355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Комаровский » Записки строителя » Текст книги (страница 11)
Записки строителя
  • Текст добавлен: 22 июня 2017, 12:00

Текст книги "Записки строителя"


Автор книги: Александр Комаровский



сообщить о нарушении

Текущая страница: 11 (всего у книги 15 страниц)

Опыт зимних земляных работ еще раз показал, что единственно эффективным методом разрушения смерзшейся грунтовой корки является взрывание. Взрывы грунта на строительстве МГУ проводились в непосредственной близости от уже возведенных сооружений без каких-либо повреждений их. Такие методы, как электрообогрев грунта, разбивка его тяжелой падающей «бабой», могут носить только локальный, но отнюдь не массовый характер.

Необходимо учитывать, что любые временные сооружения, расположенные на территории строительства без учета предстоящей здесь дальнейшей планировки, вызывают задержку планировочных работ и существенные дополнительные расходы. Опыт показал также, что для обеспечения тщательной микропланировки и благоустройства территории необходимо устраивать сетку из кольев, забивая их на расстоянии не далее 15 м друг от друга. На каждом колу геодезистами должны наноситься размеры необходимого съема или досыпки грунта. Так наши геодезисты во главе с инженером Я. А. Сундаковым и поступали.

Характерной чертой сооружения коробчатых фундаментов с метровой толщиной вертикальных стен было широкое применение армокаркасов с заранее укрепленной на них инвентарной сборнощитовой опалубкой, а также использование жесткой арматуры в виде стальных полос крупного профиля. Это решение себя полностью оправдало. Армирование и бетонирование нижней плиты и стен этого фундамента по своим масштабам и некоторым приемам (проектированием фундаментов руководил инженер Б. П. Джишкариани) напоминало мне работы по сооружению днища и стен шлюзов канала Москва – Волга. Разумеется, на строительстве МГУ эта работа шла организованнее, более индустриально, со значительно меньшими трудозатратами.

Опыт сооружения этих крупных фундаментов показал, что закрепление щитовой опалубки на арматурном блоке до его опускания в котлован и монтаж опалубки вместе с монтажом арматурных каркасов значительно облегчали работу. Этот метод может быть рекомендован для широкого внедрения в практику строительства. Использование полосовой стали различных сечений в качестве жесткой арматуры для крупных железобетонных элементов выгодно тем, что она зачастую менее дефицитна, чем круглая большого диаметра, легче сваривается и удобна в монтаже.

Опыт показал далее целесообразность установки основных монтажных кранов до возведения фундаментов или в самом начале этих работ. Краны значительно облегчают сооружение фундаментов.

Установка арматурного каркаса верхней плиты коробчатого фундамента главного корпуса с прикрепленным снизу инвентарным щитом опалубки

Серьезным (весьма нередким на строительствах) упущением была недостаточно тщательная вертикальная гидроизоляция на отдельных участках стен фундаментов. В результате грунтовые воды стали проникать в подвальные помещения. Пришлось вскапывать пазухи и заново переделывать изоляцию на этих участках. Ряд переделок вызвала также некачественная изоляция в местах пересечения стен фундаментов трубными коммуникациями, где тоже было обнаружено просачивание воды в помещение. Этот горький опыт еще раз учит, что устройство гидроизоляции должно находиться под неустанным надзором производственного персонала и выполниться очень тщательно, даже если и нет грунтовых вод в период строительства. Ведь и при сухом котловане весьма вероятно проникновение дождевой и талой воды по стыку фундамента с обратной засыпкой пазух.

Разные способы подачи бетона на укладку, примененные при сооружении фундаментов, еще раз подтвердили, что наиболее рациональна подача бетона в автосамосвалах с выгрузкой непосредственно в бетонируемый блок, минуя всякую промежуточную тару (бадьи, бункера и т. д.) и промежуточный транспорт (краны, транспортеры и т. д.). Для организации непосредственной подачи бетона при достаточных его объемах единовременные затраты на устройство мостов, эстакад и т. п. для пропуска автосамосвалов являются целесообразными.

Около 13 тыс. т грузов приходилось поднимать ежесуточно на растущие вверх здания. Естественно поэтому, что на строительстве большое значение имели правильный выбор подъемных средств, их расстановка и эксплуатация. 185 кранов, подъемников, лифтов и лебедок различных конструкций работали на стройке. Общая мощность электродвигателей, установленных на них, равнялась примерно 4 тыс. квт.

Расположение башенных кранов почти исключало мертвые зоны. Все грузы доставлялись непосредственно на соответствующей высоте к рабочему месту. Правда, от шахтных и тросово-балансирных (струнных) подъемников грузы развозились по этажу на тачках или тележках. Механизировать горизонтальный транспорт грузов от подъемников так и не удалось из-за отсутствия в тот период подходящих механизмов.

При выборе типа и грузоподъемности основных механизмов для монтажа металлических конструкций зданий МГУ были проанализированы показатели различных типов кранов. Сравнение наиболее близких по грузоподъемности вантовых мачтово-стреловых кранов марки Т-73 и Т-95, кран-мачт М-1002, жестконогих мачтово-стреловых кранов и самоподъемных кранов УБК-5—49 и УБК-15—49, предложенных советскими инженерами П. П. Велиховым, Л. Н. Щипакиным, И. Б. Гитманом и А. Д. Соколовой, показало безусловные преимущества самоподъемных кранов УБК для монтажа высотных сооружений. Они оказались удобным и надежным средством подъема и перемещения строительных грузов. Во время перерывов в монтаже и после его окончания эти же краны с успехом работали на подъеме всех видов строительных грузов и монтажа железобетонных элементов (в частности, на монтаже 60 тыс. кв. м железобетонных перекрытий).

Краны УБК-15—49 следует широко рекомендовать для монтажа и строительных операций в тех случаях, когда нижняя обойма крана, переставляемая по мере роста сооружения вверх, может закрепляться на его конструкциях. Если же для постепенного подъема крана надо сооружать специальную (в дальнейшем демонтируемую) шахту-обойму, эти краны применять не следует.

Суточная производительность кранов оказалась такой: УБК-15—49 – 500 т при числе подъемов в смену до 22 и УБК-5—49 – 200 т при числе подъемов в смену до 25. Практическая месячная производительность на один кран УБК-5—49 при монтаже каркаса достигала 2,5 тыс. т металлических конструкций.

Перемещение крана на новую стоянку по вертикали занимало 3,5—4 часа, причем непосредственно на подъем крана УБК-15—49 затрачивалось 18 мин., остальное время шло на подготовку. Горизонтальное перемещение кранов с помощью четырехтонного полиспаста и двухтонной лебедки производилось со скоростью до 87 м в сутки.

Практика показала целесообразность и быстроту замены заранее подготовленной стрелы крана во время его работы, когда требовалось поднимать элементы большого веса (до 15 т) при меньшем вылете стрелы (до 22,5 м), а в дальнейшем – элементы меньшего веса (например, 5 т) при большем вылете стрелы (до 37 м).

На главном высотном корпусе одновременно работало семь кранов УБК, три вантовых, один мачтовый, десять СБК-1, 26 разных стационарных подъемников и значительное количество мелких и временных подъемников.

На строительстве корпусов химического и физического факультетов вертикальный транспорт осуществлялся с помощью 12 башенных кранов СБК-1 (по шесть на каждый корпус). На строительстве корпуса биолого-почвенного факультета одновременно работало семь башенных кранов СБК-1. Отдельно стоящие двух– и трехэтажные здания в 1950 и 1951 гг. из-за отсутствия в тот период на строительстве более совершенных подъемных средств строились с помощью мачтовых подъемников Т-37 и Т-41. С освобождением кранов на основных объектах в 1952 г. появилась возможность смонтировать башенные краны на строительстве других отдельно стоящих зданий. Строительство корпусов института механики в 1952 г. также было обеспечено двумя кранами СБК-1.

Помимо перечисленных кранов и подъемников широко применялись краны типа «Пионер-2» и КП-750, в частности для подачи на этажи плит керамической облицовки.

Основными подъемными средствами при монтаже самих башенных кранов были тельферы грузоподъемностью 0,5—1 т; в качестве тяговых лебедок широко использовались электрические реверсивные лебедки Т-66 грузоподъемностью 0,5 т.

Опыт показал надежность эксплуатации шахтных подъемников грузоподъемностью до 1 т при высоте подъема до 100 м. Суточная производительность таких подъемников составляла до 700 т. Эти подъемники целиком (кроме, конечно, моторов) изготовлялись силами мастерских строительства, монтировались за 4—5 дней и наращивались по мере роста сооружения.

На строительстве МГУ впервые с успехом были применены тросово-балансирные (струнные) подъемники, сконструированные научным сотрудником бывшего ВНИОМСа В. Н. Глазуновым. Эти подъемники производительностью 50 т в сутки также просты в монтаже и изготовлялись силами мастерских строительства при весьма небольшом расходе материалов на них.

Вполне оправдали себя на строительстве простые в монтаже и удобные в эксплуатации малые кабель-краны с тельферами грузоподъемностью 0,5—2 т.

При эксплуатации многочисленных подъемных кранов и подъемников особенно важное значение имеет надежная радио– и телефонная связь, а также световая сигнализация между крановщиком и площадками приемки и отправления груза. Без этих видов связи и сигнализации не следует допускать эксплуатации высоких кранов и подъемников; исключение можно сделать для малых кранов, работающих на высоте 3—4 этажа. Для наиболее ответственных и грузонапряженных кранов следует устанавливать радиосвязь с применением громкоговорителей.

Заготовка стальных конструкций, монтаж и сварка элементов каркаса главного корпуса производились трестом Стальконструкция. Сравнивая ряд известных мне примеров монтажа крупных сооружений из металлоконструкций, я должен отметить исключительную четкость организации, глубокую инженерную продуманность всех монтажных операций. Весь монтаж 37,5 тыс. т металлических конструкций каркаса главного корпуса, состоявших из 71 тысячи основных элементов, был завершен за 22 месяца. В отдельные месяцы монтировали до 4 тыс. т металлических конструкций при нагрузке на один башенный кран до 2,5 тыс. т в месяц.

Металлоконструкции центральной части главного корпуса МГУ

Применение в каркасе высотной части главного корпуса оригинальной конструкции колонн крестового сечения с поворотом полок к основным осям здания под углом 45° наряду с преимуществами в конструктивном и статическом отношениях облегчило монтаж, дало значительную экономию средств. Заметим, что стоимость одной тонны колонн крестового сечения, изготовленных для здания МГУ на заводе имени Орджоникидзе, примерно на 10% меньше стоимости колонн двутаврового сечения, изготовленных Днепропетровским заводом для каркаса высотной части здания на Смоленской площади.

Ускорению монтажных работ весьма способствовала своевременная организация хорошо оборудованного склада металлических конструкций непосредственно возле строящегося объекта. При монтаже каркаса главного корпуса была успешно применена подача металлоконструкций под монтажные краны на железнодорожных платформах, доставляемых мотовозом по эстакадам прямо в корпус. Сокращение перегрузочных операций и удобство транспортирования полностью оправдали дополнительные расходы на устройство деревянных железнодорожных эстакад.

Серьезный и остроконфликтный технический вопрос возник в связи с требованием пожарного надзора взять все металлические элементы в бетонные футляры. Проект этой «обетонки» металлоконструкций уже был составлен, причем естественно, что бетон не учитывался в статических расчетах армокаркаса и резко утяжелял здание. Кроме того, предполагались весьма сложные работы по дополнительному армированию вокруг стальных элементов, устройству опалубки и заполнению бетоном, по существу, щелевых полостей между опалубкой и стальными элементами.

С требованием обетонирования стальных конструкций, целиком заключавшихся в дальнейшем в кладку или облицовку, я встретился впервые. Мне это казалось совершенно необоснованным, в чем я и убедился, ознакомившись по литературе с опытом строительства высотных зданий в США. Короче говоря, после серьезного обсуждения вопроса коллективом проектировщиков и строителей мы категорически отказались выполнить это требование и распорядились начать кладку стен без обетонирования стальных элементов. По мере роста кладки конфликт затихал. Строители оказались правы.

Кладка стен в центральной высотной части главного корпуса не носила уникального характера, так как кладка каждого этажа опиралась на стальные ригели, передающие усилия на колонны. Максимальный темп кладки в целом по строительству Московского государственного университета достигал почти 0,5 млн. штук кирпича в сутки. Наиболее производительным особенно при сплошных стенах был метод кирпичной кладки «пятеркой», разработанный каменщиками-новаторами Шавлюгиным и Королевым. Удобным оказался порядок кирпичной кладки по двухзахватной системе справа налево. Вполне оправдали себя тележки системы Мальцева, на которых перевозились контейнеры с кирпичом. Подача кирпича на рабочие подмости производилась автопогрузчиками с вилочными захватами.

Кладка стен в холодное время года выполнялась методом замораживания без подогрева кирпича, на растворе с вытяжкой хлорной извести. При плюсовой температуре кладка, выполненная на хлорированных растворах, не имела существенных деформаций. Опыт показал также, что нельзя применять сравнительно хрупкие керамические тонкостенные блоки для кладки внутренних стен и перегородок, в частности в местах примыкания к дверным проемам.

Что касается устройства междуэтажных перекрытий, то и здесь в ходе строительства пришлось вносить некоторые изменения. Так, в центральной части главного здания проектировались монолитные железобетонные перекрытия. Треть из них мы заменили сборными железобетонными из плоских безреберных плит. Более широко применить в этой части здания сборные перекрытия было нельзя, так как монолитные перекрытия, жестко связанные со стальным каркасом здания, учитывались в расчете каркаса, обеспечивали его пространственную жесткость и более равномерную работу элементов на горизонтальные усилия от ветровых нагрузок.

В 12-, 18– и 19-этажных корпусах, предназначенных под студенческие, аспирантские общежития и квартиры преподавательского состава, перекрытия выполнялись из сборных железобетонных крупнопанельных плит и лишь в незначительной части (в основном в пределах санитарных узлов) – из монолитного железобетона. Одной сборной плитой шатрового типа с ребром-карнизом по контуру (размер 2,7×5,2 м) перекрывалась целая комната. В квартирах же, где комнаты имели размеры до 5×4,5 м, перекрытия делались тремя сборными плитами, причем швы между ними вводились в архитектурный рисунок плафона.

В корпусах физического и химического факультетов все междуэтажные перекрытия были в основном сборными из двухпустотных балок типа «Симкар» с максимальным размером 425×103×33 см. Пустоты в балках использовались для вентиляции.

При бетонировании монолитных железобетонных перекрытий наиболее удобной оказалась опалубка с применением щитов из досок толщиной 25 и 40 мм, оструганных с внутренней стороны. Комбинация этих щитов обеспечивала устройство опалубки для всех монолитных перекрытий. Стальные инвентарные кружала, применявшиеся вначале при бетонировании монолитных перекрытий, оказались неудобными в производстве. Более проста и удобна при этих работах подвесная опалубка с креплением на лапчатых болтах. Надо было лишь строго соблюдать проектную длину болтов; при нарушении этого правила болты приходилось срезать. А производство бетонных работ по вертикали через один этаж позволило увеличить оборачиваемость опалубочных щитов, а также сократить транспортировку материалов. Одновременный монтаж каркаса и металлической части постоянных лестниц помог избежать временных устройств для обеспечения сообщения между этажами.

Опыт показал безусловную рациональность монтажа перекрытий из сборных железобетонных шатровых плит. Такие плиты относительно просты в изготовлении, удобны в монтаже и, что самое главное, не требуют штукатурки или затирки; перекрытия, выполненные из шатровых плит, можно сразу шпаклевать и красить. Кроме того, стоимость 1 кв. м шатровых плит оказалась приблизительно на 30% дешевле 1 кв. м железобетонного перекрытия с коробчатым настилом. Правда, большая площадь шатровых плит (до 13,5 кв. м) и вес (свыше 3 т) затрудняют их транспортировку. Поэтому целесообразно завод по изготовлению таких плит размещать вблизи места их укладки.

Для массового производства шатровых плит вначале использовались металлические формы. Но они оказались сложными в обработке и дорогими. Массовое применение нашли железобетонные стационарные неразборные формы (матрицы). Каждая железобетонная матрица без серьезного ремонта использовалась, как правило, для выпуска 250 и более шатровых плит. Остается добавить, что возложение работ по монтажу плит на ту же организацию (Стальконструкция), которая монтировала металлический каркас, оказалось целесообразным: обе операции выполнялись параллельно.

Московский государственный университет строился в тот период, когда впервые начали применять для облицовки ряда крупных общественных и жилых зданий керамические плиты на базе белых (главным образом, часовьярских) глин. Из-за недостатка опыта и, скажем прямо, пренебрежения физическими свойствами материалов был допущен серьезный просчет. Дело в том, что обыкновенный строительный кирпич и заполненные раствором швы кладки при сжатии под действием собственного веса и полезных нагрузок дают усадку значительно большую, чем практически не деформируемая керамическая плита. Это обстоятельство наряду с разностью температурных деформаций материалов вызвало многочисленные случаи выпучивания и выпадания керамических плит облицовки вне зависимости от надежности ее сцепления с кирпичом стены. В дальнейшем от этого способа облицовки зданий повсеместно отказались и стали включать облицовку в состав основной кладки стен.

Керамическая облицовка применялась и для главного корпуса, и для зданий физического и химического факультетов МГУ. Но в данном случае облицовка была устойчива, так как кладка стен поэтажно опиралась на горизонтальные стальные ригели, разница в усадке кладки и облицовки в пределах одного этажа была ничтожно мала и в основном погашалась неупругими деформациями раствора, соединяющего кладку с облицовкой. Это обстоятельство, а также соединение плит облицовки с кладкой пиронами из нержавеющей стали, можно сказать, спасло керамическую облицовку зданий МГУ от общей судьбы подобных облицовок. Не трудно представить, что при высоте здания МГУ разрушение облицовки носило бы катастрофический характер.

Второй интересной особенностью облицовки зданий МГУ являлось применение для отдельных элементов (в основном выступающих пилястр и фасонных вставок) облицовочных панелей площадью от 8 до 15 кв. м и весом от 1 до 3 т, изготовляемых на тонкой железобетонной основе на заводе строительства. Пожалуй, это было первое в практике нашего строительства применение стеновых панелей, нашедших в дальнейшем уже в качестве основного элемента стены столь широкое (хотя и не всегда удачное) применение.

Наряду с керамической облицовкой на строительстве МГУ весьма широко применялась облицовка красным и серым полированным и кованым гранитом. Обработка гранита проводилась в основном на крупном высокомеханизированном камнеобрабатывающем заводе, построенном нами в тот же период под Москвой в Водниках (ныне Бескудниковский камнеобрабатывающий завод Главмосстройматериалов). Однако этот завод не мог обеспечить всех заказов на гранитные и мраморные изделия. Часть деталей (в основном элементы порталов) изготовлялась на предприятиях Украинской ССР и Ленинграда. Значительное число деталей и массовая дообработка изделий производились также на площадке строительства.

Общий вид на здание физического факультета

Всего гранитом облицовано 67 тыс. кв. м, а с учетом элементов благоустройства – около 100 тыс. кв. м; керамикой облицовано 280 тыс. кв. м, в том числе крупными панелями – 25,2 тыс. кв. м. Кроме облицовки фасадов большие и сложные гранитные работы проведены при оформлении входов в здание МГУ, а также пьедесталов под скульптуры, фонтанов и т. д.

Опыт крупномасштабных работ по разнообразной облицовке зданий МГУ привел нас к выводу, что облицовка гранитом металлических каркасов с последующей заливкой бетоном отдельных конструктивных элементов без специальной опалубки – наиболее целесообразный способ производства подобного вида работ.

Удачным был опыт облицовки портала сложного профиля отдельными небольшими гранитными плитами и деталями, заменившими крупные, дорогие и сложные в обработке блоки. Но явной ошибкой явилось применение большого количества типоразмеров керамических элементов (2100). При проектировании керамических облицовок зданий крайне важно сводить число типоразмеров этих элементов к минимуму.

Как правило, поступающая с завода керамика требует дообработки, комплектации. Все это заставляет при крупных облицовочных работах считать обязательной организацию на площадке строительства цеха для доработки и комплектации керамики. Этот цех должен быть оборудован распиловочными и шлифовальными станками.

Практика показала, что наиболее удобен в производстве метод установки облицовочных керамических плит и деталей поштучно с креплением установленного ряда керамики временными гипсовыми прихватами (маяками).

Применение крупных панелей из керамических плит, как показали подсчеты, не имеет экономических преимуществ перед облицовкой отдельными керамическими плитами. Хотя оно и обеспечивало высокое качество, сокращало трудовые затраты (примерно 0,3 человеко-дня на 1 кв. м), но требовало дополнительного расхода бетона и арматуры. Крупные облицовочные панели на железобетонной основе следует рекомендовать при фигурных и профильных элементах облицовки (пилястры, художественные вставки и т. п.). Для рядовой плоской облицовки нет необходимости применять такие панели, вызывающие перерасход бетона и арматуры.

Отделочные работы (ими руководил инженер Н. Г. Чукреев) на строительстве зданий МГУ достойны внимания с точки зрения их масштаба и достигнутого в конечном счете высокого качества. В организационном отношении общий заданный темп строительства и постоянное в этих условиях стремление проводить отделочные работы одновременно во всех этажах и помещениях, где создаются необходимые для этого условия, исключили правильную поточность в производстве отделочных работ. Потребовалось одновременно большое число отделочников, в чем нам неоценимую помощь оказали строительные министерства, руководимые Д. Я. Райзером и Н. А. Дыгаем. Несомненно, при строительстве крупных объектов нецелесообразно вести все работы широким фронтом, следует готовить помещения под отделочные работы по частям, в определенной очередности. Это даст возможность вести отделочные работы в течение большей части строительного периода при соответственно меньшей численности штата отделочников. После окончания кладки и устройства кровли штукатурные и отделочные работы производительнее выполнять на этажах по ходу сверху вниз, отделывая и лестничные клетки.

Для внутренней штукатурки крупных зданий необходимо иметь инвентарные переносные растворные узлы и компрессорные установки, обслуживаемые опытными механизаторами. Окраску потолков лучше производить краскопультами непрерывного действия (мы использовали 0-11, ОСМ-533 или КПВ-111), а окраску стен и линкруста масляной краской – пистолетами-распылителями (0-19) с универсальной головкой. Эти пистолеты-распылители пригодны также для окраски стен клеевыми составами.

Ни в коем случае нельзя допускать начала плиточных работ по неподготовленным и невыверенным поверхностям. В небольших помещениях, где ошибка в расположении и размерах отдельных простенков может вызвать переделку и соседних (или противоположных) простенков, необходимо до начала плиточных работ выверять и сдавать все стены. Разумеется, плиточные работы следует начинать лишь тогда, когда в помещениях полностью закончены скрытые проводки, установлены двери и вентиляционные короба. И последнее замечание: совершенно недопустима укладка плиток на казеиновой мастике. Ее можно применять только в сухих помещениях.

Весьма сложным было проектирование многообразных санитарно-технических систем, которым руководил инженер Т. А. Мелик-Аракелян. Достаточно сказать, что общая протяженность только вентиляционных каналов в главном корпусе составила 77 км; 323 км составляют различные трубопроводы для всех видов водоснабжения, тепла, газа, канализации и пылеудаления; 3500 комплектных санузлов. Естественно, что такой объем санитарно-технического монтажа было невозможно выполнить без индустриализации работ, без заводского изготовления укрупненных трубных сборок и санитарно-технических блоков.

Заготовка блоков, трубных панелей, узлов и элементов коммуникаций была сосредоточена в специально организованном санитарно-техническом цехе Карачаровского завода Управления строительства Дворца Советов и в санитарно-технической мастерской на площадке строительства. Эта мастерская, так же как и цех Карачаровского завода, была оснащена трубоотрезными, трубонарезными и трубогибочными станками, станками для притирки арматуры, компрессорами, установками для опрессовки санитарных узлов и другими механизмами. Завод и мастерская сыграли серьезную роль и при рабочем проектировании санитарно-технических блоков и обвязок оборудования. Особенно это касается лабораторных шкафов и столов. Как правило, в мастерских выполнялся макет по первоначальному проекту, в который проектировщиками совместно с изготовителями и монтажниками вносился ряд изменений, улучшений, после чего и утверждался окончательный образец, поступавший в серийное изготовление.

Уже с начала строительства стало ясно, что, если мы пойдем обычным путем и начнем сантехнический монтаж после завершения кладки стен, мы растянем строительство минимум еще на год и потребуется одновременная работа чрезвычайно большого числа монтажников. Поэтому было решено монтировать основные сантехнические системы и санузлы при готовности по данному этажу только стального каркаса и перекрытий, проводя точную разбивку и закрепление трубопроводов и узлов, не считаясь с готовностью стен и перегородок. Только такое решение позволило нам выполнить весь объем санитарно-технических работ за 2 года и 9 месяцев при общем сроке строительства около четырех с половиной лет.

Опыт уникальных по своему объему и характеру санитарно-технических работ на строительстве МГУ показал также, что в проектных решениях необходимо отказаться от санитарно-технических блоков, труднодоступных для монтажа и эксплуатации. Взамен этих блоков можно рекомендовать трубные панели. Для горячего водоснабжения следует применять трубы из нержавеющей стали вместо оцинкованных, которые быстро выходят из строя. Не годятся для вентиляционных каналов шлакоалебастровые короба, их надо менять на асбестоцементные. Наконец, с самого начала монтажных работ необходимо иметь группу специалистов по временной эксплуатации санитарно-технических устройств, приемке смонтированных систем, а также пусконаладочную группу проверки этих систем на эффективность действия, регулировки и наладки.

О масштабе энергоснабжения строительства МГУ (им и большей частью электромонтажа руководил Н. И. Тиняков) говорят такие, например, цифры: в 1951 г. – наиболее напряженном году – строители потребляли до 18 млн. квтч электроэнергии! На одного работника (без затрат на освещение) приходилось по 0,53 квт, а общая мощность механизмов доходила до 14 600 квт.

При сооружении зданий МГУ проектирование сети электроснабжения отставало от хода строительных работ. Так, проект прокладки постоянных кабелей, питающих МГУ, был составлен с опозданием примерно на один год. Из-за этого строительство вынуждено было нести дополнительные расходы, связанные с подачей питания вначале напряжением 6 киловольт, а затем переводом сети на 10 кв.

Опыт показывает, что вопросы питания энергией больших строек должны решаться своевременно, а не после начала строительных работ.

Применявшиеся тогда типовые подстанции Мосэнерго по своей конструкции и схеме были малопригодны для электрификации строительных работ. Наиболее рациональной является схема ЦРП – подстанции; причем ЦРП[16]16
  Центральный распределительный пункт.


[Закрыть]
на таких площадках, какая была при строительстве университета, должен питать высоковольтное кольцо, а от него – передвижные подстанции. В зависимости от рода площадки и условий концентрации нагрузок (как это имело место на главном корпусе МГУ) возможно и желательно устройство постоянной подстанции с развитой установленной мощностью и двумя-тремя трансформаторами. На этой подстанции необходимо предусмотреть возможность оперативных переключений высоковольтного кольца.

Для переключения подстанций на строительной площадке следует сооружать высоковольтные сборки (комплектные, в металлическом кожухе), куда через определенные промежутки должны заводиться кабели кольца. Это повышает возможность использования передвижных трансформаторных подстанций путем их максимального приближения к центрам нагрузок, которые на строительствах могут меняться.

Прокладка кабельной сети высокого напряжения на строительстве вообще-то нецелесообразна. Если в условиях Москвы, на Ленинских горах, ее прокладка и может быть обоснована, то для других строительств, удаленных от больших городов, практичнее и дешевле устройство воздушных сетей. Их легче просматривать, на них быстрее устраняются возможные аварии, к ним проще подключить передвижные трансформаторные подстанции, они реже портятся при земляных работах. При воздушных сетях, наконец, возможно применение (в особенности на радиальных участках) железных проводов.

Заканчивая весьма краткий обзор организации и строительства МГУ, мне представляется полезным несколько более подробно рассказать о некоторых работах и способах изготовления деталей, которые, насколько мне известно, в нашем строительстве ранее не применялись да и сейчас еще, к сожалению, не привлекают внимания строителей. Речь идет об изготовлении внутренних художественных деталей из бумажной массы с последующей бронзировкой и деталей из белого литого камня.

Следует отметить, что изготовление внутренних архитектурных деталей из бумажной массы (так называемого папье-маше), заменяющих дорогостоящие тяжелое литье и бронзовые детали, широко применялось в России еще во времена Екатерины II. Русские строители достигли в этом деле большого совершенства. И сейчас во дворцах, построенных полтораста-двести лет тому назад, многие архитектурные детали и люстры, сделанные из бронзированного папье-маше, находятся в полной сохранности. Посетители этих дворцов-музеев даже и не представляют, что все эти детали выполнены из бумажной массы, а не из металла…


    Ваша оценка произведения:

Популярные книги за неделю