Текст книги "Жизнь - капля в море"
Автор книги: Алексей Елисеев
Жанр:
История
сообщить о нарушении
Текущая страница: 20 (всего у книги 23 страниц)
Спуск корабля прошел нормально. Представитель поисковой службы передал с места посадки, что космонавты чувствуют себя хорошо. Их сразу повезли на космодром, где они должны были проходить послеполетное медицинское обследование. На следующее утро я полетел туда вместе с Глушко, чтобы увидеть ребят и, если удастся, поговорить с ними. Когда мы пришли, оба лежали на кроватях. По решению врачей их поместили в разных комнатах. Вид был такой, какой обычно имеют люди, выздоравливающие после гриппа, – бледные, слегка потные, движения замедленные, но больше никаких отклонений от нормы. Мне показалось, что они выглядели значительно лучше, чем Николаев и Севастьянов после четырнадцатисуточного полета. Активно разговаривали, делились впечатлениями. Во время бесед оба настойчиво повторяли, что продолжительность полета была предельно возможной и дальше ее увеличивать нельзя. Говорили они об этом по собственной инициативе, и похоже, что на этот счет между ними существовало какое-то соглашение. Может быть, они хотели защитить следующий экипаж от еще более трудной миссии. После встречи с космонавтами мы беседовали с врачами. Они сообщили о небольших изменениях в кардиограммах, в формуле крови, еще о каких-то медицинских отклонениях, но из всего этого можно было понять, что ничего опасного не выявлено. Глушко возвращался с космодрома счастливый, и я понял, что никаких послаблений в программе не будет.
Почти сразу мы начали готовиться к следующей экспедиции. Времени оставалось мало. Иногда мне казалось, что я работаю на конвейере, на который вместо агрегатов для сборки регулярно поставляются сложные дела, заставляющие волноваться. Старты, стыковки, заправки, выходы в открытый космос, спуски с орбиты проходили друг за другом с жестокой последовательностью. Каждый раз готовились к ним с особой тщательностью и, тем не менее, всякий раз мысленно молили судьбу быть благосклонной. А когда сложный этап оставался позади, ужасно хотелось отдохнуть и пожить спокойно. Но конвейер продолжал свое монотонное движение, в поле зрения уже появлялось новое дело. За три с половиной года полета станции было выполнено восемнадцать пилотируемых полетов, в том числе девять международных, три полета – на новых кораблях «Союз Т». Двенадцать раз на станцию прибывали грузовые корабли. Всего осуществлено тридцать пять стыковок. Трижды космонавты выходили в открытое космическое пространство. Передышек не было. Как ни удивительно, почти все завершалось благополучно. Но случались и драматические события, которые забыть невозможно.
Тяжело сложился полет советско-болгарского экипажа, в котором участвовали наш Николай Рукавишников и болгарин Георгий Иванов. Корабль успешно вышел на орбиту, и космонавты без всяких осложнений провели подготовительные маневры для сближения со станцией. В расчетное время была включена автоматическая система сближения. Она нормально функционировала и подвела корабль к станции на расстояние около трехсот метров. Со станции корабль был уже хорошо виден. Внезапно на корабле произошла авария основного двигателя – того самого, который обеспечивает и сближение, и торможение при спуске на Землю. Система управления тут же выключилась, и корабль полетел дальше по инерции. Первое, чего мы испугались, – это столкновения со станцией. Попросили экипаж следить за взаимным движением обоих аппаратов и быть готовым к выполнению маневра для обеспечения безопасности. Когда стало ясно, что столкновения не будет, начали изучать телеметрию и разбираться с двигателем.
Специалисты обнаружили, что перед срабатыванием аварийного сигнала один из датчиков, расположенный в двигательном отсеке, зафиксировал резкое повышение температуры. Никто не знал, что это может означать. В Центре управления присутствовали ведущие разработчики двигателя вместе с главным конструктором, но и они остерегались высказывать какие-либо гипотезы. Дело происходило ночью. Ждать до утра мы не могли – надо было срочно находить решение, как возвращать корабль с орбиты. Поехали вместе с главным конструктором на завод, где готовили такой же двигатель для следующего корабля. Нам хотелось посмотреть, какие устройства находятся вокруг этого злополучного датчика, и понять причину повышения температуры. Хорошо сделали, что посмотрели. Стала очевидна причина аварии: разорвало корпус газогенератора – устройства, которое готовит горячий газ для вращения турбины, заведующей подачей топлива в двигатель. Следовательно, основной двигатель больше включать нельзя. А на вопрос о том, сохранил ли работоспособность резервный двигатель, ответа не было. По показанию одного датчика невозможно определить, куда была направлена струя раскаленного газа и что она могла повредить. Может быть, она разрезала трубопровод. А может, прожгла отверстие в топливном баке или что-нибудь еще.
Ситуация критическая. Мы не знали, способен ли работать резервный двигатель и если способен, то как долго. На корабле имелись небольшие прецизионные двигатели, но с их помощью можно было лишь слегка притормозить корабль, но не перевести его на траекторию спуска. Стало ясно, что в нашем распоряжении только один шанс – попытаться включить резервный двигатель и, если он не отработает положенное время, вслед за ним включить прецизионные двигатели до полной выработки топлива. Вероятность успеха никто предсказать не мог. О том, что я тогда пережил, не хочу даже вспоминать. С экипажем вел переговоры сам. Пытался описать ситуацию и план действий в спокойных тонах, без драматических деталей. Хотя из существа наших рекомендаций Николай, конечно же, понял, что их жизнь висит на волоске. Как обидно: вместо интересной работы на станции оказаться в столь трагической ситуации.
Для Георгия это – первый полет. Был момент, когда он сомневался, лететь или не лететь. Незадолго до старта ему предложили сменить фамилию. Георгий носил фамилию Какалов. Таких в Болгарии много, почти как у нас Петровых. И он не предвидел, что это кому-то может не понравиться. Но в Центральном Комитете партии народ был бдительный. Там решили, что его фамилия слишком неблагозвучная и может вызвать много простонародных шуток. И Григорию предложили взять фамилию Иванов – ту, которая была не то у его отца, не то у матери. Он пытался возражать, но его предупредили, что это будет означать отказ от полета. И вот теперь он в космосе в одной связке с Николаем.
Чтобы попытаться сесть в заданный район, космонавты должны были включить двигатель далеко за пределами зоны радиовидимости. Поэтому ни связи с ними, ни телеметрии во время работы двигателя у нас не было. Мы молча сидели за пультами и, затаив дыхание, ждали сообщений от поисковой службы. Я был готов ко всему, но, пожалуй, меньше всего к тому, что услышал в наушниках: «Я – «пятьдесят второй», командир вертолета докладывает, что видит аппарат на парашюте в расчетной точке». Вот уж подарок судьбы! Значит, резервный сработал нормально? Потом мы узнали, что нет, не доработал. Поэтому дальность полета до входа в атмосферу была больше расчетной и условия входа в атмосферу не позволили выполнить управляемый спуск. Спускаемый аппарат снижался круче, чем положено. Точная посадка произошла случайно. Полет в атмосфере оказался ровно настолько короче расчетного, сколько требовалось для компенсации заатмосферного перелета. Конечно, все это уже не имело для нас никакого значения. Главное – люди остались живы.
Это была вторая и последняя неудачная попытка стыковки с «Салютом-6». Дальше все шло без сбоев, хотя неожиданные проблемы, конечно, возникали. Вспомнить хотя бы, сколько хлопот доставила антенна радиотелескопа. Впервые в космосе была раскрыта большая параболическая антенна. Ее доставили в сложенном состоянии на грузовом корабле, закрепили на стыковочном узле, к которому корабль причалил, а после ухода корабля раскрыли, примерно так, как раскрывают зонт. Огромная круглая сетка, растянутая с помощью большого количества стержней и тросов, приобрела нужную форму. Когда работы закончились, ее надо было отделить от станции, потому что она закрывала и стыковочный узел, и двигатели. Способ отделения выбрали простой и надежный: по команде с пульта космонавтов открывался замок, удерживающий антенну, и пружины, зажатые между ней и станцией, должны были оттолкнуть ее. Команду выдали, замок открылся, антенна отделилась, но... осталась около станции. При срабатывании пружин ее развернуло, и она повисла, зацепившись за что-то снаружи станции. Двигатели и стыковочный узел остались закрытыми. Чтобы спасти программу, надо было выйти на наружную поверхность станции и отделить антенну вручную. Естественно, никто к такому повороту событий заранее не готовился.
И снова пришлось поехать на завод. Теперь уже на тот, который сделал антенну. Там находился второй образец, на котором отрабатывалась система раскрытия. Мы хотели понять, как могло произойти зацепление и можно ли от него освободиться. Экспериментальная антенна висела над полом в раскрытом виде. После осмотра стало очевидно, что зацепился трос и снять его будет очень сложно. Надо перерезать. Кусачки на борту есть. Усилий должно хватить. Но сразу возникла уйма вопросов. Что будет со свободными кусками троса после перерезания? Не отлетят ли они в сторону скафандра и не порвут ли его? А как поведет себя сетка антенны после того, как пропадет натяжение троса? Вдруг она изменит форму и зацепится в другом месте. А если накроет космонавта и он в ней запутается? Космонавту, выполняющему ремонт, придется идти к центру антенны, в самый конец станции, а это далеко от выходного люка, и ему трудно будет помочь. В общем, одни вопросы и сомнения. Надо было думать, как их разрешить, как застраховаться от опасных ситуаций. Конечно, обеспечить полную безопасность в такой работе невозможно, но мы обязаны были сделать все от нас зависящее. Большая группа специалистов шаг за шагом продумывала детали предстоящей операции, затем разработанную методику передавали на борт и долго объясняли космонавтам, где их могут подстерегать опасности и как от них защититься. Ребята внимательно нас слушали и, несомненно, воспринимали все как ориентировочные рекомендации. Они, как никто другой, представляли себе, что многие решения придется принимать самим в зависимости от реальной ситуации.
Потом был выход в космос. К антенне пошел Рюмин, Ляхов его страховал. Рюмин сразу увидел зацепившийся трос и перекусил его. Антенна стремительно уплыла. Волнения оказались напрасными. Через четыре дня экипажу предстояло завершать полет. Впереди – консервация станции, расстыковка и спуск. Времени на расслабление не было.
Ляхов и Рюмин летали полгода – почти вдвое дольше, чем Романенко и Гречко, а внешне после посадки выглядели крепче. Когда мы с Глушко прилетели к ним на следующий день, оба уже ходили по своим комнатам и никто не сказал, что дольше летать нельзя. Видно, очень многое зависит от психологического настроя людей. Когда мы летели с космодрома, я вспоминал свой спор с Глушко по поводу продолжительности полетов и думал: «А ведь он оказался прав. Сильный он человек, никому не позволяет себя сломать».
Программа пилотируемых полетов на «Салюте-6» продолжалась еще около двух лет. Потом запустили «Салют-7» с не менее насыщенной программой. И в это же время на Земле широким фронтом развернулись работы по созданию станции «Мир». Неумолимо приближалось время непрерывной работы людей в космосе.
Рождение «Бурана »
Идея создания многоразовых космических систем начала привлекать инженеров практически сразу после того, как космические полеты стали реальностью. Было очевидно, что по мере совершенствования ракет и кораблей их стоимость будет расти и это будет тормозить развитие. Экономию денег могло дать многоразовое использование одних и тех же технических средств. Сами по себе многоразовые системы могут быть более дорогими, чем одноразовые, но если они используются многократно, то стоимость одного полета заметно снижается. Показателен опыт авиации. Большие пассажирские самолеты во много раз дороже, чем космические корабли. Но поскольку они выполняют тысячи полетов, стоимость каждого полета оказывается настолько низкой, что ее способны оплатить пассажиры из собственных средств.
Первое, что приходило в голову, – это создать космический самолет, точнее, крылатый космический корабль наподобие самолета, который мог бы выводиться в космос ракетой и после выполнения полета по орбите производить мягкую посадку на аэродром без предварительного отделения отсеков или элементов конструкции. Такой корабль, так же как и обычный самолет, можно было бы использовать много раз. Вначале казалось, что эту идею реализовать несложно. В то время истребители уже достигали высот около тридцати километров и даже больших, когда они выполняли так называемые «горки» – полеты по параболе. Управление ими в процессе снижения было освоено. Среди авиационных специалистов существовало мнение, что и при возвращении подобного летательного аппарата с орбиты особо сложных проблем не будет.
Вера в это была настолько сильна, что уже в середине шестидесятых годов авиационная промышленность приступила к созданию космического самолета. Работы были развернуты широким фронтом. Был разработан проект корабля, проводилась экспериментальная отработка отдельных элементов конструкции, на ракетах запускались уменьшенные беспилотные модели. Они, правда, не производили посадок на аэродром, но благополучно возвращались на Землю, завершая свой спуск на парашютах. Были даже отобраны летчики для выполнения первых полетов. Они жили вместе с нами в Звездном городке и проходили интенсивную подготовку.
С инженерной точки зрения проект представлял несомненный интерес – относительно небольшой многоразовый корабль, способный совершать комфортную посадку на любом из тех аэродромов, на которые садятся обычные пассажирские или военные самолеты. Таких аэродромов на Земле много, поэтому появлялась возможность осуществлять спуск с любого витка и даже из разных точек одного и того же витка, что должно было существенно повысить безопасность полетов. К сожалению, работы были остановлены. В те годы у нас начали создавать корабли для полетов к Луне, и им был отдан приоритет в финансировании.
Любопытно, что примерно в то же самое время над аналогичным проектом работали в Великобритании, и там работы тоже были закрыты.
Однако идея создания крылатых космических систем не покидала наших проектантов. Более того, она получила дальнейшее развитие. Через несколько лет после закрытия работ в авиационной промышленности один из наших ведущих проектантов Павел Владимирович Цыбин вышел с совершенно революционным предложением – создать не только крылатый космический корабль, но и крылатый самолет-носитель, который выводил бы корабль на большую высоту, разгонял его почти до космической скорости и после этого садился на аэродром. Корабль после отделения от самолета-носителя должен был самостоятельно долететь до орбиты, выполнить намеченную программу работ в космосе и после ее завершения тоже приземлиться на аэродром. Таким образом, предлагалось сделать многоразовой всю космическую систему. Все предварительные инженерные и экономические расчеты, подтверждающие обоснованность предложения, были выполнены. Они показали, что при многократном использовании такой системы стоимость полета будет существенно ниже, чем при применении традиционных одноразовых ракет и разделяемых космических кораблей. Цыбин в молодые годы проектировал самолеты и всегда тяготел к авиационным схемам. Он неоднократно выступал перед Советом главных конструкторов и с энтузиазмом убеждал своих коллег в перспективности предлагаемого проекта, но шансов на успех у него практически не было.
Главная причина заключалась в том, что проект требовал очень больших начальных инвестиций. Если бы предложение Цыбина было принято, то пришлось бы закрыть все другие программы пилотируемых полетов. Конечно, на это пойти не могли, поэтому Цыбину отказали, объяснив это тем, что время для подобных проектов пока не пришло.
Откровенно говоря, в предложениях по созданию многоразовых систем есть немного лукавства. Такие системы всегда намного сложнее и дороже одноразовых. Инженеры и ученые бывают очень заинтересованы в их создании потому, что с этим связано решение широкого комплекса сложнейших интереснейших научно-технических проблем. Что касается экономической целесообразности, то здесь существуют подводные камни. При оценках рентабельности проектов авторы делят ожидаемую стоимость системы на большое количество выполненных полетов и получают привлекательные результаты. Но они умалчивают о том, что реальные затраты на решение новых проблем заранее предсказать практически невозможно. И, кроме того, они не предупреждают, что всегда сохраняется вероятность аварии. А если она произойдет, то придется второй раз тратить деньги на создание системы, и тогда затраты могут удвоиться, а все надежды на рентабельность – рухнуть.
Я не один раз беседовал с американскими инженерами, когда они работали над созданием «Шаттла», и читал много статей по поводу того, как НАСА добивалось финансирования проекта. Комиссия конгресса неоднократно заслушивала этот вопрос. Руководство НАСА сумело так представить технические преимущества проекта и его экономическую эффективность, что в конце концов деньги были выделены. Если любознательный читатель сравнит то, что публиковалось в США двадцать с лишним лет назад, с тем, что публикуется сейчас, то без труда обнаружит, что фактические затраты на каждый полет «Шаттла» несопоставимо больше того, что обещалось. Но из этого совсем не следует, что конгресс допустил ошибку, приняв решение о финансировании программы. Создав «Шаттл», НАСА сделало огромный шаг вперед в освоении космической техники. И не только космической. Многие технические решения, найденные для «Шаттла», нашли применение в производстве изделий сугубо земного назначения. И руководство НАСА не обманывало конгресс. Оно лишь называло наименьшие из ожидаемых затрат и делало это только для того, чтобы получить возможность создавать новую технику.
Среди тех, кто стоит у власти, есть разные люди. Одни ассоциируют развитие космических исследований с научно-техническим прогрессом; другие считают это занятие экзотикой, позволительной только при избытке денег. Руководители космических программ и у нас, и в США вынуждены преодолевать сопротивление этих «других». Переубеждать их обычно бывает трудно, поэтому и приходится совершать всевозможные тактические маневры.
Цыбину не удалось добиться финансирования крупномасштабных работ, но он продолжал углубленные разработки своих предложений силами относительно небольшой группы проектантов, баллистиков, аэродинамиков и по ходу этих разработок находил все более и более привлекательные проектные решения.
Совершенно в ином направлении работали мысли нашего самого плодовитого проектанта Константина Петровича Феоктистова. Его, видимо, тоже долго занимала проблема многоразовых систем. По инициативе Феоктистова была создана орбитальная станция «Салют». По существу, эта станция стала первым в истории космонавтики многоразовым космическим аппаратом. Она не могла совершать много полетов, но зато принимала в космосе экспедиции и создавала условия для их продолжительной работы. Если судить об экономической эффективности космического аппарата по величине затрат на сутки работы человека в космосе, то до сих пор ничего сравнимого со станцией не придумано. После того как она прошла свое крещение на орбите и стало очевидно, что это направление надолго утвердится в космических программах, Феоктистов вынес на обсуждение свой проект полностью многоразовой системы, совершенно неожиданный по схеме. В его основу были положены абсолютно новые идеи и принципы построения космических комплексов. Я не хочу подробно описывать проект. Скажу только, что предлагалась оригинальная сверхлегкая конструкция, в которой были объединены одноступенчатая ракета и корабль. Аппарат должен был взлетать в космос, обеспечивать там выполнение намеченной программы работ и после этого в полном составе возвращаться на Землю с посадкой на любую ровную поверхность. Были выполнены все предварительные расчеты, подтверждающие, что проект может быть осуществлен. Но требовались большие инвестиции, и предложение поддержки не нашло.
Мы в то время внимательно следили за тем, как развивается программа «Шаттл», и завидовали американцам в том, что им удалось получить финансирование. Честно скажу, мы не понимали, зачем нужен этот комплекс. Полеты на нем стоили очень дорого и не могли быть длительными. Эффективность использования в военных целях была очень сомнительной. Его стартовые сооружения и посадочные комплексы легко уязвимы. При выводе их из строя на создание новых ушло бы слишком много времени, но и новые оказались бы не менее уязвимыми. Выводить спутники в космос гораздо дешевле на небольших ракетах. Корабль «Шаттл» позволяет возвращать спутники из космоса, но трудно представить себе, что в обозримом будущем появятся настолько дорогие спутники, что для их возвращения будет иметь смысл применять «Шаттл».
Много было в нашей организации дебатов по поводу того, стоит ли у нас создавать нечто похожее на американский корабль. Заинтересованных в работах над таким проектом было больше, чем над проектом Цыбина или Феоктистова. Возможно, потому, что он казался более реальным. Однако никаких серьезных доводов для его обоснования найти не могли. Аргумент был один – у американцев есть многоразовая система, а у нас нет. В итоге, чтобы добиться государственной поддержки, придумали объяснение, которое внешне казалось убедительным, – комплекс нужен для обеспечения стратегического равновесия в космосе. Прием сработал, финансирование было выделено.
Конечно, решение принималось не только на основе такой декларации. Она лишь склонила чашу весов в сторону поддержки проекта. На рассмотрение руководства страны были вынесены детально проработанные технические предложения с экономическими расчетами и планом организации работ. Кроме того, наша организация заранее заручилась поддержкой научно-исследовательского института, выступающего в роли эксперта, и военных, которые могли стать заказчиком комплекса. Военные тоже не понимали, зачем им нужна такая система, но опасались, что если они от нее откажутся, то могут что-то упустить в своем противостоянии силам США.
При подготовке предложения у нас долго спорили по поводу того, какой создавать систему. Американскую схему решили не повторять. «Шаттл» выводится на орбиту без использования крупной ракеты. Разгон осуществляется с помощью двигателей, установленных на космическом корабле. Сам корабль закреплен не на ракете, как это делается в одноразовых комплексах, а на больших баках с топливом. Из них топливо поступает в двигатели корабля. На начальном участке выведения кораблю помогают два относительно небольших твердотопливных ускорителя, которые после того, как в них выгорает топливо, отделяются и спускаются на парашютах на поверхность океана. Управление полетом на участке выведения тоже осуществляется системой, установленной на корабле. Схема комплекса хороша тем, что в ней такие дорогостоящие элементы, как двигательная установка и система управления выведением, возвращаются вместе с кораблем на Землю и могут быть использованы многократно. На нашем Совете главных конструкторов была принята другая схема – выведение корабля на орбиту с помощью большой самостоятельной ракеты. На первом этапе ракету предполагалось сделать одноразовой, а в дальнейшем обеспечить возвращение на Землю всех ее блоков и использовать их многократно. Конструкция ракеты должна была с самого начала предусматривать возможность ее последующих изменений. Таким образом, проект предполагал создание многоразовой ракеты, которая была бы способна выводить на орбиту как многоразовый корабль, так и любые другие грузы, в том числе и военного назначения. По своим возможностям эта ракета превосходила все, что было создано до сих пор в мире. Проектанты назвали корабль «Буран»; а ракету – «Энергия».
Как всегда, работы начали с создания кооперации. Она оказалась огромной. К реализации проекта были подключены лучшие силы страны. Появилось много новых участников. На этот раз большую долю работ взяло на себя Министерство авиационной промышленности. Его организации должны были создать корпус космического корабля со всем тем, что присуще самолету – кабиной, шасси, системой управления посадкой, тормозными парашютами и так далее. Оно же отвечало за создание наземного посадочного комплекса для космического корабля и специального грузового самолета для перевозки космического корабля с места приземления к месту старта.
Я не знаю, сколько всего организаций участвовало в проекте. Помню только, что на совещания главных конструкторов собиралось человек по пятьдесят – семьдесят. На наше предприятие была возложена ответственность за программу в целом.
Работы с самого начала потрясали своей масштабностью и обилием новых проблем. Не все, даже в нашей организации, верили в успех дела. Слишком много было сложного. Это относилось как к ракете, так и к кораблю. Например, для изготовления легкого и прочного корпуса ракеты нужен был особо высококачественный металл. Используемые ранее технологии производства листового и профильного проката не годились. Новую задачу пришлось решать металлургам. Элементы конструкции ракеты были необычно больших размеров. Чтобы их изготовить, потребовалось создать уникальные по габаритам станки. Для сборки ракеты и ее испытаний строился корпус – настолько большой, что мог бы вполне вместить в себя футбольный стадион вместе с трибунами.
Впервые для ракетных двигателей решили применить смесь жидкого кислорода и жидкого водорода. Известно, что эта смесь взрывоопасна. Работа с такими компонентами, их производство в больших объемах, хранение, транспортировка порождали свои проблемы. Что касается стартовых сооружений и транспортных систем, предназначенных для доставки комплекса к месту запуска, то они были такими огромными, что производили впечатление нереальных. Однажды руководитель куйбышевского конструкторского бюро Дмитрий Ильич Козлов, вернувшись с места строительства стартового комплекса, мрачно пошутил: «Я видел котлован, который там вырыли, и думаю, что если мы не справимся с тем, за что взялись, то все наши организации в нем можно будет похоронить».
Крупномасштабные работы велись и при строительстве посадочной полосы для космического корабля. К ней тоже предъявлялись особые требования. Предполагалось, что корабль будет садиться на необычно большой скорости, поэтому полоса должна быть существенно больше и намного прочней тех, которые использовались для посадки самолетов. Сотни тысяч тонн высококачественного бетона понадобилось для ее строительства.
Но, конечно, главные проблемы были связаны с созданием самого ракетно-космического комплекса. О сложности большинства из них я могу судить только по содержанию дискуссий, которые велись на технических совещаниях. Взять хотя бы проблему разработки двигателя для центрального блока ракеты. Чтобы вывести комплекс на орбиту, требовалась беспрецедентно большая мощность. Ее можно было развить с помощью нескольких двигателей умеренной тяги, которые, казалось, несложно было сделать, либо одного супербольшого двигателя, в создание которого мало кто верил. Проект двигателя разрабатывался под руководством Глушко. Он выбрал второй путь. Расчеты показывали, что система с одним двигателем должна быть легче, кроме того, развитие космических систем наверняка потребует создания все более и более мощных двигательных установок. Глушко предложил разработать двигатель с тягой семьсот сорок тонн! Это намного превосходило то, чем располагали американцы. Коллектив, руководимый Глушко, обладал высочайшей квалификацией и взялся за работу с большим энтузиазмом. Компоновка получилась очень изящной. Судя по чертежам, двигатель должен был быть компактным и для своей мощности легким. Но, чтобы его изготовить, требовалась очень высокая технологическая культура. Директор завода, на котором предполагалось выпускать двигатели, потратил много сил и нервов, чтобы решить эту задачу. Был период, когда он не верил в успех и в резкой форме пытался доказать, что Глушко от него хочет невозможного. Но Глушко был непоколебим. Он жестко настаивал на освоении тех технологий, на которые рассчитывался проект, и в конце концов добился своего.
Противников этого проекта было много, в том числе в научных кругах. Большая группа ученых даже направила в руководство страны письмо, в котором утверждалось, что проект нереализуем. Я помню, как один из руководителей Академии наук как-то сказал мне: «Эти четыре горшка никогда не полетят». Четырьмя горшками он назвал четырехкамерный двигатель Глушко. Любопытно, что это говорил человек, который не имел никакого отношения к созданию ракеты и не был специалистом в двигателестроении, но он вращался в кругах, где принимают решения, и поэтому мог мешать работе. Но самое обидное то, что, когда ракета прекрасно выполнила полет, этот квазиученый был удостоен высшей награды страны за ее создание. В те времена иногда награждали не за заслуги, а за преданность руководству.
Разработка двигателя завершилась в срок и в строгом соответствии с теми характеристиками, которые предусматривались проектом. Надежность его оказалась высокой. Во время испытаний на наземном стенде он работал во много раз дольше, чем это требовалось для выведения корабля на орбиту. Мне довелось присутствовать на одном из испытаний и, признаюсь, дух захватывало от ощущения того, какая невероятная мощь развивалась за железобетонным укрытием стенда. Руководитель испытаний рассказывал нам, что после того, как начались испытания, в колхозе, расположенном на противоположном берегу реки, километрах в двух от стенда, снизился надой молока у коров. Этому можно было поверить. При работе двигателя наверняка в районе стенда происходило что-то похожее на маленькое землетрясение. Нас особо не трогало временное снижение надоя; мы восхищались тем, какие сложнейшие задачи способны решать люди.
Создание корабля тоже доставило немало проблем. Там также многое делалось впервые. Например, впервые решалась задача посадки из космоса на аэродром. Предполагалось, что посадка должна осуществляться с первой попытки, поскольку на корабле не было двигателей, которые позволили бы ему удерживаться в воздухе без снижения. Проблема усложнялась тем, что на большом участке спуска из-за образования плазмы корабль не мог поддерживать связь с наземными радиолокационными средствами и не имел достоверной информации о том, где относительно него находится посадочная полоса. В этой зоне нужно было осуществлять управление вслепую, по предварительному прогнозу. А к моменту выхода из нее могли накопиться ошибки, корабль мог появиться в поле зрения наземных средств с такими параметрами траектории, при которых нельзя было начать снижение на полосу. Специалистам предстояло придумать способ быстрого определения ошибок и такой метод последующего управления, при котором они компенсировались.