
Текст книги "Под покровом мантии"
Автор книги: Анатолий Малахов
сообщить о нарушении
Текущая страница: 10 (всего у книги 12 страниц)
Вот его приметы: цвет серый, темно-серый или черный. Он должен быть шероховат на ощупь. В сильную лупу в нем можно увидеть мелкие вкрапления оливина – минерала бутылочно-зеленого цвета. Под микроскопом будет отчетливо видно, что очень мелкие кристаллы, слагающие эту породу, находятся в совершенном беспорядке. Это базальт, тот самый, который слагает базальтовый слой Земли.
Конечно, достать эту породу не мудрено, она есть в любом музее, в любом геологическом учреждении. Но мне нужен не просто базальт, а именно тот, который поднимут из сверхглубокой Курильской скважины!
Пока что в моей коллекции есть несколько базальтов, взятых с различных участков нашей страны: из зоны правобережья Енисея, из скважин, пробуренных во многих местах Европейской части СССР, с Урала. И каждый из них индивидуален. У каждого свое лицо, свой характер и судьба.
Особенно интересны некоторые породы, взятые с Урала, внешне очень похожие на базальт. Но под микроскопом в них раскрываются особые внутренние черты. В них легко просматриваются следы микроскопических органических остатков, следы жизни! Это в базальте, температура плавления которого свыше 1000 градусов!
Любые следы жизни, если бы они имелись в породе (при такой температуре), полностью исчезли бы. Переплавление породы полностью изменило бы ее характер. Ну, а здесь отчетливо видны такие следы. И микропалеонтологи, люди, которые занимаются изучением микроскопических остатков жизни далеких геологических эпох, доказали их существование в этом камне.
Тут уж магматическая теория образования горных пород бессильна. Мы совершенно ясно понимаем, видя такие породы, что они произошли не за счет расплава, выброшенного из вулканического жерла. Здесь был сложный ход геологических процессов. И в первую очередь перекристаллизация осадочных горных пород, которая и придала им облик базальтов. Значит, порода испытала в течение своей жизни такие сложные превращения, что стала похожа на вулканическую, но сохранила в себе следы прошлой своей жизни.
История жизни этой породы рисуется нам приблизительно так: сначала она откладывалась на дне моря и представляла собой обычный морской ил, в котором накапливались и отмершие остатки микроорганизмов, имеющих раковины. Эти раковины были известняковыми, как у большинства подобных организмов. Затем этот ил спрессовывался, превращаясь в плотную глинистую горную породу. Позднее под влиянием циркулирующих растворов в ней стали выкристаллизовываться мелкие кристаллы. Не исключена возможность, что этот процесс шел под большим давлением. Может быть, на породу давила многокилометровая тяжесть океанических вод, может быть, она опускалась в глубины земной коры, но факт тот, что под влиянием давления, некоторого повышения температуры и циркулирующих в породе растворов стали формироваться и располагаться в беспорядочном нагромождении те мелкие кристаллы, которые характерны для базальта. И породы приняли облик базальта.
До сих пор кажется странным, как мы могли ошибиться, когда, изучая области восточного склона Урала, отнесли абсолютно все базальты к вулканическим горным породам. Мы говорим о том, что на этой территории в прошлом повсеместно была бурная вулканическая деятельность, основывая эти выводы на данных метода аналогий, метода актуализма.
Значит, нас опять подводит этот метод? По-видимому, да. Мы в целом ряде случаев слишком полагались на его правильность, а детальные исследования заставляют вносить определенные коррективы в привычные взгляды. Поэтому я с нетерпением жду, когда моя коллекция пополнится базальтом с Курильских островов. Конечно, и его я отдам на микроскопические исследования. Будет интересно посмотреть кусочек породы из базальтового слоя Тихого океана. Не исключена возможность, что тот базальт, который я в конце концов получу в свою коллекцию, будет резко отличаться от уральского своими внутренними чертами. Может быть, в отдельных случаях правы вулканисты, а в других – неонептунисты-трансформисты, которые доказывают, что отдельные породы вулканического облика могут возникнуть невулканическим путем.
Вероятно, так и закончится двухсотлетняя дискуссия о базальтах. Будут найдены общие черты для базальтов огненного происхождения и для базальтов, происшедших невулканическим путем.
Ну а что же даст Курильская скважина, если опять-таки попытаться перейти в область реальной научной фантастики? Что будет обнаружено в недрах Земли под базальтовым слоем?
Если здесь базальты действительно произошли за счет излияния из подземных очагов, то под земной корой мы можем встретить либо застывающие, либо активные вулканические очаги. Тогда вулканисты будут иметь возможность торжественно провозгласить: вот так же и под земной корой должен быть расплав огненно-жидкой массы! Но будут ли они правы? Мне кажется, нет.
Одна скважина, как бы глубока она ни была, конечно, не решит тех сложнейших вопросов, которые связаны с познанием геологического строения внутренних зон Земли.
Какой бы результат мы ни получили при бурении сверхглубокой Курильской скважины, это еще не даст нам права решать вопрос о том, что мы встретим в любом другом участке под земной корой. И недаром решено бурить пять скважин в пяти различных точках нашей страны.
Придворные «королевы недр»

«Королевой недр» называют нефть, потому что для ее добычи приходится бурить самые глубокие скважины. Ни одно полезное ископаемое не добываем мы с такой глубины, как нефть. Ну и вполне естественно, что тем, кто занят поисками и добычей нефти, присвоен неофициальный титул «придворных королевы недр». Именно нефтяники накопили колоссальный опыт проникновения в недра земли – опыт, который неоценим для разработки проекта сверхглубоких скважин.
Не сразу далась та глубина, которая достигнута в наши дни. Я помню, на том же XVII Международном конгрессе в 1937 году как о высшем достижении говорилось о том, что американской фирме «Голф Продекшен» удалось пробурить скважину в три тысячи метров. Мне помнилось, что перед этим, примерно в 1925–1927 годах, рекордной была скважина фирмы «Розенкрац Филд» в Калифорнии глубиной в 2227 метров, а еще раньше, на рубеже веков, самые глубокие скважины достигали 350–400 метров. В 1958 году в Западном Техасе фирма «Филипс-Петролеум» пробурила скважину 7724 метра. Она пока остается рекордной, но уже бурится восьмикилометровая скважина в Южной Луизиане.
Мы не гонимся за рекордами. Все глубокие скважины, пробуренные для добычи и разведки нефти, ориентируются на глубине в две, три, четыре и пять тысяч метров от поверхности. Глубина этих скважин зависит от того района, где добывается нефть. Например, в Башкирии и Татарии бурить скважины глубже полутора-двух тысяч метров почти не приходится, потому что там только до этой глубины развит осадочный покров. Правда, в некоторых участках Предуралья он наблюдается и на больших глубинах. Одна из скважин в окрестностях города Краснокамска была пробурена на глубину 2900 метров от поверхности, до этого предела здесь располагается осадочный покров, но нефти так и не встретилось. Бурить глубже согласно гипотезе И. М. Губкина нет смысла.
А на Кавказе? Не только на материке в окрестностях Баку, но и в Каспии, в окрестностях Апшеронского полуострова бурят скважины до глубины в пять километров, потому что до этой глубины и дальше здесь располагается осадочный покров и всюду в нем есть нефть. Значит, есть прямой расчет бурить и на большую глубину.
Выбор глубины наших скважин не случайный. Перед тем как вести бурение с промышленной целью на поиски, разведку и добычу нефти, проводится огромная подготовительная работа. Она заключается в бурении структурно-опорных скважин. Каждая из них проектируется на основе сложного комплекса предварительных геофизических исследований.
Бурение часто длится годами, на поверхность выносится все, что встречается буровыми трубами. Эта работа очень кропотливая. Навинчивается колонка труб, пробуривается какое-то количество метров. Затем ради керна – того столбика породы, который входит в бурильную трубу, – вся колонна труб поднимается кверху.
Когда такое бурение ведется на небольшую глубину, это терпимо. Но при изучении глубин, исчисляемых тысячами метров, бурить таким способом – свинчивать и навинчивать трубы для того, чтобы достать несколько метров керна, – эта работа адова. Однако она оправдывает себя.
Все, что вынимается из скважины, подвергается детальнейшему исследованию. Геологи всех направлений изучают эту породу для того, чтобы дать потом рекомендацию будущим исследователям – что встретят они на этих глубинах, когда будут бурить новые скважины в некотором отдалении от опорной структурной скважины.
Но и этим не кончается исследование. Когда бурение скважины заканчивается, ее исследуют геофизики, чтобы уточнить все разнообразие физических свойств горных пород: магнитных и электрических, силу тяжести и радиоактивность – для того, чтобы потом, в другом месте, применяя эти же способы, правильно расшифровывать сигналы, идущие из глубин.
В США такие структурные опорные скважины пробуривались на значительных пространствах в шахматном порядке, примерно в 25 километрах друг от друга. В нашей стране государственная сеть структурных скважин имеется в районах Волго-Уральской нефтеносной области и во многих других участках Европейской части СССР. Некоторое количество скважин пробурено в Западной Сибири, в новых промышленных нефтеносных районах, однако значительные пространства нашей страны еще пока не имеют сети опорных структурных скважин.
Много неожиданностей подстерегает бурильщиков. В одной из газетных информаций в 1960 году был описан, пожалуй, обычный, рядовой для бурильщиков случай. Бурилась промышленная скважина в открытом море несколько южнее города Баку. Бурильщик Гасанов и его помощник Бабаев готовились поднять на поверхность очередную порцию керна. Они должны были вынуть шестиметровый столбик грунта и уложить его в ящик.
Но вдруг раздался прерывистый гул. Море вокруг как бы закипело. С ревом вырвался на поверхность огромный столб грязи, высотой примерно с десятиэтажный дом. Авария! Скважина наткнулась в глубине на жерло грязевого вулкана. Надо было срочно заглушить выброс грязи, иначе не устоять и вышке. В скважину стали срочно нагнетать тяжелый глинистый раствор. По расчетам, этот раствор должен был заглушить фонтан грязи, но ликвидировать аварию сразу не удалось. Новые и новые меры принимали бурильщики для того, чтобы заглушить вырывавшийся из недр мощный поток грязи и газа.
Грязевой вулкан был побежден. Но газ, сопровождавший грязь, все-таки нашел выход. Мощные струи газа стали вырываться на поверхность. Все основание скважины дрожало. Но и в этом случае бурильщики знают, как поступить. У них была заранее заготовлена аварийная аппаратура. Выход газа, наконец, был закрыт. И когда вдруг наступила тишина, мастера увидели, что борьба с подземной стихией шла более двух смен…
Повторяю, это был рядовой случай: такие, а пожалуй, и еще более сложные аварии приходится часто преодолевать бурильщикам. «Королева недр» капризна. И ее «придворные» пускаются на разнообразные ухищрения, чтобы в конце концов угодить ей.
Но это все рассказы о современной технике и условиях бурения скважин. Ну, а в будущем, когда нам придется бурить сверхглубокие скважины, и тогда мы будем через каждые несколько метров вынимать все трубы и вновь опускать их?
Нет, здесь предусмотрен иной режим бурения. Еще в 20-х годах нашего столетия талантливый инженер М. А. Капелюшников изобрел так называемый турбобур. Сущность изобретения заключается в том, что колонна труб, которая опускается в скважину, сама не вращается. Она служит для того, чтобы подать вниз режущий инструмент турбины, и вращается лишь головка этой турбины, которая приводится в движение либо водой, либо тем глинистым раствором, который закачивается в скважину. Он служит одновременно и для вращения турбины и для того, чтобы замазать, глинизировать стенки скважины, уберечь их от осыпания.
Турбобур Капелюшникова в настоящее время оброс многочисленными усовершенствованиями и деталями. Появился и родной брат турбобура – электробур, в котором вращение режущей колонки происходит за счет электроэнергии, но принцип работы тот же – здесь также вращается только рабочая часть.
Уже давно, еще до Капелюшникова, был изобретен способ, позволяющий бурить скважину без выноса на поверхность столбиков породы – керна. В забое, в низу скважины, вся порода раздробляется с помощью специальных долотьев и потом водой или глинистым раствором поднимается на поверхность. Это значительно ускоряет бурение. И все-таки пока нет еще полного решения проблемы спуско-подъемных операций для сверхглубокого бурения. Возможно, что турбобур или электробур будут спускать и поднимать не на трубах, а на специальных тросах. Их надо сделать прочными и легкими, потому что на такой большой глубине решающее значение будет иметь их собственный вес. Уже сейчас пробуривают многие сотни метров скважин за месяц наращиванием труб, а не подъемом и спуском их несчетное число раз.
Особо занимает всех бурильщиков вопрос о режущих инструментах. Когда в нашей стране не хватало алмазов, головки буров оснащали резцами из специальных сортов стали. Были разработаны такие сплавы, как победит и ему подобные, которые сравнительно долго не снашивались, но и они не удовлетворяли бурильщиков.
Мечты человечества о «вечном» ударном и режущем инструменте запечатлены во многих преданиях и легендах. Любопытна скандинавская сага о Вольсунгах.
Как повествует легенда, бог Один решил подарить самому могучему герою меч, которой легко резал и дробил все. Один явился к людям и вонзил этот меч в дуб, сказав при этом, что, кто сумеет вытащить меч, тот и будет им владеть. Это вызвался сделать король Гаутланда Сиггейр. Но тщетны были его усилия. Вслед за ним подошел к дубу герой Сигмунд и легко вытащил меч. Сиггейр просил Сигмунда продать ему этот меч, но Сигмунд, смеясь, сказал: «Ты мог добыть его бесплатно. Раз я вытащил, значит мне им и владеть».
Сиггейр затаил злобу на Сигмунда и однажды хитростью заманил героя и его приемного сына Синфиотли к себе в королевство, а затем неожиданно напал на них и взял в плен. Он отобрал у Сигмунда меч, а герою придумал страшную казнь. Король приказал вырыть яму и разделить ее на две половины толстой гранитной плитой. В одну половину бросили Сигмунда, в другую – Синфиотли. В последнюю минуту сестре Сигмунда – жене Сиггейра – удалось передать Синфиотли волшебный меч в ячменном снопе. Яму засыпали землей, завалили камнями. На этом месте вырос огромный холм. Когда люди ушли, Синфиотли дотронулся до снопа и почувствовал там рукоятку меча. Он взял меч и легко проткнул им гранитную плиту. Сигмунд и Синфиотли пропилили мечом плиту, а затем разрубили землю и камни и вышли на поверхность… Просто, как в сказке!
У нас пока нет режущих инструментов такой твердости, какой обладал меч Сигмунда. Самым твердым из всех известных веществ является алмаз. Правда, в последнее время американцы изготовили так называемый боразон – нитрид бора, который режет алмаз. Но и он не удовлетворяет буровиков. Над созданием сверхтвердых сплавов бьются ученые всего мира, но пока тверже алмаза и боразона нет ничего. Может быть, на помощь буровикам придут квантовые генераторы света, о которых впервые писал А. Толстой в романе «Гиперболоид инженера Гарина». С помощью зеркала Гарину удалось сфокусировать в тонкий пучок лучи света, и этот пучок разрезал все, что попадалось ему на пути.
Ученым удалось осуществить идею Толстого. Правда, зеркало для этой цели не годится, да и источник энергии избран другой, неизмеримо более мощный. На основе квантовой механики создан генератор, позволяющий сфокусировать энергию светового потока и сделать луч такой плотности, что на своем пути он режет все. Такой луч за тысячные доли секунды прожигает отверстие в стали, режет алмаз или нагревает горную породу до 8000 градусов. Эти приборы, так называемые лазеры и мазеры, сейчас все более и более совершенствуются. С помощью лазеров генералы Пентагона собираются уничтожать ракеты или спутники. Американцы уже сообщили, что сконструирован лазер, поражающий цели на расстоянии свыше трехсот километров.
В нашей стране лазеры направлены на мирные цели. Кто знает, может быть, в недалеком будущем они станут главной деталью режущего инструмента. Но пока конструкция таких буровых станков еще не придумана.
А между тем техника требует от нас ответа на новые и новые вопросы. Предполагается, что бурить придется при огромных давлениях и высоких температурах. Надо сделать бурильные аппараты из сверхпрочных, но в то же время и сверхлегких материалов.
Может быть, исследователи здесь используют не металлические конструкции, а пластмассы, синтетические заменители, которые сейчас уже все больше и больше входят в промышленность и быт. Трудно сказать, какой путь будет избран. Нужно идти все глубже в недра, и в связи с этим встают многие другие вопросы. Как подавать на такую глубину энергию? Что нужно будет взять для этой цели – турбобур или электробур? Даже вес современного электрического кабеля, опущенного на глубину 15 километров, будет так велик, что кабель порвется от собственной тяжести!..
Предполагается, что вода, которую нужно туда подавать, превратится в пар, который нагреется до 400–450 градусов. Не потребуется ли какое-то особое охлаждение? Даже на тех глубинах, где вода еще может существовать, она будет разъедать клапаны насосов. Конечно, и здесь могут помочь новые материалы, но не проще ли совсем отказаться от воды и применять вместо нее сжатый воздух?
И таких проблем возникает невероятное количество. Для того, чтобы сконструировать новый буровой агрегат, который пройдет на большую глубину и врежется в мантию Земли, придется решать все новые и новые инженерные задачи.
А как извлекать породу с такой глубины? Скорее всего придется совсем по-новому организовать режим бурения. По-видимому, здесь будет уделено больше внимания тем аппаратам, которые способны давать показания без выноса керна или раствора на поверхность. Возможно, что для контроля будут извлекать лишь небольшие образцы с определенной глубины. Допустим, пробурят километров пять с полным раздроблением породы, а затем вынут кусочек керна.
Потом снова будут бурить километра три или четыре без извлечения породы. А пространство, которое пройдено без выноса керна, придется тщательно изучать с помощью разнообразных геофизических приборов.
Да и эти приборы придется переконструировать. Их также следует «одеть» в такую одежду, которая могла бы противостоять давлению и высокой температуре. Такая аппаратура будущего уже конструируется. И недалек тот день, когда мы начнем сверхглубокое бурение. Газеты сообщали, что нашими инженерами уже создаются станки, которыми можно бурить скважины до 10 километров. Первая такая скважина станет экспериментальной. Ее будут бурить в Прикаспийской низменности. В этом совершенном бурильном аппарате уже учтено многое из того, о чем мы сейчас говорили.
Искусственная мантия

Многие ли пассажиры Московского метрополитена внимательно разглядывают стены его великолепных вокзалов? Восхищаются обычно архитектурой, красотой помещений в целом. А приглядеться к стенам стоит.
Вот, например, мраморная облицовка стен на станции Дзержинская. Не всякий может ответить, как она выглядит.
Если повнимательней присмотреться к мраморным плитам этой станции, то можно прочесть интересные страницы геологической истории Земли. В свое время при образовании мрамора были растащены по слоям и микрослоям те включения органической массы, которые сохранились в древнем иле. Сейчас они представляются в виде серых параллельных линий, изогнутых в ажурные складки. Особенно эффектны такие складки в Ленинградском метро на станции Балтийская. Мало кому приходит в голову, что здесь отражены, зафиксированы в каменных документах драматические эпизоды жизни мрамора, связанные с так называемыми пластическими деформациями, что здесь работало усилие в четыре тысячи килограммов на квадратный сантиметр.
Еще более интересны опыты по изучению уральской колчеданной руды. В шахтах и некоторых карьерах, где добывается эта руда, особенно на Карабашском месторождении Южного Урала, можно видеть довольно прихотливые изгибы пластовых залежей, которые ее слагают.
Опыты показали, что медную руду так же можно заставить растекаться, но уже при давлении в 10–12 тысяч килограммов на квадратный сантиметр. Здесь, сравнивая результаты процессов, происходящих в природе, с данными экспериментов, мы находимся на грани познания и тех процессов, которые происходят и в мантии Земли.
Практически говоря, мы можем получить в лабораториях искусственную мантию Земли. Для этого нужно воссоздать те условия, которые должны быть под земной корой. Первое из них – давление. Это колоссальная величина. Три слона, вставших на ноготь указательного пальца! Но давление это вполне достижимо для современной лабораторной аппаратуры. Его величину нетрудно рассчитать, и, следовательно, мы можем точно сказать, с какой силой будут сдавлены породы на той или иной глубине от поверхности Земли или океана.
Труднее с температурой мантии. У ученых нет единой точки зрения о степени и характере изменения температур при погружении к центру Земли.
Надо учитывать также и воды, проникающие в горные породы. Вода под давлением будет действовать иначе, чем на поверхности Земли. Каждое, даже малейшее отверстие, каждая мельчайшая, микроскопических размеров пора будут впитывать в себя влагу, и сама порода в таких условиях изменит свои свойства. Возможно, этим и объясняется коренное отличие океанических зон земной коры от ее континентальных участков. Может быть, под давлением воды, проникшей в поры горных пород, их свойства настолько меняются, что осадочные породы и граниты приобретают характеристики, чрезвычайно близкие к свойствам базальтов. Не поэтому ли базальтовый слой располагается так близко от поверхности в зоне дна океана? И может быть, это вовсе не базальтовый слой, а неузнаваемо измененный осадочный или гранитный?
Следствием давления, температуры, пористости и проницаемости горных пород являются, как мы видели, их пластичность, упругость и прочность. Все это мы можем получить в специальных лабораториях, которые занимаются изучением поведения горных пород при огромных давлениях и высоких температурах.
В одной из своих корреспонденций директор лаборатории физики сверхвысоких давлений Академии наук СССР профессор Л. Ф. Верещагин говорил: когда подвергли большим давлениям различные металлы и породы, то столкнулись с преобразованием их первичных качеств. Например, чугун, каменная соль, мрамор, помещенные в жидкость, сжатую до 20–25 тысяч атмосфер, претерпели удивительные изменения. Они становились пластичными и приобрели какую-то особую сверхпрочность.
Но при попытках воспроизвести свойства пород в условиях мантии мы сталкиваемся с многими трудностями. Ведь там все, даже хорошо изученные породы находятся в среде, которая нам не известна. А о том, какую роль она может играть, хорошо свидетельствуют опыты, произведенные с каменной солью. Оказывается, каменная соль растекается уже при сравнительно небольших давлениях. Если приложить к ней усилие в 40–80 килограммов на квадратный сантиметр, то она может быть вдавлена в узкую щель в стальной плите.
Но если чуть-чуть подогреть каменную соль, предположим, до 200–300 градусов, то она продавливается через это же отверстие при давлении вдвое меньшем, чем в предыдущем опыте.
Еще более поразителен эффект, который получается, если эту щель в стальной плите окантовать плавленым гипсом или плавленой солью… Через такое отверстие можно продавить каменную соль даже при давлении в два-три килограмма на квадратный сантиметр, то есть необходимо усилие еще в 10–15 раз меньшее.
Но геологические наблюдения над поведением мрамора и кварцита, о которых мы говорили выше, противоречат лабораторным опытам. В природных условиях кварцит обладает более легкой способностью к пластической деформации, чем мрамор, а в лабораторных условиях требуются меньшие усилия для того, чтобы вызвать пластическую деформацию в мраморе.
Загадка? Пока да. И таких загадок тысячи. Исследователям постоянно приходится решать уравнения со многими неизвестными. Но не будем отчаиваться. Сейчас человек создал себе могучего помощника – электронную счетно-вычислительную машину, и она уже верно служит геологам, помогая решать прежде совершенно неразрешимые задачи.
Счетно-вычислительные устройства позволяют нам максимально точно учесть все процессы, которые происходят в земной коре или мантии.
Мы сможем практически рассчитать, как выглядит мантия Земли. От результатов расчета условий прочности, плотности, упругости горных пород будет зависеть и выбор технического оборудования, а также сама конструкция бурильных аппаратов.
Счетно-решающая машина поможет найти ответ на вопрос о том, какие металлы или искусственные пластмассы необходимы для создания бурильных труб. Машина подскажет, что для закрепления стенок скважин надо создавать своеобразные породы с определенными свойствами. Может быть, это будут преобразованные породы, пройденные буровой скважиной. А возможно, придется разработать электрохимический способ закрепления стенок скважин. Расчетные данные дадут ответ и на вопрос о том, каким должен быть диаметр скважин.
В районе города Тотьмы мне пришлось видеть скважину и закрепляющие ее обсадные трубы XV столетия. Начальный диаметр скважины достигал 60 сантиметров, конечный диаметр, на глубине 250 метров от поверхности, суживался до 30 сантиметров. Скважина была обсажена трубами из долбленых крепких деревьев, обернутых просмоленным холстом. Для того времени скважина была чудом техники.
Такой же, по сути, тип конструкции скважин мы применяем и в настоящее время.
Расчеты показывают, что начальный диаметр сверхглубокой скважины может быть около двух метров. Такая скважина, постепенно теряя диаметры, на глубине 15–18 километров сузится до 13–15 сантиметров. Счетно-решающие устройства будут рассчитывать прочность оборудования. Для того чтобы сказать, как поведут себя на глубине трубы, сделанные из сплава железа с титаном или из каких-либо других металлов, чтобы узнать, как они будут растягиваться или сжиматься при подъеме и спуске снаряда, нужно решить десятки, сотни и, может быть, тысячи разнообразных задач. Решения будут различными в зависимости от того, как мы будем представлять условия, которые встретятся под земной корой.
Современная наука позволяет нам учесть все эти условия, и сверхглубокие скважины мы будем бурить не вслепую. Мы войдем в глубины недр во всеоружии нашей техники, войдем как повелители стихий, еще недавно считавшихся таинственными и неукротимыми.
И здесь синтез

Как известно, в настоящее время происходит процесс резкой дифференциации наук. Появляются новые науки и научные направления. В геологии уже выделилось свыше 120 новых наук, и этот процесс еще продолжается. Уже невозможно быть специалистом-геологом вообще. Самых разнообразных направлений так много, что каждый геолог, практически говоря, становится узким специалистом в какой-либо одной области. Но происходит и прямо противоположный процесс, и недаром многие новые науки рождаются на стыке двух-трех старых.
Как быть при бурении сверхглубоких скважин? Ведь там возникает тысяча разнообразных вопросов, решение которых не под силу узким специалистам. Не приходится доказывать, что обслуживать каждую из таких скважин будут сотни лиц разнообразных специальностей. Здесь, как в фокусе, будут сосредоточены мысли и чаяния разных ученых. Скважина объединит интересы представителей, на первый взгляд ничем между собой не связанных направлений. Конечно, полностью о синтезе наук каждой сверхглубокой скважины рассказать невозможно. Об этом еще будет написано много книг, но некоторые направления видны уже сейчас.
Я представляю себе такую картину. С глубины 10–12 километров, предположим, скважины Кольского полуострова, будет добыт кусок горной породы. Его немедленно разделят между собой в первую очередь петрографы – люди, занимающиеся изучением, или, точнее, описанием, горных пород; геохимики, которые выявляют условия происхождения пород; минералоги, занимающиеся описанием и определением минералов, слагающих горные породы.
Можно предположить, что петрографы, минералоги и геохимики скажут, что с этой глубины мы подняли породу, называемую эклогитом. В описании будет указано, что такие породы образуются, как правило, либо на очень больших глубинах, либо в условиях высоких температур. Эклогиты, добавят минералоги, представляют довольно неплохо раскристаллизованную породу, в которой отчетливо видны ярко-красные кристаллы гранатов, сочетающихся с зелеными пироксенами, иногда между ними можно видеть также голубой или густо-синий дистен.
Есть много гипотез о строении внутренних зон Земли. По одной из них на глубине должен быть широко распространен минерал оливин, возникший при обеднении пород кремнеземом. Некоторые исследователи выделяют под земной корой целый оливиновый пояс (вспомните «Гиперболоид инженера Гарина», вся геология которого подсказана академиком Ферсманом).
Другие утверждают, что базальты под большим давлением переходят в эклогиты. Чем больше давление – тем крупнее кристаллы.
С эклогитами связано очень много проблем, пока еще далеко не ясных. Там, где мы находим эту удивительную породу, иногда вместе с ней встречаются алмазы. В связи с этим в изучении эклогитов примут участие специалисты по полезным ископаемым.
Академик В. Соболев рассказывает, что в двух случаях в эклогитах Южной Африки и Якутии оказались не только куски гранатов и пироксенов, но и кристаллы алмазов. Они были найдены в обломках в древних вулканических жерлах. По мнению магматистов, это доказательство, что алмазоносные породы – продукты высокой температуры и очень большого давления. Вот почему к изучению породы подключатся исследователи, работающие в области синтеза вещества.
Известно, что искусственные алмазы и в нашей стране и в США изготовляются при давлении около ста тысяч атмосфер и температурах в две-три тысячи градусов. Почти все исследователи считают, что алмазы – это продукты мантии Земли, в которой естественным образом сочетаются эти условия. Здесь спор о происхождении изучаемой породы перейдет к тектонистам, изучающим строение Земли и земной коры.
Известные ученые – И. И. Краснов, П. Е. Оффман, В. В. Алексеев, работавшие по изучению геологического строения алмазоносных сибирских зон, пришли к выводу о связи месторождений алмазов с зонами разломов земной коры. Такие зоны, как отмечает Алексеев, тянутся на очень большие расстояния. Они выдержаны, прямолинейны, и с ними связываются многократные оживления магматической деятельности.