думать не думал оказаться причиной ожесточеннейшей полемики таких известных в науке XIX века людей, как Р. Клаузиус, Р. Тэт, В. Гиндаль, Дж. Джоуль и Е. Дюринг. Да еще удостоиться почетного сравнения, сделанного Е. Дюрингом в заголовке статьи «Роберт Майер – Галилей XIX столетия». Чем же столь знаменит оказался бывший судовой врач, скромно и в безвестности проживавший в провинции и пописывающий время от времени сложные научные статьи?
В статьях доктора Р. Майера содержался новый взгляд на силы.
В статьях доктора Р. Майера впервые сформулирован первый закон термодинамики.
В статьях доктора Р. Майера было дано определение механического эквивалента тепла.
Это обстоятельство и явилось предметом ожесточенного спора почтенных метров. Спора не по существу открытого закона, а, увы… по поводу приоритета; спора, кто первый: Р. Майер или Дж. Джоуль!
Вот кто такой был скромный врач из Гейльбронна. В 1847 году Р. Майер задался целью ни более ни менее, как открыть «великую тайну» В. Гершеля, выяснить источники энергии Солнца. А почему бы и нет? Ведь если закон сохранения энергии в самом деле закон для всей вселенной, то и Солнце должно подчиняться общим правилам. Год спустя он за собственный счет издает мемуар «К динамике неба в популярном представлении», начинавшийся словами: «Свет как звук состоит из колебаний, которые из светящегося или звучащего тела распространяются в определенной среде… Для того чтобы звучал колокол или струна, нужно, чтобы внешняя причина привела их в колебание и сила эта есть причина звука… Часто и удачно сравнивали Солнце с непрерывно звучащим колоколом. Но чем поддерживается в его неослабной силе и вечной юности это светило, наполняющее столь чудесным образом небесные пространства своими лучами? Что препятствует его истощению, наступлению равновесия, которое повело бы за собою мрак и смертный холод нашей планетной системы?
Всеобщий закон природы, не допускающий исключений, гласит, что для произведения тепла необходима известная затрата силы. Но последнюю, как бы разнообразна она ни была, всегда можно свести на две главные категории, на „затрату химического материала или на затрату механической работы“. Стало быть, источник солнечной теплоты следует искать в соответствующих двух агентах и выбирать между ними».
Дальше Р. Майер приводит некоторые популярные примеры. Он предполагает Солнце состоящим из одного угля и показывает, что при этом оно полностью сгорело бы за 4600 лет. Он переводит энергию вращения Солнца в тепло и показывает, что в этом случае ее хватило бы всего на 158 лет. Но «…совсем в ином виде представляется дело, если рассматривать Солнце как звено вселенной. По нашей солнечной системе пробегают, кроме известных доселе планет с их 18 спутниками, множество комет, которых, по знаменитому изречению И. Кеплера, в небесном пространстве больше, чем рыб в океане; и сюда же относятся астероиды, которым, судя по видимым нами падающим звездам и огненным метеорам, и числа нет. Поэтому со всех сторон медленно, но непрерывно к Солнцу должен притекать бесконечный поток весомого вещества и, сталкиваясь с ним, превращать механическую силу своего движения в теплоту».
Так выглядела первая формулировка метеоритной, или «динамической» теории Солнца.
При жизни Р. Майера его идеи не были широко известны просвещенному миру. И причина этого вовсе не в том, что сам доктор, по деликатному замечанию биографов, подвергался «продолжительному и, говорят, не совсем произвольному лечению холодной водой». (Такой метод был распространен в те годы в психиатрических лечебницах.) Просто его работ не знали. Но «идеи рождает время, и они носятся в воздухе». И потому скоро в Англии автором метеоритной гипотезы прослыл некий Дж. Ватерстон. Потом эта гипотеза подвергалась тщательной разработке В. Томсоном, который пришел в восторг от новой идеи связать излучение Солнца с потерей массы. Правда, было одно сомнение: «…если бы метеориты или подобные им тела стремились в подобающем количестве к Солнцу, то даже здесь у нас, за 150 миллионов километров от Солнца, ими кишел бы воздух; от их ударов Земля была бы раскалена докрасна; геологические пласты состояли бы в значительной степени из метеоритов; влияние их сказалось бы на движении Земли». Ведь метеоритного топлива требовалось нашему светилу порядочно. По расчетам того же Р. Майера, энергии падения Луны хватило бы Солнцу в лучшем случае на год для поддержания существующей интенсивности излучения. Нет, в таком откровенном виде эта гипотеза, пожалуй, не годилась.
В одной из своих популярных лекций немецкий медик и физик Г. Гельмгольц высказал любопытную мысль: если принять предположения П. Лапласа о том, что Солнце и его система произошли из туманности, причем процесс сжатия небесных тел не прекратился, а продолжается и поныне, то не может ли этот самый механизм сжатия восполнять потери на излучение? То есть не может ли механическая энергия сжатия переходить в тепловую?
Г. Гельмгольц произвел расчеты и получил интересные цифры. Сокращение диаметра Солнца всего на одну десятитысячную обеспечило бы покрытие тепловых потерь в течение более чем двух тысячелетий.
Против теории Г. Гельмгольца выступил инженер Карл В. Сименс, член гигантской фирмы «Сименс и Гальске», основанной его братом Эрнстом.
К. Сименс жил в Англии, где принял имя Вильяма, и был известен как сторонник и пропагандист всевозможных регенераторов к паровым машинам, регенеративных печей, регенеративных конденсаторов и прочее.
Экономный, как все немцы, В. Сименс не мог потерпеть того факта, что львиная доля солнечной энергии теряется в мировом пространстве и лишь ничтожная часть употребляется с пользой, нагревая планеты. Чтобы исправить положение, он предложил гипотезу, якобы объясняющую возвращение Солнцу истраченного тепла. Для этого он заполнил все мировое пространство газами, конечно, находящимися в разреженном состоянии. Каждое светило силой притяжения создает себе из этих газов атмосферу. Нижние слои ее состоят из тяжелых газов, верхние из легких, например из горючего водорода.
Теперь представим себе огромный солнечный шар, бешено крутящийся в пространстве. С экватора его под действием центробежной силы должны срываться огромные массы тяжелых газов и улетать прочь. Одновременно через полюсы к нему будут притекать потоки нового легкого и горючего газа, который, сгорая, возмещает потери Солнца на излучение. В. Сименс предлагает модель Солнца в виде некой регенеративной печи, в которой происходит восстановление жидкого вещества из продуктов сгорания… Странная с современных позиций гипотеза пользовалась успехом. Ф. Розенбергер, автор капитального труда «История физики», в 1892 году пишет: «Приведенные теории сохранения солнечной энергии (имеются в виду гипотезы Р. Майера, Г. Гельмгольца и В. Сименса. – А. Т. ) не противоречат друг другу, не заключают в себе ничего невероятного и могут существовать рядом. В настоящую минуту самая живая из них теория Сименса, но наиболее грандиозная, без сомнения, майеровская, так как она соединяет нашу систему с прочими телами вселенной и обещает сохранение солнечной системы вплоть до всеобщего конца, т. е. до выравнивания энергии во всей вселенной».
Интересная цитата, если вдуматься. Некогда, занимаясь исследованием работы паровых машин, С. Карно пришел к выводу, что даже при отсутствии всякого трения ни одна машина, превращающая тепло в работу, не может иметь стопроцентного коэффициента полезного действия, КПД. Дело в том, что часть тепла, а значит и тепловой энергии, непременно от котла переходит к конденсатору, нагревая последний. Следовательно, часть энергии будет всегда теряться, повышая температуру конденсатора. Так будет происходить до тех пор, пока температура котла и конденсатора не сравняется. После чего машина перестанет работать. Отсюда С. Карно пришел ко второму принципу термодинамики, обобщенному в дальнейшем Р. Клаузиусом и В. Томсоном. Сегодня этот закон читается так: «В замкнутой системе любые процессы приводят к нарастанию энтропии». Энтропия – это мера обесценивания энергии.
Солнечная система тоже может служить иллюстрацией к этому закону. В соответствии со сформулированным принципом эволюция идет только в одну сторону. Следовательно, в конце всегда смерть. Но раз в промежутке существование, то должно было быть и начало, то есть рождение. Пусть рождение солнечной системы обязано проявлению космических сил. А если распространить второй принцип термодинамики на весь мир? Кто его создал? Похоже, что как ни верти, а без бога не обойдешься. Вот к какому выводу приводит нас безобидная цитата.
Против «тепловой смерти вселенной» выступали многие выдающиеся ученые XIX века. И сейчас страхи по этому поводу имеют чисто исторический интерес. XX век вообще положил конец умозрительным заключениям, выступавшим нередко в прошлом в качестве научных гипотез. Новое время предложило и новые методы. Чтобы двигаться дальше, нужно было прежде обобщить накопленную информацию. Непрерывное же выдвижение гипотез напоминало бег на месте.
Солнце без гипотез и теория «термояда»
Что же мы знаем о Солнце сегодня? Давайте составим нечто вроде медицинской карты на наше светило; примерно такой, какие в бесчисленном количестве составляют на нас с вами в поликлиниках вместо того, чтобы просто отправить в санаторий. Только факты, без всяких там домыслов и гипотез.
Ну, прежде всего угловой диаметр и расстояние до Земли. Обе величины нетрудно измерить. Затем количество солнечной лучистой энергии, падающей на единицу земной поверхности в единицу времени. Для этого измерения лучше всего отправиться, конечно, на экватор. Но если на экватор не хотите, опыт можно произвести и дома в полдень… Дальше, сравнивая цвет Солнца с цветом раскаленного вещества на Земле, мы косвенно можем судить о поверхностной температуре светила. А, изучив возраст самых старых земных пород, можно примерно назвать нижнюю границу возраста Солнца. Ведь считать, что Земля старше Солнца вряд ли целесообразно. Если добавить еще и период обращения Земли (или любой другой планеты), который понадобится для определения массы Солнца, и группу данных, определяющих наше светило как члена Галактики, то, пожалуй, все наблюдаемые характеристики этим и исчерпываются. Можно бы, конечно, еще добавить, например, скорость вращения Солнца, вычисленную по скорости перемещения его пятен, но тут есть одна неприятность. Во-первых, пятна на солнечном диске видны только в поясе от +40 градусов до –40 градусов гелиографической широты. В более высоких широтах их почти не заметно. Во-вторых, вращается-то Солнце на разных уровнях по-разному: на экваторе – быстрее, ближе к полюсам – медленнее. Какую же скорость принять в качестве основной?
Теперь давайте сведем наблюдаемые характеристики Солнца в таблицу.
Наблюдаемые характеристики Солнца
(по П. Куликовскому)
Угловой диаметр … 31′59″26
Расстояние от Земли … (149 504 000 ± 17 000) км
Солнечная постоянная … 1,39 · 10 6 эрг/сек см 2
Температура поверхности … 6000°К
Возраст … (4,5—6) · 10 9лет
Период обращения Земли (звездный, или сидерический, год) … 365,25636 суток
Наклон солнечного экватора к эклиптике … 7°15′
Скорость движения Солнца относительно окружающих его звезд … 19,5 км/сек
Расстояние Солнца от центра Галактики … 8000 парсек = 2450 световых лет
Скорость движения Солнца вокруг центра Галактики … 250 км/сек
Период обращения Солнца вокруг центра Галактики … 1,8 · 10 8лет
По этим данным, произведя некоторые вычисления, можно составить еще одну таблицу. Между прочим, гораздо более важную, чем первая, с точки зрения астрофизиков.
Вычисленные характеристики Солнца
(по П. Куликовскому)
Масса … 1,983 · 10 33 г
Средняя плотность … 1,41 г/см 3
Общая радиация (светимость) … 3,78 · 10 33 эрг/сек
Диаметр … 1 390 600 км
Объем … 1,412 · 10 15 км 3
Ускорение силы тяжести на поверхности Солнца … 2,738 · 10 4 см/сек 2
Критическая скорость или скорость освобождения … 619,4 км/сек
И наконец, для сравнения Солнца с остальными звездами астрофизики ввели еще несколько характеристик.
Сравнительные характеристики Солнца
(по П. Куликовскому)
Звездная визуальная величина … —26mm,80 ± 0,03
Абсолютная фотовизуальная звездная величина … +4m,96
Спектральный класс … dG2
Буква m в показателе степени называется звездной величиной, определяющей блеск звезды.
Буква d перед спектральным классом говорит о том, что наша звезда – карлик.
Конечно, это далеко не все характеристики. Да и выбраны они автором достаточно произвольно.
Но, после того как они приведены, не худо бы и пояснить, чем они так уж важны в книге, посвященной вопросам космогонии. Именно космогонии, а не астрофизики и не звездной астрономии. А вот чем.
Минимальный возраст – это время, за которое наше светило практически не менялось. Порукой тому свидетельство земных пластов.
Средняя плотность – 1,4 г/см 3– говорит о том, что солнечный шар состоит из довольно разреженной субстанции.
А ускорение силы тяжести – в 28 раз большее, чем на Земле, – свидетельствует о внушительном внешнем воздействии. И сразу возникает вопрос о природе небесного тела, которое может существовать так долго и в таких условиях. Какое оно? Твердое? Нет! Плотность мала. Жидкое? Тоже нет! Может быть, газообразное? А это очень может быть. Ведь говорят же физики, что от немедленного сжатия наше светило может удержать только внутреннее тепловое давление. Возникает же оно за счет теплового движения частиц солнечного вещества. Значит, Солнце – газовый шар, да еще и хорошо нагретый.
Смотрите, какой необыкновенно оригинальный вывод нам удалось сделать…
Прекрасно! Теперь можно задуматься и о тех реакциях, которые столь долго и стабильно поддерживают жизнь нашего светила, а в том числе и наше с вами бренное существование. Предположение Г. Гельмгольца об энергии за счет сжатия не годится. Солнце продержалось бы на ней в существующем состоянии не более нескольких миллионов лет. Этого мало. Не стоит говорить и о химической энергии. Тут срок еще меньше. Тогда какая же?
В неофициальной части истории физики сохранился один эпизод. Рассказывают, что однажды два приятеля – развеселые студенты-физики из славного Геттингенского университета жарким солнечным днем гуляли по тенистому парку. Переходя от дерева к дереву, они со смехом говорили о том, что в такую погоду не исключен солнечный удар кое у кого из профессоров, что само по себе не так уж и плохо, ибо тогда завтра отменят лекции. Однако настоящий физик даже о солнечном ударе не может говорить, забывая о физике. Сегодня трудно восстановить, кому из студентов первому пришла в голову идея об истинном источнике энергии пылающего над головой Солнца. Во всяком случае, вряд ли кто обвинит нас, если мы домыслим сцену…
– Клянусь рефератом, который нужно завтра представить, это… – Фриц Хоутерманс, а именно так звали одного из студентов, показал рукой на Солнце, – это не костер из буковых поленьев.
– Пожалуй, – подхватил его приятель, – он бы давно погас, и сегодня не было бы такой сумасшедшей жары.
Приятеля Ф. Хоутерманса звали Аткинсон. Он только что приехал из Кембриджа, где все были увлечены удивительными опытами Э. Резерфорда по атомным превращениям. Может быть, также в шутку высказался он за то, что кавендишские атомные превращения, рождающие столь горячие споры, и жаркие процессы внутри Солнца должны иметь какую-то связь! Ф. Хаутерманс подхватил идею.
– Конечно, легкие элементы сливаются, образуют более тяжелые, а освободившаяся энергия печет нам головы…
Может быть, именно с этого случайного разговора и началась серьезная работа обоих физиков над проблемой теории термоядерных процессов в недрах Солнца. Над ней сломано было немало зубов и копий. Предположить, что энергия Солнца обязана слиянию атомов водорода и образованию более тяжелого гелия, было слишком мало. Следовало доказать, что эта гипотеза имеет под собой твердую почву. Ведь для синтеза легких ядер нужна чудовищная температура. Обеспечивает ли Солнце требуемые условия при каких-то 6 тысячах градусов на поверхности?
«Что значит каких-то? – вправе обидеться читатель, знакомый с достижениями техники электро– и газовой сварки. – Нам бы такую!» Так-то оно так. Нам-то бы неплохо, а вот термоядерным реакциям ни к чему. «Термояду» при 6 тысячах градусов холодно. Реакции не желают при этом проистекать. А как же быть с источником солнечной энергии?..
Тут к этой проблеме совсем с другого бока подобрался Артур Стенли Эддингтон, замечательный английский астроном, астрофизик, сделавший очень много как в самой науке, так и в ее популяризации.
После того как Петр Николаевич Лебедев открыл и измерил световое давление, никто из физиков в общем-то не знал, что с этим давлением делать. Многие считали, что столь ничтожная сила не может играть существенной роли в жизни космических небесных объектов. Но А. Эддингтон построил именно на ней свою теорию равновесия звезд. Он одним из первых пришел к мысли, что там, где энергия излучается в космических масштабах, световое давление, вкупе с обычным газовым давлением, могут уравновесить гигантскую силу тяжести, развиваемую огромной массой звезды. Работая над своей теорией, А. Эддингтон подумал: а не влияет ли масса вообще на физическое состояние раскаленных газовых шаров, которые мы называем звездами? Эта мысль окрепла, превратилась в убеждение в конце концов, подтвержденная теорией и наблюдениями, стала важным космогоническим законом.
Не стоит перечислять все научные работы президента Королевского астрономического общества А. Эддингтона. Многие из них выходят за рамки, ограниченные темой нашей книги. Для нас важно знать, что, пользуясь выведенными соотношениями и зная массу, а следовательно, и тяготение Солнца, А. Эддингтон рассчитал давление, необходимое для уравновешивания сил тяготения, а затем и температуру в недрах нашего светила, способную обеспечить требуемое давление. Получилась поистине астрономическая цифра в 15 миллионов градусов. Читатель, даже привыкший к масштабности шкалы цифр наших дней, поневоле должен затаить дыхание. Особенно если учесть, что согласно последним расчетам уже наших дней эта цифра поднялась еще выше и перевалила за 21 миллион.
Расчеты А. Эддингтона примирили физиков с астрономами.
Теперь тепла хватало, чтобы «высидеть» реакцию термоядерного синтеза. Оставалось только выбрать подходящий тип этой реакции. Дело в том, что написать их можно довольно много. Но поскольку все данные спектрального анализа в один голос твердили, что Солнце почти целиком состоит из водорода и только чуть-чуть из гелия, то немецкий физик Ганс Альбрехт Бете, работавший с 1939 года в США, попробовал приспособить для Солнца реакции термоядерного синтеза гелия из водорода через промежуточные превращения. Написал. Проверил. Вроде подходило. Скорости, с которыми реакции протекали, вполне обеспечивали общее количество излучения. Тогда Г. Бете переписал свои уравнения и скромно признался коллегам, что, похоже, он открыл единственно пока возможный источник солнечной энергии.
Коллеги удивились тому, что это не пришло в голову им самим. Коллеги восторгались тем, что в работе Г. Бете остались возможности дальнейшего совершенствования теории и бросились наперегонки реализовать эти возможности.
Сегодня представления Г. Бете лежат в основе классической теории звездной эволюции. Они разработаны настолько тщательно, что нужно быть очень смелым человеком, чтобы поднять голос против. Многие предсказания теории получили подтверждение наблюдателей. А сам Г. Бете в 1967 году получил Нобелевскую премию.
Теперь самое время задать главный вопрос, после которого должны исчезнуть последние сомнения: «А как эксперимент, непосредственный эксперимент, подтвердил гипотезу Г. Бете? Ведь водородные бомбы взрывались над Землей уже не раз и над, и под…»
Увы! Как говорится, «прямых экспериментальных доказательств термоядерной природы солнечной энергии пока нет». Более того, теоретики уже рассчитали не одну, а несколько непротиворечивых моделей Солнца. Факт довольно удручающий. Лучше бы одну. Но для этого нужно твердо знать, что у Солнца внутри. А пока, пока какая бы то ни было точная информация о солнечном ядре отсутствует. Ведь и герр Г. Бете, предлагая свою глубокую теорию, основывался только на «поверхностных» данных. Имеются, конечно, в виду данные спектрального анализа. Чего бы, кажется, не отдали астрофизики за то, чтобы хоть одним глазом заглянуть внутрь нашего светила…
Если Г. Бете прав, то обстановку внутри Солнца представить себе можно. Ядерные реакции в центре порождают мощное гамма-излучение, которое, пробиваясь сквозь толщу солнечного вещества, преобразуется в более длинноволновое – рентгеновское. Однако недра нашего светила одинаково непрозрачны как для гамма-, так и рентгеновского излучения. И потому последнее, поднимаясь все выше и ближе к поверхности, претерпевает новое превращение – переходит в еще более длинноволновое излучение видимого света. Лишь после этого лучи покидают Солнце и через восемь с небольшим минут любезно предоставляют земным наблюдателям всю заложенную в них информацию. Но только о той области, которая их породила, – о поверхности Солнца.
Как же тут быть? Световые лучи не годятся, радиоизлучение и рентгеновские лучи, которые приходят от нашего светила к нам, тоже не несут информации о глубоких недрах. И все-таки есть выход! Нутряные реакции порождают еще один вид излучения – нейтринное. А для нейтрино что Солнце, что Земля, что пустой космос – все едино. Они почти беспрепятственно сквозь них проходят, ни с чем не реагируя. Может быть, попробовать поймать их?
В 1964 году американский физик Р. Дэвис приступил к таким опытам. Работники сферы бытового обслуживания с ума бы посходили от зависти, знай они, сколько канистр с бесцветной жидкостью, применяемой для чистки одежды, были опущены в одну из шахт отдаленных золотых приисков. Однако Р. Дэвис не собирался устраивать подпольную, точнее, подземную химчистку. Громадная цистерна, наполненная тетрахлорэтиленом, должна была задерживать солнечные нейтрино. А под землю полезли физики, чтобы избежать ненужного фона от других частиц.
Идея эксперимента заключалась в поимке солнечных нейтрино, которые могли бы рассказать о процессах внутри Солнца. К сожалению, несмотря на три года работы и непрерывного совершенствования методики измерений нейтринный детектор (или «нейтринный телескоп») упрямо показывал поток частиц в десять раз меньший, чем ожидалось по теоретическим расчетам. Было от чего прийти в уныние. Говорят, желая утешить Р. Дэвиса, рабочие говорили: «Не огорчайтесь, док. Нынешнее лето было таким облачным…» Однако шутки помогали мало. Налицо было вопиющее противоречие опыта и признанной теории. Теоретики, правда, недолго унывали. Они тут же предложили множество спасительных гипотез, среди которых, конечно, были такие, что таили в себе нарушения и некоторых фундаментальных законов природы либо исходили из столь ультрановых допущений о существовании явлений, которых никто и никогда не наблюдал. Авторов этих работ не смущало, что такого рода гипотезы среди серьезных специалистов успехом не пользовались.
Простой и многообещающий путь к решению проблемы нейтринного дефицита предложил американский астрофизик У. Фаулер из Калифорнийского технологического института. Он обратил внимание коллег прежде всего на то, что между потоком нейтрино и световым потоком (потоком фотонной светимости, если выражаться научно) существует в принципе большое различие. Частицы нейтрино не задерживаются солнечным веществом и потому, родившись в недрах светила, они через восемь с небольшим минут уже могут быть в шахте в цистерне с жидкостью для химчистки. И совсем другое дело – свет. Пока та же волна термоядерной энергии, породившая только что пойманные нами нейтрино, доберется из центра Солнца до его поверхности и родит фотоны, пройдет довольно много времени. Физики называют его «временем Кельвина – Гельмгольца». О длительности его единой точки зрения нет. У. Фаулер считает его равным примерно тридцати миллионам лет. Другие специалисты убеждены, что оно порядка на три меньше… Но так или иначе, а появление фотонов должно довольно сильно отставать от появления нейтрино, рожденных одним и тем же процессом.
Конечно, солнышко наше – звезда довольно спокойная («тьфу, тьфу, чтобы не сглазить»). Но и у него в центре могут происходить перемены. Какие? У. Фаулер говорит, например: перемешивание. Да, довольно быстрое перемешивание внутренних горячих и наружных более холодных слоев. Как только оно произойдет, температура в центре Солнца падает. А количество высокоэнергетических нейтрино очень сильно зависит от температуры. Значит, и поток нейтрино резко сокращается. Со временем уменьшится, конечно, и световой поток. Но далеко не сразу…
Получается, что, произойди такое перемешивание в солнечном ядре, через считанные минуты земные приборы должны зафиксировать уменьшение потока нейтрино. А свет от Солнца еще будет долгое время литься нам на головы в неизменном количестве.
На страницах журнала, в котором У. Фаулер опубликовал свою гипотезу, еще не успела высохнуть типографская краска, а специалисты исследовательских групп США и Англии, в распоряжении которых были компьютеры и соответствующие программы для расчета процессов в звездах, уже принялись считать. Это говорит о том, что вопрос о солнечных реакциях стоит сейчас чрезвычайно остро.
Результаты расчетов пока оценивать рано. Во многом они расходятся друг с другом. Но то, что идея У. Фаулера плодотворна, сомнений нет ни у кого.
Правда, может возникнуть и такой вопрос: а почему бы вдруг недрам солнечным начать перемешиваться? Пока большинство астрофизиков на эту тему предпочитает не высказываться. Но вот совсем недавно в одной из статей, подписанной теоретиками из Кембриджского института Ф. Дилком и Д. Гу, гипотеза возможных причин перемешивания все-таки была предложена. Смысл ее заключался в том, что примерно за каждые 250 миллионов лет «спокойной жизни» в недрах Солнца накапливается слишком много «шлака». Химический состав вещества настолько изменяется под действием идущих там реакций, что происходит срыв, перемешивание, которое продолжается в течение примерно миллиона лет или меньше. Естественно, что после такого события, как после инфаркта, Солнцу нужно примерно до десяти миллионов лет на то, чтобы прийти в себя, после чего снова наступает период спокойной жизни.