Текст книги "Завод без людей"
Автор книги: Александр Штейнгауз
сообщить о нарушении
Текущая страница: 7 (всего у книги 10 страниц)
Кроме универсальных токарных станков, выпускаются универсальные фрезерные станки, строгальные, шлифовальные, сверлильные, ножницы для резки металла, долбежные и множество других. Все такие станки обслуживаются квалифицированными рабочими.
С помощью универсальных станков можно изготовлять самые различные детали. Однако стоимость их изготовления будет сильно зависеть от того, как будет использоваться рабочая сила и станочное оборудование, как будет организовано производство.
Предположим, в цехе, который оснащен токарными, фрезерными, строгальными и сверлильными станками, выпускается целый узел – червячный редуктор. Червячный редуктор состоит из нескольких деталей: червяка, шестерни, осей, основания, в котором крепятся червяк и шестерня. Оси червяка имеют по концам винтовую нарезку и снабжены гайками.
Внешний вид и разрез червячного редуктора.
Как следует распределить работу? Ясно, что на токарно-винторезном станке мы будем обтачивать оси, нарезать резьбу на их концах, делать заготовки для шестерен, нарезать сами червяки. На фрезерных станках следует делать нарезку шестерен. Плоскости основания можно обработать на строгальном станке, на нем же с помощью несложного приспособления можно прострогать и грани гаек. На сверлильном станке следует делать отверстия в основании и отверстия в гайках. Резьбу в гайках можно нарезать на токарном станке или передать эту работу слесарям, которые с помощью специального инструмента – метчика – нарежут резьбу.
Если требуется изготовить всего лишь один редуктор, то почти безразлично, как дальше организовать работу. Точить ли червяк токарю Смирнову, а токарю Стеценко поручить обработку осей или наоборот – безразлично. Точно так же и со строгальной работой. Кто из строгальщиков, Хлебцевич или Петросян, будет строгать основание или грани гаек, тоже не имеет значения.
Но если таких редукторов придется делать не одну штуку, а сотню, то тогда так организовывать труд нельзя. Нельзя дать Смирнову сегодня делать червяк, Стеценко оси, а завтра наоборот. Нельзя перебрасывать обработку основания со станка Хлебцевича на станок Петросяна и обратно. Нужно каждого рабочего, каждый станок закрепить на выполнении одной операции. Ведь это даст возможность и Смирнову, и Стеценко, и Петросяну, и другим рабочим приноровиться к изготовлению деталей, лучше организовать свой труд и не тратить лишнее время непроизводительно на подготовительные операции. Вместо того чтобы каждый раз по-новому настраивать станок, подготавливать инструмент, можно это сделать единожды, а потом думать только о самой работе и тратить на нее все время.
Теперь мы организовали работу так, что каждый рабочий выполняет только один вид работы: Смирнов точит червяки, Стеценко – оси, Петросян строгает основания, Хлебцевич делает заготовки для гаек, токарь Павлов точит заготовки для шестерен; Насыров фрезерует шестерни, разметчик Маргулис размечает основание под сверление, сверловщик Алексеев делает отверстия, слесарь-сборщик Коробков собирает редукторы.
Работа теперь наладится. Рабочие будут трудиться спокойнее, меньше будут нервничать из-за неполадок, меньше уставать. Они станут больше изготовлять деталей, станут лучше зарабатывать. И, несмотря на то что зарплата их увеличится, стоимость каждой детали упадет. Упадет потому, что производительность труда в этом случае поднимется значительно.
Но теперь предположим, что таких редукторов надо изготовить не сто штук, а несколько тысяч. И тут мы сразу увидим, что при прежней организации труда мы уже не сумеем значительно удешевить продукцию, хотя партия в несколько тысяч одинаковых изделий – это уже не мелкая серия. Рабочие-то будут работать все так же. Слишком много еще времени затрачивается нерационально. Одно дело, когда теряется лишних 30 секунд при обработке 100 деталей, другое – когда их приходится делать, скажем, 10 тысяч штук. В первом случае мы потеряем 50 минут, почти одну восьмую рабочего дня, а во втором 5000 минут, или почти десять с половиной рабочих дней. Это очень много, преступно много!
Возникает такой вопрос: если каждому рабочему в течение очень долгого времени придется делать одну и ту же сравнительно несложную операцию, необходимо ли, чтобы они работали на универсальных станках? Зачем оставлять универсальные станки, если возможности их все равно не будут использоваться? Ведь универсальные станки дорогие. И в силу того что они универсальные, управление этими станками усложнено. Так не стоит ли за те же деньги изготовить специализированный станок, который бы не имел столь широких возможностей, но зато уж данную операцию, скажем изготовление осей, делал бы гораздо быстрей. Ведь это приведет к экономии тех самых минуток, на первый взгляд таких безобидных, и повысит производительность труда, а значит, снизит себестоимость этих осей.
Правильно. Так и делается. Конечно, новый специализированный станок будет проще и удобней и позволит значительно увеличить количество изготавливаемых деталей. Теперь Стеценко при той же затрате труда будет обтачивать значительно больше осей.
Можно таким же образом поступить и со станками Смирнова, Хлебцевича, Петросяна, можно дать Алексееву многошпиндельный сверлильный станок, который одновременно сверлит несколько отверстий в заранее намеченных точках. Но, конечно, затраты на новые специализированные станки должны окупиться, иначе их не будет выгодно применять. Окупиться же затраты могут только при очень большом количестве выпускаемых одинаковых деталей, то есть при массовом выпуске. Вот и получается, что при массовом выпуске каждый из рабочих сумеет выпускать гораздо больше того, что изготовлял ранее.
Но не только на этом мы можем экономить время. Посмотрите-ка: токарный станок Смирнова стоит в одном углу цеха, строгальный станок Петросяна – в другом углу. Сверлильный станок в середине, возле прохода, а фрезерные – у стенки. И от одного станка к другому приходится все время перетаскивать заготовки.
А нельзя ли поставить строгальщиков Петросяна и Хлебцевича рядом со сверловщиком Алексеевым; токаря Павлова, делающего заготовки под шестерни, рядом с фрезеровщиком Насыровым и так далее? Что же, если редукторы придется изготавливать в течение длительного времени, то не только можно, но и нужно так сделать. Хоть перепланировка цеха и очень дорога, она окупится, потому что удастся еще более снизить непроизводительные затраты времени, труда, а значит, и уменьшить себестоимость продукции. Можно так расположить станки, чтобы обрабатываемые детали перемещались от станка к станку по кратчайшему расстоянию: так, чтобы заготовки, войдя в станочную линию с одного конца, шли потоком через всю линию, а на другом конце выходили бы в виде готовой продукции или законченных полуфабрикатов. Организация производства по такому принципу так и называется – поточная. Сколько времени, сил и расходов экономится при поточном производстве!
Мы уже говорили с вами, что при большом количестве однородной продукции цена времени неизмеримо возрастает. Если при мелкосерийном производстве одна гайка требовала на изготовление, скажем, несколько минут, то при массовом производстве за одну минуту их выпускаются десятки. Значит, и потерять при массовом производстве одну минуту страшней, чем при штучном производстве потерять гораздо большее время. Поэтому при массовом производстве, при поточной его организации особенно важна согласованная работа всех отдельных участков.
Если при изготовлении одного редуктора или малой серии редукторов токарь Павлов запоздает с заготовками для шестерен, то страшного ничего не случится. Насыров может его и подождать. В течение этих нескольких минут он сумеет заняться какой-нибудь другой работой, хотя бы подготовительными операциями. Даже если бы Насыров простоял, потеря была бы все равно невелика. Но при массовом производстве у Насырова все уже заранее налажено, да и станок совсем другой. Теперь несколько минут простоя стоят уже нескольких неизготовленных шестерен. Тут уж Павлов не должен терять ни минуты, иначе простоит Насыров, а за ним и все последующие рабочие.
Возьмем другой пример. Токарь Стеценко выточил ось для червяка, токарь Смирнов выточил червяк. Кто-то из них ошибся: то ли Смирнов проточил меньшее отверстие в червяке, то ли Стеценко сделал ось большего, чем требуется, диаметра. Словом, червяк не насаживается на ось. При штучном производстве в этом особой беды нет. Скажем, виноват Смирнов. Тогда он берет ось, на которую не одевался червяк, и, установив вновь червяк на станке, начинает растачивать отверстие в нем. И будет он растачивать отверстие до тех пор, пока ось не вставится в это отверстие. Затем ось вместе с червяком заберет слесарь-сборщик Коробков и начнет собирать редуктор.
При массовом производстве такая вещь невозможна. Если червяк не насаживается на ось, то, значит, получился брак. Но Смирнову уже некогда подгонять данный червяк под ось. У него теперь большое сменное задание, и теперь гораздо проще забраковать один червяк, но не прерывать производство, чем исправлять брак, уменьшив при этом общее количество изготовленных червяков.
Но не означает ли это, что при поточном методе производства увеличивается количество забракованных деталей? Если в день изготовляются десятки, а то и сотни червяков и осей и нет возможности подгонять их друг к другу по отдельности, то ведь очень легко ошибиться и выточить ось или отверстие в червяке такими, что они не состыкуются при сборке. На первый взгляд это действительно так. Но только на первый. Дело в том, что при массовом производстве возможность неточного изготовления должна обязательно заранее учитываться, и на такую неточность должны обязательно накладываться допуски. Так и делается. Вспомните хотя бы о классах точности или о допусках на сопротивления. Точно так же обстоит дело и с механическими узлами и деталями. На их изготовление тоже имеется целая система допусков и посадок, обязательная для всех конструкторских бюро, проектных организаций, заводов и фабрик Советского Союза. Система эта является ГОСТом.
В этом очень большая разница между штучным и массовым производством. Штучное производство требует очень точного изготовления даже самых неответственных деталей, требует взаимной подгонки их друг к другу. А массовое производство, наоборот, исходит из того, что незачем делать детали абсолютно точно, незачем напрасно удорожать их. Лучше и дешевле делать детали, заранее оговорив допусками отклонение от заданных размеров. Можно всю конструкцию какого-либо изделия создать с учетом таких допускаемых отклонений, и тогда любая деталь, изготовили ли ее сегодня или два года тому назад, на заводе № 618 или на заводе № 64, подойдет к изделию, если, конечно, деталь эта выполнена в соответствии с чертежами, в которых обязательно оговариваются допуски на неточность изготовления.
Так выглядит чертеж.
При таком методе конструирования и изготовления любая ось, вышедшая со станка Стеценко, состыкуется с любым червяком, выточенным Смирновым, при условии, что и ось и червяк «находятся в допуске». А сделать деталь в допуске при поточном производстве гораздо проще, чем подгонять ее по месту.
Если даже Смирнов и Стеценко, работая в одном цеху, при поточном производстве уже не могут устранять брак путем индивидуальной подгонки деталей, то тем более это невозможно, когда в производстве одного изделия участвует не один цех, а весь завод или несколько заводов, а то и несколько отраслей промышленности. Поэтому роль допусков и классов точности изготовления узлов и деталей в массовом производстве становится необычайно важной.
А ведь в наши дни производство в большинстве случаев массовое. Если не говорить о таких уникумах, как синхрофазотрон или о других новейших научно-исследовательских и измерительных приборах, буквально все, что можно, переводится или переведено на производство поточными методами. Да и в самых этих уникумах всегда используется очень большое количество узлов, деталей и агрегатов, изготовляемых поточными методами. Если бы этого не было, то даже такая богатая страна, как СССР, не могла бы позволить себе такие дорогие сооружения, как тот же синхрофазотрон и тем более величайшие в мире гидроэлектростанции. Кроме того, что такие уникальные сооружения стоили бы непомерно дорого, их сооружение затянулось бы на очень долгое время.
Одним из самых наглядных примеров массового производства и поточного метода является производство автомобилей. Надо сказать, что именно автомобильное производство всегда было и осталось одним из самых передовых производств. Именно в автомобильной промышленности почти раньше всех вводились и вводятся самые последние технические и организационные новшества. Только благодаря этому такое сложное устройство, как автомобиль, может продаваться по сравнительно невысоким ценам. На автомобильном заводе все подчинено массовости, потоку. Здесь нам не встретятся привычные универсальные станки; они имеются только в подсобных цехах: в ремонтном, инструментальном. В производственных же цехах все делается с помощью высокоспециализированных станков, инструментов и приспособлений.
И все делается с учетом допусков. Именно благодаря допускам автомобиль можно не только приобрести сравнительно недорого, но и ремонтировать его просто. Любая покрышка, где бы ее ни купили, если она предназначена для автомобиля данной модели, легко и свободно встанет на место. Так же просто заменить не только покрышки, но и другие части автомобиля, велосипеда, мотоциклета, любого вида военного снаряжения, радиоприемника и телевизора и много-много другого. И все это потому, что массовое производство обязательно рассчитано на взаимозаменяемость узлов и деталей.
Конвейер сборки автомобилей.
Каждый автомобилист, мотоциклист или велосипедист в глубине души гордится своей машиной, находит в ней такие качества, которых якобы нет в других. Сознание этого доставляет ему удовольствие, тешит самолюбие. Но это не что иное, как самообольщение. Нет ничего более похожего в мире, чем два автомобиля одной и той же модели, чем две любые вещи, изготовленные на заводе или фабрике массовой продукции. Вот что записал в своей записной книжке писатель М. Пришвин:
«Было что-то в моем многолетнем увлечении автомобилем большее, чем заслуживает от человека вещь. Мне хотелось одно время найти в моей машине особенности, каких нет в других машинах, но когда я приехал на большой завод, где машины, подобные моей, беспрерывно сходили с конвейера, я понял, что „особенность“ в машине есть не личное качество, как у человека, а порок».
Но в то же время не следует забывать, что при массовом производстве можно в очень широких пределах и очень дешево разнообразить внешний вид однородной продукции.
Массовое производство позволило очень далеко пойти по пути специализации не только оборудования внутри одного завода, но специализировать целые заводы. Так, если на заводе выпускаются автомобили, то это вовсе не значит, что на этом заводе выпускается все, вплоть до последнего винтика. Очень многие части автомобилей делаются совсем другими предприятиями. Электрооборудование автомобилей делается на специализированных заводах автотракторного электрооборудования, аккумуляторы – на аккумуляторном заводе, ткани для обивки – текстильными фабриками, камеры и покрышки – шинными заводами и так далее. Очень многое на автомобильный завод приходит уже готовым, но еще более поступает в виде полуфабрикатов, специально заготовленных для автомобильного производства.
Точно так же и на заводах, выпускающих радиоаппаратуру. В настоящее время эти заводы гораздо более половины всех деталей и узлов, из которых собираются, например, телевизоры, получают от заводов-смежников, заводов-поставщиков в готовом виде. Их остается только поставить как надо и присоединить как следует.
Это очень важно. Если б каждый завод изготовлял для себя все сам, то многие виды продукции нельзя было бы перевести на массовое производство. Возьмите хотя бы те же сопротивления. Мы знаем, что в масштабе Советского Союза их требуется миллиарды. Такое количество – прекрасная основа для массового производства. Если же каждый радиозавод решил бы сам изготовлять для себя сопротивления, то он выпускал бы их от силы сотни тысяч. При таком количестве выпуск сопротивлений обошелся бы гораздо дороже.
Теперь вся наша промышленность работает не разрозненно, а каждая отрасль, каждое производство теснейшим образом связаны с другими отраслями, другими производствами. Такая тесная связь в промышленности называется кооперированием, то есть буквально – сотрудничеством, совместным действием, взаимодействием. Кооперирование в промышленности позволяет наиболее рационально распределить производство между заводами и целыми отраслями, перевести наибольшее число предприятий на массовое производство, специализировать их, а следовательно, добиться наилучшего качества при наибольшей экономии труда, затрат на производство и сырья.
Ярким примером кооперирования в промышленности является строительство электростанций, особенно крупных гидростанций. В их сооружении участвуют очень многие заводы и фабрики. Здесь и машиностроительные заводы, изготовляющие гидротурбины, затворы; землеройные, строительные и транспортные машины; здесь и заводы, строящие генераторы, трансформаторы, мощные выключатели; здесь и цементные заводы, производящие цемент, и металлургические заводы, выпускающие специальные сорта проката для строительства станций, здесь и заводы, выпускающие медь, и заводы, изготовляющие провода для линий электропередач, и тысячи, буквально тысячи других, самых разнообразных заводов.
Массовое производство стало зарождаться сравнительно давно, но его расцвет начался в начале нашего столетия, особенно после первой мировой войны. Сейчас, как я уже говорил, оно повсеместно распространено в промышленности, и его методы уже очень хорошо освоены.
За последние годы эти же методы прекрасно зарекомендовали себя в строительстве. Теперь все больше и больше зданий строится по методу массового производства, или, как еще говорят, индустриальными методами.
Мы с вами знаем, что кирпич является тем стандартным элементом, из которого можно выстроить здание любого стиля, любой формы. Но кирпич, как основной строительный материал, начинает устаревать: слишком много он требует труда при своем использовании и изготовлении.
Еще недавно дом создавался почти целиком на строительной площадке. Готовыми поступали на стройку только материалы для него – кирпич, кровельное железо и оборудование коммунальных узлов: ванные, унитазы, раковины, кухонные плиты, радиаторы парового отопления, электрическая арматура. Но сам дом был типичным представителем штучного производства. Все, начиная с фундамента, кончая изготовлением оконных переплетов, дверей, внутренней и внешней отделкой, производилось непосредственно на строительной площадке.
С таким положением можно было мириться, пока строительство велось в умеренных объемах. Но теперь, когда оно приняло массовый характер и по всей стране ежегодно возводятся многие тысячи зданий, строительство переводится на новейшие методы, при которых строительная площадка перестает быть фабрикой дома и становится лишь сборочным цехом.
И в этом решающую роль сыграла массовость. Именно поэтому мы можем перенести в строительство опыт массового производства, накопленный в промышленности. И прежде всего следует начинать со стандартизации, или, как говорят строители, типизации, строительных деталей и материалов.
Такая стандартизация позволяет значительно удешевить строительные детали и сэкономить труд строителей. Новые и новые строительные материалы и детали, которых с каждым годом появляется все больше, стандартизуются. Так, например, разработаны типовые стеновые панели, лестничные марши, междуэтажные перекрытия, оконные переплеты, двери и т. п.
Именно стандартизация в строительстве позволит нам в ближайшие годы построить много хороших, удобных и красивых домов.
Автоматика
ногое в технике открывалось и изобреталось по нескольку раз, многие научные открытия делались не единожды, но часто случалось, что о них на время забывали и вспоминали вновь лишь тогда, когда возникала острая необходимость. Часто бывало и так, что некоторые изобретения и открытия делались независимо и одновременно двумя или даже несколькими учеными и изобретателями.
Так, например, случилось с открытием Эдисона, известным под названием «эффект Эдисона». Это открытие было почти забыто, и только, когда понадобилось разработать надежный вид детектора для радиоприемников, о нем вспомнили.
Дважды открывали способы усиления и генерации электрических колебаний на полупроводниковых кристаллах. О возможности генерации и усиления электрических колебаний с их помощью стало известно еще в 1922 году, когда сотрудник Нижегородской лаборатории имени В. И. Ленина О. В. Лосев изобрел свой «кристадин» – регенеративный приемник. Но потом «забыли» о такой возможности, потому что как раз в те годы, когда О. В. Лосев применил свой кристадин, наука и техника освоили гораздо более надежные и лучшие приборы для усиления и генерирования электрических колебаний – электронные лампы. Метод усиления и генерации с помощью полупроводниковых кристаллов не мог в те годы успешно соперничать с электронно-ламповыми методами. Наука еще не могла теоретически объяснить явления, происходящие в полупроводнике, а техника, даже если бы наука и знала, не сумела бы изготавливать кристаллы необходимого качества. О полупроводниковых усилителях, или транзисторах, как их часто называют теперь, вновь заговорили совсем недавно – во второй половине сороковых годов. А их практическое применение в промышленности начинается только с 1953 года. Правда, надо сказать, что темпы научных исследований, разработки и внедрения транзисторов в жизнь необыкновенные – редкое научное открытие входило в жизнь так быстро, как и полупроводниковые приборы.
Что касается открытий, сделанных одновременно, то известно, например, что изобретатель телефона Г. Белл подал заявку на патент всего двумя часами раньше Э. Грея, так же изобретавшего телефон. Еще чаще бывает так, что стоит только кому-нибудь сделать хотя бы первое, даже не самое главное открытие или изобретение в новой области, как тотчас же вслед за ним, словно из рога изобилия, посыплются десятки и сотни открытий и изобретений из этой же области. Часто говорят: «Идеи носятся в воздухе». Это действительно так. В науке и технике изобретения и открытия назревают, подготавливаемые всем ходом развития жизни, техники и науки. И не мудрено, что одновременно несколько человек могут прийти к одинаковой мысли. Нужно лишь не отрываться от жизни, от людских чаяний и надежд.
Бывает, что некоторые вещи переживают как бы по нескольку жизней. Они появляются на свет, и люди ими широко пользуются. Потом по каким-то причинам они вытесняются другими, и, кажется, навсегда. Но вдруг вещи эти возрождаются в новом, более совершенном облике и вытесняют своих былых победителей. Так было с ракетой, которая «умирала» и возрождалась вновь несколько раз. Или вспомните о водяном колесе и первых гидротурбинах, которые, казалось, полностью были вытеснены паровой машиной и доживали свой век в обомшелых, покосившихся водяных мельницах на забытых речонках. А теперь гидротурбина – это очень важный вид двигателя в электроэнергетике. Точно так же обстоит дело и с передачей электроэнергии. Первые линии электропередач действовали на постоянном токе.
В свое время переменному току пришлось завоевывать дорогу с боем. Но вскоре он полностью вытеснил постоянный ток, и многие-многие годы ничто не могло поколебать его позиции. Теперь же ученые и инженеры снова заинтересовались постоянным током, и сейчас ведутся большие работы по использованию постоянного тока для передачи электроэнергии: передавать электроэнергию на постоянном токе при нынешнем уровне развития техники становится более выгодно, чем на переменном.
Сейчас особенно быстро и заметно идет процесс смены устаревшей техники новой, а новой – новейшей. Многое из того, что нам сегодня кажется привычным и обязательным, завтра уйдет, как устаревшее и отсталое. Но что именно и когда, об этом сказать не всегда возможно. Можно сказать лишь, что ни одно явление в технике или науке не уходит сразу и безвозвратно. Такое происходит только после упорного и иногда очень длительного соревнования с новым и лишь в том случае, если это новое действительно лучше, полезнее и удобнее.
Вот паровоз… Сколько книг и картин, сколько стихов, сколько музыки написано о нём! Во всех них чувствуется и слышится его мощное дыхание, ритм поршней его машины. Композиторы научились подражать его гудку и перестуку колес; малыши, играя в поезд, непременно гудят: «У-уу!», подражая гудку паровоза. Для нас с вами замирающий гудок паровоза слился с представлением о наших далях, о встречах и расставаниях. И вот, паровоз уходит…
Уходит, наверное, совсем, и гудок его, слышимый сегодня громко и рядом, замрет завтра на дальних путях истории человечества и прогресса. И нам с вами немножечко жаль… Так же, как, может быть, было жаль тем людям, которые не могли забыть дробный топот копыт, стук колес и веселый и плачущий звук рожка почтового дилижанса. И в том, что нам немножечко жаль расставаться с паровозом, нет ничего странного и смешного. Он прочно вошел в нашу жизнь, верно служил нам более ста лет и вовсе не виноват, что на смену ему пришли новые, более совершенные, более экономичные тепловозы и электровозы.
Недавно поэт Леонид Мартынов опубликовал такое стихотворение:
Да,
Многое исчезло без следов,
Всего не в силах даже перечесть я:
Освобождаем тело городов
От пыльной паутины проводов,
В которых только путались известья;
И свищут нам ракеты в небесах,
Что дед-пропеллер может и на отдых,
И, словно о фрегатах в парусах,
Мы думаем теперь о пароходах.
Пар! Отпыхтел свое он и уплыл,
И хорошо, и тосковать не станем
О том, что топок антрацитный пыл
Мы заменили внутренним сгораньем.
Уйдет и паровой локомотив
В мир памятников древности печальной,
И мы его, слегка позолотив,
На пьедестал у площади вокзальной
Поставим и решеткой оградим,
И быстро человечество забудет,
Каким на вкус был паровозный дым,
Им лишь романтик упиваться будет.
Но, смутно помня о его судьбе,
Ведь мы-то сами жить не перестанем,
Ведь мы-то не покажемся себе
Таким же точно вот воспоминаньем.
Ведь мы, природу недопокорив,
От дела не откажемся устало
И, волосы себе посеребрив,
Не ринемся, кряхтя, на пьедесталы,
Туда, откуда дворник помелом
Клочки афиш сгоняет со ступенек,
Ведь мы-то не окажемся в былом!
Что ты на это скажешь,
Современник?
Мне нравится это стихотворение. Потому, что поэт почувствовал и сказал в нем об очень важном – о непрерывном развитии, обновлении жизни. О том, что настоящие люди, кем бы они ни были, людьми техники или людьми искусства, никогда не могут успокоиться на достигнутом, никогда не перестанут искать новое и биться за него. И о паре и паровозе очень красиво, очень хорошо сказано.
Но только поэт чуть ошибся. Пар еще не «отпыхтел» свое. Хоть мы и живем после окончания века пара, пар работает как никогда раньше. Ведь именно пар вырабатывает около трех четвертей всей электроэнергии – основной энергии нашего времени. Но паровоз, действительно, «отпыхтел свое». Уйдет когда-нибудь и пар, но не так уж скоро. Скорее всего, только тогда, когда осуществят прямое преобразование атомной энергии в электрическую. Пока же на строящихся атомных электростанциях пар остается непременным работником. Совсем же от услуг пара люди, наверное, никогда не откажутся: слишком много полезных и важных вещей они научились делать с его помощью.
Поработает и дед-пропеллер. Реактивные самолеты, бесспорно, – новейшее достижение техники. Но ведь геликоптеры – их ровесники, а конвертопланы, самолеты, взлетающие подобно геликоптеру и продолжающие полет, как обычный винтомоторный самолет, только начинают создаваться. И в геликоптере и конвертоплане и обычном самолете, который еще долго будет служить человеку, – везде применяются пропеллеры. Пропеллеру так же, как и пару, рано еще на покой.
Автоматика развивалась не менее сложным и долгим путем, чем другие разделы науки и техники. Люди пробовали делать автоматы еще в далекой древности. Сперва пытались изобрести такие автоматы, которые как можно более точно воспроизводили бы человеческие движения. О подобных автоматах, называвшихся андроидами, писал еще в I веке нашей эры выдающийся греческий инженер и ученый Герои, живший в Александрии. Важнейшим завоеванием XVII века в области автоматики было создание часов с маятником. Что касается более поздних автоматических устройств, появившихся в эпоху промышленной революции, то о некоторых, об устройствах, примененных Уаттом и Ползуновым, мы говорили. В прошлом веке уже имелось довольно большое количество разнообразных автоматических устройств, к ним даже можно отнести некоторые виды заводных игрушек, музыкальные шкатулки и… шарманку. Однако, как я уже говорил, техника в основном обходилась без автоматических устройств. Люди в подавляющем большинстве случаев могли обходиться еще без них.
Что же все-таки обозначает слово «автомат»? Оно имеет греческое происхождение и обозначает буквально – самодвижущийся. В наше время автоматами называются различного рода устройства, позволяющие заменить физический и умственный труд человека при контроле и управлении различными процессами. Трудно даже назвать такую область человеческой деятельности, где бы не начинали в настоящее время применять автоматы. Правда, в большинстве случаев наряду с автоматикой еще используется и человек, но есть уже и такие области, где участие человека становится попросту невозможным.
Автоматы работают самым различным образом. Есть, например, множество чисто механических устройств автоматики. Хотя эра механики давно уже кончилась, механических автоматов от этого стало не меньше. Наоборот, их больше, чем когда-либо. Механическими автоматами являются многие станки – автоматы и машины, пневматические и гидравлические устройства автоматического управления и регулирования, автоматическое оружие различных видов. Но электромеханических устройств автоматики значительно больше. Почему это так, я расскажу несколько позже, а пока скажу только, что к ним относятся такие известные всем устройства, как автоматы по продаже билетов в метро, автоматические телефонные станции и многое другое. Автоматических устройств, которые вовсе не используют механики, также очень много. В основном к ним относятся устройства, которыми занимается новая отрасль техники, выделившаяся из электротехники и радиотехники совсем недавно. Это, как вы уже догадались, – электроника.