355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Уголев » Теория адекватного питания и трофология » Текст книги (страница 15)
Теория адекватного питания и трофология
  • Текст добавлен: 14 сентября 2016, 23:03

Текст книги "Теория адекватного питания и трофология"


Автор книги: Александр Уголев



сообщить о нарушении

Текущая страница: 15 (всего у книги 17 страниц)

Мы полагаем, что Н. Горовиц недостаточно обоснованно связал свой принцип с формированием в первую очередь анаболических механизмов. Первичная гетеротрофия на основе принципа использования побочных эффектов обеспечила формирование ряда катаболических механизмов. Те же системы способствовали развитию первичных пищеварительных процессов.

Итак, если предположить, что формирование жизни начиналось с предельно простых систем, как того требует логика, то следует признать, что эти системы должны использовать готовый строительный (пластический) материал. Другими словами, такие системы должны быть гетеротрофными. Самые древние организмы получали органические вещества в виде мономеров из окружающей среды и конденсировали их, преобразуя в структуры своего тела, о чем мы говорили ранее. Но в последнее время появилось довольно много сведений, что вполне возможен абиотический синтез полимеров или по крайней мере олигомеров. Это означает, что первичные организмы могли включать в состав своего тела поли– и олигомеры.

Таким образом, наиболее древними организмами (назовем их условно) были первичные гетеротрофы. Эта точка зрения согласуется с данными, касающимися происхождения жизни на Земле (см. 9.1). При благоприятных условиях уже на этой стадии развития излишки органического материала могли накапливаться в виде своеобразных депо. Возможно, эти депо не были четко дифференцированы, а представляли собой клеточные структуры, используемые при недостаточном притоке органических веществ из окружающей среды. Для мобилизации этих «протодепо» служили гидролитические ферменты, наиболее древние из всех известных (см. гл. 1). Эта точка зрения была первоначально высказана нами еще в 1961 г. (Уголев, 1961). Значительно позднее возникло питание за счет сложных полимерных веществ органического происхождения, требовавшее наличия пищеварительных процессов, которое можно было бы охарактеризовать как вторичную гетеротрофию. Ферменты, мобилизующие депо, а также некоторые другие гидролазы и явились, по-видимому, исходным материалом для формирования первичного пищеварения. Оставалось допустить, что гидролазы, первично выполняющие функцию мобилизации депо, постепенно начинали осуществлять также функцию гидролиза пищевых полимеров, находящихся в окружающей среде. Тогда гидролиз пищевых веществ, находящихся в среде, за счет поступающих туда ферментов можно было бы рассматривать как первичное внеклеточное пищеварение, гидролиз субстратов, проникающих в организм, – как первичное внутриклеточное пищеварение, а расщепление веществ, контактирующих с поверхностью примитивных живых систем, – как первичное мембранное пищеварение. В зависимости от многих обстоятельств каждый из этих типов пищеварения у определенных групп организмов мог стать доминирующим.

Итак, при всех обстоятельствах первичными были гетеротрофы, не обладающие пищеварением. Аутотрофия (абиотрофия) – вторичный, сравнительно поздно появившийся признак. Он возник тогда, когда гетеротрофные организмы разделились на организмы, поглощающие первичный бульон, и организмы, поглощающие первичные организмы. Так появилось первичное хищничество. Весьма вероятно, что в то же время сформировался и первичный сапрофитизм в виде использования погибающих организмов, особенно тех, которые подвергались аутолизу. Важно, что аутолиз усиливался в результате действия ферментов активных протохищников. Наконец, за счет систем гетеро– и абиотрофии реализовались трофические взаимодействия, благодаря которым возможно формирование динамического единства биосферы.

9.5. Структура, происхождение и эволюция круговоротов и трофических цепей

Жизнь со времени своего возникновения сформировалась как цепной процесс. Что касается трофических цепей, то, как мы упоминали ранее, они образовались «с конца», т.е. с редуцентов – организмов, которые превращали первичные абиотически синтезированные вещества в неорганические. Предполагается, что синтезы различных биологических органических веществ возникали постепенно в результате выживания организмов, приспосабливавшихся к истощению запасов все большего числа типов абиогенных органических молекул. Таким образом, постепенно в ходе эволюции происходило построение трофической цепи, начиная с редуцентов и кончая фото– и минералзависимыми абиотрофами (см. гл. 1).

Возникает вопрос, мог ли длительное время существовать мир абиотрофов без гетеротрофов, а мир гетеротрофов без абиотрофов? Очевидно, что мир гетеротрофов без абиотрофов долго существовать не мог. Даже при наличии значительных количеств органических веществ, образовавшихся абиотическим путем (например, вследствие вулканических синтезов на Земле в древние времена), эти вещества должны были бы быстро исчерпаться, а лишенные пищи гетеротрофы – погибнуть. Однако, по-видимому, абиотрофы также не могли бы существовать длительное время без гетеротрофов. Действительно, накопление органического материала должно было бы привести к истощению запасов неорганических элементов, из которых абиотрофами синтезируется органический материал, а также к заполнению ниш обитания отмершими абиотрофными организмами.

В огромной биосфере, которая является своеобразным мегагомеостатом, функции обратной связи выполняют гетеротрофные организмы. Другими словами, биосфера – это гомеостат, где важнейшие функции взаимодействия и ауторегуляции при современных условиях принадлежат трофическим механизмам. Следовательно, биосфера представляет собой трофостат. Понятно, что огромный биотический цикл возник на основе первичной гетеротрофии.

Представление, что одновременно с появлением преджизни появились и специализированные формы питания на первый взгляд кажется нереальным. Между тем для этого имеется довольно много оснований. Прежде всего естественным представляется разделение организмов на трофические группы, или ряды. В первый трофический ряд попадают организмы, использующие в качестве пищи абиогенные материалы, во второй ряд – организмы, поглощающие пищу в виде существующих живых систем, в третий – организмы, использующие погибающие группы или индивидуальные структуры живых систем. Такая модель придает некоторую устойчивость системе в целом и позволяет ей осуществлять гомеостатирование при определенных изменениях окружающей среды и вместе с тем эволюировать.

В отношении формирования первичного ассимиляторного аппарата гетеротрофов мы уже давно предложили гипотезу (Уголев, 1961), более подробно рассмотренную в сводке (Уголев, 1985). Суть ее сводится к тому, что первичная гетеротрофия возникла на основе использования гидролитических ферментов, первоначально обеспечивающих функцию внутриклеточного гидролиза, связанного с перестройкой и мобилизацией собственных полимерных структур. Такие гидролазы (по общему мнению наиболее древние, о чем мы упоминали выше) послужили основой для формирования эндотрофии, т.е. питания за счет внутренних ресурсов организма (см. гл. 1). Предполагается также, что эти ферменты могли затем послужить основой для утилизации структур других организмов. На более высоких этапах эволюции появились фототрофы – организмы, по всей вероятности, сходные с цианобактериями. В то же время образовалась система с обратной связью и многими свойствами гомеостата. Такая система могла совершенствоваться и заполнять все новые трофические ниши, что было одним из наиболее существенных путей эволюции живого.

9.6. Трофические цепи и экология

Одним из следствий развиваемого нами трофслогического подхода (см. гл. 1) является признание того, что процветание вида во многом определяется его положением в трофической цепи. Это положение обеспечивается эффективностью взаимодействий не только с предшествующими, но и с последующими членами трофической цепи. Другими словами, существенную роль играет не только источник питания и его эффективное поглощение, но и поедаемость данного члена экосистемы.

Трофическая цепь возможна лишь при соответствии структур предшествующего трофического звена, т.е. трофического субстрата, ферментам следующего трофического звена, утилизирующего предыдущее как пищевое вещество. Такое соответствие должно быть и между ферментами данного звена трофической цепи и его же собственными субстратами, что необходимо для реализации различных функций внутри данного организма.

Во взаимоотношениях хищник-жертва, независимо от того, рассматриваются ли два вида животных, или растительноядное животное и поедаемое растение, жертва как вид может сохраниться лишь при наличии у нее укрытия и средств активной и пассивной защиты. Нередко два последних эффекта достигаются с помощью ядов.

Животные для защиты и нападения часто используют яды и токсины. В качестве таких примеров можно привести змей, пауков, скорпионов, пчел, ос и др. (см. обзоры: Rice, 1978; Сравнительная физиология..., 1978; Schmidt-Nielsen, 1982; Odum, 1986, и др.). У многих организмов яд служит не только средством защиты от врагов, но и средством поражения добычи. Интересные средства защиты применяются некоторыми многоножками, которые продуцируют синильную кислоту, или жуками-бомбардирами, выбрасывающими в виде защиты струю аэрозоля с температурой 100 С. Широко распространены растительные яды, предохраняющие растения (первичные продуценты трофической цепи) от поедания. Однако существуют примеры химических взаимодействий, при которых хищник может использовать жертву без отрицательных для себя последствий. Так, гусеницы бабочки-капустницы могут питаться капустой и горчицей без вредных для себя последствий, тогда как эти же крестоцветные ядовиты для гусениц других бабочек. Более того, горчичные масла этих растений представляют собой аттрактанты, привлекающие бабочек для откладки яиц. Один из способов защиты некоторых животных заключается в аккумуляции токсических веществ растений, что делает этих животных несъедобными для врагов. Таким примером может служить американская бабочка-данаида, которая, потребляя в пищу обычный ваточник, синтезирующий гликозиды, становится вредной для своих хищников.

В ряде случаев растения продуцируют вещества, действующие на эндокринную систему насекомых и позвоночных. Так, некоторые американские вечнозеленые растения вырабатывают сходные с ювенильным гормоном биологически активные вещества, которые тормозят размножение насекомых, останавливая переход последних во взрослое состояние. Некоторые пастбищные растения, в частности бобовые, синтезируют биологически активные вещества, обладающие эстрогенными эффектами. Эти вещества влияют на половые функции животных, нарушая цикл воспроизводства крупного рогатого скота и овец. Кроме того, фитоэстрогены могут регулировать численность диких полевых грызунов.

В некоторых случаях показана прямая зависимость между размножением животных и продуктивностью растений. Так, в Калифорнии при засухе ряд однолетних растений вырабатывает фитоэстрогены, ингибирующие появление потомства у перепелов. Напротив, при благоприятных условиях концентрация этих эстрогенов в растениях становится низкой, что способствует размножению птиц. Упомянутый ранее ваточник синтезирует сердечные гликозиды, которые оказывают действие на сердце и мозговые центры поедающих его животных, провоцируя рвоту.

Приспособление к питанию растениями, содержащими сердечные гликозиды, выработалось у некоторых насекомых в результате мутации, вызвавшей потерю чувствительности Na+,К+ -АТФазы к уабаину. В качестве примера можно вновь привести бабочку-данаиду, у которой этот фермент в отличие от АТФаз других организмов не чувствителен к уабаину. Эта точковая мутация – несомненно полезный селективный признак, так как данаида питается растениями, содержащими сердечные гликозиды.

Этих примеров вполне достаточно для иллюстрации сложности трофических отношений в природе между различными организмами и широким распространением ядовитых веществ.

Одним из примеров интересных путей эволюции могут быть насекомые с их изощренными механизмами нападения и умерщвления жертвы, ее обездвиживания и сохранения в живом, но неподвижном состоянии на протяжении длительных интервалов времени. Однако хотелось бы обратить внимание на другое обстоятельство. Во всех случаях убивающие и парализующие яды оказались агентами, действующими на определенные универсальные функциональные блоки (см. гл. 1), причем сами яды являются соединениями, достаточно широко распространенными в природе. Общность функциональных блоков настолько велика, что, хотя ветви насекомых и млекопитающих разошлись задолго до формирования систем свертывания и противосвертывания крови, у многих насекомых синтезируются биологически активные факторы, идентичные таковым млекопитающих. Примером может служить гепарин. Если насекомое питается тканевой жидкостью, то вводится гиалуронидаза, повышающая проницаемость тканей. Этот же фактор входит в физиологическую цепь регуляции вазопрессином некоторых функций почечных канальцев.

Наконец, существует еще один этап усвоения пищи в естественных условиях – индуцированный аутолиз (см. гл. 1).. Так, пауки для извлечения питательных веществ из жертвы прокалывают ее челюстями и вводят пищеварительные соки, которые, как предполага лось, растворяют ткани. Затеи пауки высасывают полученный раствор. Анализ в этих соках состава ферментов, обеспечивающих внеклеточное пищеварение, заставляет думать, что интерпретация данного феномена неправильна, так как внеклеточные ферменты реализуют преимущественно начальные этапы гидролиза. По всей вероятности, пауки наряду с пищеварительными ферментами вводят факторы, индуцирующие аутолиз. В этом случае образуется гидролизат, близкий к набору конечных продуктов расщепления, который и используется хищниками. Аналогичный механизм применяется и другими беспозвоночными, например жуками-плавунцами.

Рассмотрим еще один конкретный случай, за которым, однако, скрываются общие закономерности. У многих высших организмов ранние этапы онтогенеза обеспечиваются тем, что происходит прямой обмен макромолекулами и макромолекулярными функциональными комплексами между материнским и детским организмами. Такой обмен происходит при молочном питании у млекопитающих и имеет место при псевдомолочном питании у некоторых птиц. У голубя, и особенно у пингвина, вырабатывается питательная жидкость – так называемое молоко. Местом его образования у голубя служит зоб, и выработка молока стимулируется пролактином. У пингвина такое молоко образуется в пищеводе. Обращает на себя внимание близость состава птичьего молока и молока млекопитающих (табл. 9.2) ( Prevost , Vilter , 1962). Ясно, что в обоих случаях молочное питание позволяет избежать случайностей, связанных с внешними обстоятельствами, и обеспечивает химическое гомеостатирование внутренней среды потомства в раннем постнатальном периоде.

Таблица 9.2. Состав «молока» голубя, императорского пингвина и молока кролика (по: Prevost , Vilter , 1962)

Компонент молокаСостав молока (% от общего количества сухого остатка)голубьпингвинКроликБелки54.759.350.6Липиды34.228.334.3Углеводы07.86.4Минеральные вещества6.54.68.4

9.7. Заключительные замечания (взаимодействие в биоценозах)

Рассмотрим биохимические взаимодействия живых организмов в естественных условиях, которые распространены чрезвычайно широко и стали объектом специальной науки – аллелопатии (см. гл. 1). Примеры таких взаимодействий приведены в ряде обзоров (Rice, 1978; Сравнительная физиология..., 1978; Schmidt-Nielsen, 1982; Odum, 1986, и др.). В результате этих взаимодействий организм-продуцент, выделяющий биологически активные регуляторные вещества, которые оказывают влияние на организмы других видов, в ходе естественного отбора получает преимущества. Важную роль в биохимическом взаимодействии видов, вероятно, играют позитивные кооперативные взаимодействия, примером которых служат взаимодействия высших растений и нитрифицирующих бактерий, грибов и одноклеточных водорослей и т.д. При рассмотрении конкурентных аспектов аллелопатии обнаруживаются многие токсические вещества, используемые для борьбы высших растений с высшими растениями, бактерий с бактериями, бактерий с высшими растениями и т.д.

Микроорганизмы и растения выделяют множество веществ, токсически действующих на разные функции высших и низших животных. Многие микроорганизмы продуцируют специфические агенты, влияющие на организм животных, на растения и микроорганизмы других видов. Некоторые особенности биоценозов могут быть результатом сигнального химического взаимодействия их различных сочленов. Так, молочай вредно влияет на лен, плевел – на пшеницу. В ряде случаев кажущееся истощение почв является результатом накопления токсинов, продуцируемых растениями, что служит одной из причин сукцессий. Интересно, что в насаждениях белой акации отсутствуют почти все другие виды растений, а в различных частях акации обнаружены сильнодействующие ингибиторы. Имеются данные о выраженных стимулирующих и ингибирующих влияниях высших растений на микроорганизмы почв, в том числе на бактерии. Так, активность аммонифицирующих бактерий во влажном тропическом лесу выше, чем в окультуренных почвах, а нитрификация значительно ниже.

Одним из примеров химических взаимодействий растений и насекомых служит образование галлов под действием химических веществ, продуцируемых насекомыми, которые стимулируют пролиферацию тканей растений. В свою очередь растения выделяют вещества, имеющие большое значение в жизнедеятельности насекомых. К таким веществам могут быть отнесены экдизон, влияющий на рост и линьку насекомых, ювенильный гормон и феромоны, привлекающие насекомых к их растениям-хозяевам. Несомненный интерес представляет возможность регуляции растениями пищевого поведения растительноядных насекомых. В частности, гессипол и родственные ему соединения, содержащиеся в хлопчатнике, могут подавлять рост личинок насекомых, нападающих на хлопчатник.

Экологическое значение химических взаимодействий растений и других животных изучено в меньшей мере. Так, бактерии и грибы образуют вещества, токсичные для млекопитающих, в том числе для человека. Некоторые виды лютика образуют протоанемонин, вызывающий судороги и гибель домашних животных. Как отмечено выше, наперстянка и некоторые другие растения продуцируют сердечные гликозиды, вызывающие сердечные приступы у поедающих их животных.

С позиций экологии биохимические взаимодействия различных организмов, в том числе растений друг с другом и растений с животными, обладают многими общими чертами. При этом видовая неспецифичность является хотя и единственным, но обязательным условием организации сложных экосистем и их частей. Таким образом, активное поддержание постоянства определенных сред, гомеостатирование биоценозов с помощью регуляции не только химического состава, но и продукции специфических регулирующих факторов и выделения их в окружающую среду имеют большое значение для поддержания экосистем. Наконец, приспособление организмов к условиям питания является одним из важных условий эволюции. Многие экологи считают его едва ли не самым важным в эволюции животного мира.

Послесловие

В течение длительного времени казалось, что классическая теория сбалансированного питания достаточно совершенна и будет основной на протяжении еще очень длительного времени. Предполагалось также, что в будущем она будет лишь дополняться и уточняться в деталях, не меняющих ее сущность и аксиоматику. Однако к концу 70-х годов стало очевидно, что для описания процессов питания и ассимиляции пищи в целом на новом уровне знаний необходима принципиально другая теория. Как было продемонстрировано выше, эта новая теория опирается на. систему постулатов, причем в этой теории классические постулаты составляют небольшую, хотя и существенную, часть. Более того, имея в виду, что новая теория адекватного питания включает в себя представления, способы анализа и оценки, которые не применялись ранее, ее было бы правильнее называть новой парадигмой в том смысле, в каком использовал этот термин Т. Кун (Кип, 1975), рассматривая революции в науке.

Чем же отличается новая теория питания от классической? В заключении нашей работы рассмотрим основные различия еще раз.

Из классической теории новая теория адекватного питания заимствует главным образом первый основной постулат – соответствие расхода веществ их поступлению. Однако эти две теории даже в этом главном совпадающем постулате имеют серьезные различия. Равенство поступления и расхода веществ, согласно классическим представлениям, должно достигаться в течение возможно более коротких промежутков времени. Причем в идеальном случае эти процессы должны быть уравновешены. В соответствии с теорией адекватного питания равновесие между поступлением и потерей веществ достигается в сравнительно продолжительные интервалы времени, тогда как в более короткие интервалы могут преобладать либо расход, либо поступление веществ. Эта особенность трофического гомеостаза обусловлена существованием депо и вегетативных механизмов контроля внутренней среды. Имеют также значение особенности питания различных видов и индивидуальные адаптационные характеристики, а часто и сезонные перестройки организма или популяции.

В соответствии с классической теорией, питание сводится к поступлению в организм нутриентов, содержащихся в пище, тогда как, согласно новой теории, для нормального протекания процессов ассимиляции пищи необходим также поток регуляторных веществ. Его составляют преимущественно истинные гормоны, образующиеся эндокринными клетками алиментарной системы под влиянием пищи как регулятора, проходящего через желудочно-кишечный тракт. Кроме того, регуляторные вещества (так называемые экзогормоны) могут находиться в пище или образовываться из нее под действием пищеварительных ферментов и в результате влияния на нутритивные и балластные компоненты бактериальной флоры. Роль регуляторного потока на различных этапах ассимиляции пищи и в регуляции ее потребления широко варьирует у различных представителей животного мира и служит одной из важнейших характеристик адаптивной эволюции процессов пищеварения и ассимиляции в целом.

Согласно классической теории, питание является результатом извлечения нутриентов из пищевого объекта благодаря двум основным процессам – гидролизу сложных пищевых соединений и всасыванию. Согласно новой теории, существует два типа нутриентов. Один из них (первичные нутриенты) поступают из окружающей среды в составе пищи, тогда как другие (вторичные нутриенты) образуются в организме из предшественников чаще всего его симбионтами. Вторичные нутриенты играют огромную роль в питании растений (фотосинтез). Питание вторичными нутриентами преобладает у животных с симбионтным питанием, например у жвачных, некоторых насекомых и ряда других групп организмов, у которых пища целиком преобразуется благодаря симбионтам (бактериям и простейшим). Однако даже у высших моногастричных организмов, и в том числе у человека, образование и использование вторичных нутриентов играют, по-видимому, существенную, а в некоторых случаях и жизненно важную роль. В частности, у человека бактериальная флора синтезирует многие витамины и незаменимые аминокислоты.

В соответствии с новой теорией, что совпадает с результатами последних исследований, нормальный метаболизм у высших животных является метаболизмом надорганизменной системы макроорганизм-симбионты, формирующейся в ходе эволюции вида, популяции и онтогенеза данной особи. Собственный метаболизм лидирующего организма, как правило, оказывается дефектным как из-за отсутствия некоторых вырабатываемых симбионтами веществ, так и вследствие нарушенных регуляторных взаимодействий между организмом и его симбионтами.

Классической теорией принято, что пища состоит из полезных компонентов – нутриентов и компонентов, которые индифферентны для организма (балластные вещества) или даже вредны (ксенобиотики и токсины). Пищеварение сводится к отделению нутриентов, поступающих во внутреннюю среду организма, от балласта. Новая теория постулирует, что в ходе эволюции произошла адаптация ко всему пищевому комплексу, включая балластные вещества и даже некоторые токсические соединения.

Ряд следствий, в том числе самых важных, теоретических и практических рекомендаций теории сбалансированного питания также не выдержали проверки временем.

Итак, перед читателем прошла не просто незавершенная, а, скорее, лишь начатая в своем построении теория адекватного питания. Многочисленные ее пробелы очевидны. Но любой натуралист понимает разницу между пробелами и изъянами, проблемами и теориями. Действительно, изъяны – это признак тупика, тогда как пробелы – это, напротив, признак неохваченных возможностей, новых горизонтов и интересных нераскрытых закономерностей.

Теория адекватного питания – не отступление от стремления классической теории к физико-химической точности, а, напротив, попытка достичь этой точности на более широкой основе, включая общие биологические, и особенно эволюционные, подходы. Это делает новую теорию применимой ко всему разнообразию живых существ с их многочисленными способами питания. Поэтому на первый взгляд может показаться, что речь идет не об универсальной теории адекватного питания, а о нескольких теориях адекватного питания, применяемых к различным организмам. Однако, как можно видеть, уже сегодня обнаружен ряд общих основных принципов и сформулированы видовые особенности, отражающие широкую вариабельность и гибкость этих основных принципов. (Так, в одних случаях питание связано преимущественно с утилизацией мономеров, например паразиты, тогда как в других – с использованием главным образом вторичных нутриентов.) Мы видим, таким образом, что питание может быть положено в основу мегасистемы всех живых организмов (с учетом новых достижений в этой области).

Нужно вновь повторить, что теория адекватного питания построена на значительно более широкой базе, чем теория сбалансированного питания. Новая теория опирается не только на физиологию и биохимию, но и на гастроэнтерологию, многие разделы классической зоологии и протозоологии, микологию, микробиологию, ботанику, экологию и ряд других наук. Это означает, что для современной науки в целом свойственны синтетические системные подходы. Отсюда вытекает необходимость формирования специальной науки – трофологии.

В конце 70-х годов мы предложили принципиально новые подходы, позволившие раздвинуть горизонты нутрициологии как науки, направленной на решение задач рационального питания человека, до масштабов трофологии. Последняя, как мы неоднократно отмечали, как новая междисциплинарная наука охватывает весь комплекс трофологических проблем – от клетки до биосферы – во всем их разнообразии.

Теория сбалансированного питания в ее современной интерпретации является одним из аспектов более общей теории гомеостаза. Эта теория принимает, что в процессе питания гомеостатирование молекулярного состава организма обеспечивает равновесие между потерей и поступлением веществ и энергии. В то же время мы могли неоднократно продемонстрировать, что системы, контролирующие потребление пищи, в реальных условиях поддерживают равновесие молекулярного состава организма в течение определенного (большего или меньшего) интервала времени, в пределах которого преобладают поступление или потери одного, нескольких или многих нутриентов. Таким образом, как мы упоминали, адекватное питание включает в себя не только периоды сбалансированного поступления и расхода веществ, но и периоды их накопления или значительных потерь. Эти процессы не только физиологичны, но для многих видов организмов должны рассматриваться как элементы эволюционно адекватного питания (например, физиологическое голодание или физиологическое ожирение у многих групп животных, жизнедеятельность которых обусловлена сезонными ритмами).

По всей вероятности, изменение уровня питания и связанное с этим функционирование депо – нормальные явления в жизни человека. Эта проблема нашла отражение в глубоких традициях, все еще недостаточно проанализированных наукой.

Анализ на основе общих научных подходов закономерностей, свойственных самым далеким группам организмов, проведенный в рамках трофологии, а также сопоставление процессов, которые рассматривались ранее разными науками, особенно важны для теории адекватного питания. Эта теория описывает закономерности питания не только у человека или у некоторых сельскохозяйственных животных, но и у беспозвоночных животных, простейших, растений и бактерий. С такой точки зрения, новая теория питания составляет важную часть трофологии. Биологичность и эволюционность теории адекватного питания характерны и для трофологии как науки.

Чрезвычайно большое значение имеют практические аспекты трофологии, и в частности значение теории адекватного питания для практики питания. Из общих концепций трофологии вытекает идея культуры Питания, которая включает в себя эволюционно обоснованное питание, в том числе питание различных народов, и учитывает климатические, исторические и другие условия жизни, а также адекватность, возможность приспособления, изменение приспособляемости в разные возрастные периоды и т.д. Теория адекватного питания крайне важна для построения питания различных возрастных групп, в особенности новорожденных и сосущих младенцев, а также лиц пожилого возраста. Необходимо упомянуть, что понятие адекватности в этих случаях приобретает чрезвычайно большое значение.

В рамках трофологии следует проводить и рассмотрение процессов питания с координированной системой свойств пищевых продуктов и с механизмами их ассимиляции. В результате развития этой науки возможно изменение многих традиционных представлений в различных областях знаний, что должно эффективно служить прикладным задачам. Трофология пытается решить комплекс первоочередных задач, которые входят в несколько наиболее крупных проблем современности. Действительно, ООН и Римский клуб полагают, что сейчас перед человечеством стоят следующие глобальные проблемы: снабжение пищей, обеспечение сырьем, снабжение энергией и состояние экологии в целом. Что касается первой из них, то снабжение пищевыми продуктами – одна из самых насущных задач, так как в настоящее время каждый пятый человек на Земле страдает от голода, а каждую неделю в мире от недоедания и болезней умирает 280000 детей. Однако ограничиться только снабжением населения Земли достаточным количеством пищи невозможно. Действительно, питание – не менее важная и критическая проблема, стоящая перед современным человечеством.


    Ваша оценка произведения:

Популярные книги за неделю