355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Штейнгауз » Завод без людей » Текст книги (страница 6)
Завод без людей
  • Текст добавлен: 26 мая 2017, 10:00

Текст книги "Завод без людей"


Автор книги: Александр Штейнгауз



сообщить о нарушении

Текущая страница: 6 (всего у книги 10 страниц)

Изобретение радио было предсказано наукой. Великий английский физик Фарадей в 1831 году открыл закон электромагнитной индукции. Он же ввел в науку и понятие о магнитном поле и магнитных силовых линиях. К концу жизни Фарадей пришел к заключению, что свет – это тоже электромагнитные колебания. Но он не решился опубликовать свои мысли, настолько они были в то время необычны.

Это сделал за него другой великий ученый, Д. Максвелл, который начиная с 1864 года работал над созданием математической теории электромагнитного поля. Эта теория предсказала существование электромагнитных волн. Но она совсем не говорила о том, как их можно получать и для чего эти волны можно использовать в жизни.

В 1886 году немецкий физик Г. Герц сумел опытным путем доказать существование электромагнитных волн.

7 мая (25 апреля ст. ст.) 1895 года на заседании Русского физико-химического общества при Санкт-Петербургском университете зачитывалось сообщение. Делал его профессор Александр Степанович Попов. И, несмотря на то что сообщение называлось очень скромно и буднично: «Об отношении металлических порошков к электрическим колебаниям», оно стало историческим. Потому что в этот день участникам заседания было рассказано о родоначальнике всех современных радиоустройств, о знаменитом «грозоотметчике». День 7 мая у нас в Советском Союзе – праздник радистов, День радио.

Изобретение самолета, это величайшее достижение механики, шло иным путем. Строители самолетов в большинстве своем не были учеными. Законченной теории летания, подобной теории электромагнитных волн, не было. Работа над созданием самолета и над созданием теории полета шла параллельно, и, пожалуй, практики сначала даже опережали теоретиков.

Самолеты строились во многих странах многими энтузиастами. Первый патент на самолет «воздухоплавательный снаряд» был выдан в России моряку, капитану первого ранга А. Можайскому в 1881 году.

Самолет Можайского.

За ним последовали и другие изобретатели.

В 1903 году совершили свой первый полет американские изобретатели братья Райт.

Если первые самолеты могли быть построены, когда теория летания еще только зарождалась, то быстрое, просто головокружительное развитие авиации в последующее время вряд ли было бы возможным, если бы теоретические исследования оставались на прежнем уровне.

Самолет братьев Райт.

Огромную роль в развитии теории воздухоплавания сыграли два выдающихся русских ученых – Н. Е. Жуковский и А. С. Чаплыгин. В 1904 году в селе Кучино, под Москвой, был создан первый в мире аэродинамический институт, где занимались вопросами воздухоплавания. В 1911 году Жуковский, который был руководителем этого института, опубликовал свои знаменитые «Теоретические основы воздухоплавания». По этой книге училось не одно поколение авиаторов. А. Чаплыгин создал новую отрасль науки – газовую динамику, важнейшую науку для дальнейшего развития самолетостроения.

Вот, пожалуй, и все, что мне сейчас хотелось рассказать об электричестве. Я рассказал вам главным образом о его вчерашнем дне, о том, как оно появилось на свет. И хотя это было еще давно, но до самых последних лет, до двадцатых годов нашего века, оно только училось ходить.

Для того чтобы электричество стало полновластным хозяином, нужно было ему прочно войти в промышленность и изменить ее на новый лад. Изменения же в промышленности, в свою очередь, открыли широкую дорогу современной массовой продукции и технике, которые немыслимы без электричества.

Но произошло это, как я уже говорил, совсем недавно.

Вот теперь с наступлением эры электричества начала по-настоящему развиваться и автоматика.

Ведь вспомните: любые автоматы, которые придут вам на память, о которых вы что-нибудь слышали, связаны для вас с электрическим током.

Но мы не сразу начнем рассказывать об автоматических устройствах, о том, как создать «завод без людей».

Дело не только в развитии техники. Для того чтобы автоматизировать производство, надо было еще кое-что. Смешно было ставить дорогие сложные автоматические устройства в средневековую мануфактуру, вырабатывавшую немного разнообразных вещей. Автоматика годится только на современном специализированном производстве, только тогда она будет выгодна.

Вот почему мы поговорим немного об организации современного производства, о таких, важнейших для современной техники вещах, как стандарт и массовость.

Стандарт и массовость

ризнаться, люблю я хорошую обувь. Приятно, когда ботинки не жмут, не спадают с ног и не болтаются. Приятно, когда у них красивая спокойная форма и они легкие и удобные Однажды после работы я зашел купить себе полуботинки. В магазине оказалось неожиданно пусто, и я с чувством хорошо выполняемой работы начал выбирать себе обувь. Выбрал я ее довольно быстро, но мне хотелось воспользоваться всеми благами цивилизации, и из любопытства я решил всунуть ногу в специальный рентгеновский аппарат для примерки обуви. В общем это уже было баловством, потому что я и так чувствовал, что обувь мне вполне по ноге.

Но тут в магазин вошла молоденькая, очень возбужденная девушка. Она подошла к прилавку и попросила показать ей босоножки. Она долго рассматривала босоножки разных фасонов и расцветок, откладывала одни, брала другие, снова возвращалась к старым. И лицо ее становилось все более грустным и расстроенным. Но вдруг лицо ее оживилось, и она, показав на новую пару, попросила достать ее с витрины. «Ах, какие изящные, какие миленькие!»– восхитилась она и побежала в кассу. Потом она вернулась, получила покупку и, поглядев на отвергнутые босоножки, презрительно сказала: «Стандарт!»

Вскоре и я, получив пару полуботинок, вышел из магазина. Я все вспоминал слова девушки. Вот взяла она и обругала плохую обувь таким хорошим, умным словом – «стандарт». И многие у нас почему-то этим словом характеризуют продукцию легкой промышленности, если она им не нравится.

Но ведь это неправильно! Плохое качество обычно получается именно тогда, когда работники завода или фабрики не стараются улучшать свою работу, а пытаются выполнить программу за счет неточного соблюдения технических требований, установленных на продукцию, то есть обойти то, что в массовом производстве как раз и называется стандартом. Бывает, конечно, что и стандарт на продукцию плохой – устаревший или плохо и непродуманно составлен. Но во всех случаях выходит, что не стандарт виноват, а те, кто плохо работает.

Если бы промышленность наша работала без стандартов, а каждый завод, каждая фабрика «клепали» бы свою продукцию, кто во что горазд, было бы очень плохо. Тогда те самые не понравившиеся девушке босоножки показались бы ей верхом изящества… если бы она сумела достать их в магазине. Потому что именно стандарту обязаны мы тем, что можем выпускать большое количество самых разнообразных товаров и снижать их стоимость.

Но даже, предположим, удалось бы девушке найти нестандартные туфли. Как бы она их выбирала? Как бы она объяснила продавщице, какие ей нужны? Ведь она не могла бы и размера сказать ей, какой ей нужен. Стандартная обувь имеет размеры, и я, даже не зная этой девушки, могу довольно точно сказать, что ей понадобится какой-нибудь из трех размеров: 35, 36 или 37. А нестандартные туфли неизвестно даже, какие их и сделали. Вот и будет девушка выбирать из тридцати пар одну, авось повезет. Да и то еще правая туфля будет свободная, а левая, может, и жать станет. Никакой гарантии нет, и жаловаться не на кого, даже на пресловутый стандарт.

Передо мной лежит коробка спичек. На этикетке картинка: берег моря, пальмы, вдали пароход. Написано, что это – Батуми. А кроме того, написано, что спички изготовлены на фабрике «Гигант» и что их 50 штук в коробке. А еще написано: «ГОСТ 1820-45».

Я беру флакон с чернилами, и на его этикетке среди прочих надписей тоже есть – «ГОСТ 4445-54». На запакованной пачке бумаги тоже – «ГОСТ 6656-53». Есть ГОСТ на конфетных этикетках, на банках консервов. В соответствии с ГОСТом выпекаются батоны, делается мыло, ткани, отпускается потребителю электроэнергия, бензин, нитки, листы трансформаторной стали, красители, лекарства и очень многое из того, что нас окружает в жизни.

Даже карандаши, чернила, спички и батарейка изготовляются в соответствии с ГОСТом.

Что же это такое ГОСТ? Это – начальные буквы трех слов: Государственный общесоюзный стандарт. Опять слово – стандарт. Что же оно означает? Слово это английского происхождения и в точном переводе обозначает такие понятия, как: норма, образец, мерило, основа. Значит, мы могли бы сказать – Государственная общесоюзная основа. Основа – чего? Основа всего производства. И если стандарт имеет такие прилагательные, как «государственный» и «общесоюзный», то понятно, что ГОСТ – основа производства всей советской промышленности. А это означает, что никто, ни одно предприятие в СССР не имеет права выпускать изделия, на которые установлен ГОСТ, будь то рельсы или конфеты, автомобильные покрышки или батоны хлеба, отличающиеся от того, что предусмотрено в основе, образце, мериле – ГОСТе.

Но ведь не всегда был стандарт? И несмотря на это как-то работали и выпускали товары и туфли не жали. Как же?

Верно, не всегда. В Советском Союзе общесоюзные стандарты введены с 1925 года. И даже сейчас на некоторые виды продукции не устанавливают стандартов. Они нужны только тогда, когда выпускают большое количество однородной продукции, десятки, сотни тысяч, а то и сотни миллионов.

Все вы видели, а у многих из вас есть и дома радиоприемники, телевизоры, усилители для проигрывания граммофонных пластинок. Приходилось вам заглядывать и внутрь этих устройств, а те, кто занимается радиолюбительством, и сами их делали. В каждом таком радиоустройстве имеется множество красных или зеленых цилиндриков с двумя узенькими металлическими выводами по концам. Это – сопротивления. В каждом приемнике, в каждом телевизоре или усилителе таких сопротивлений бывает по нескольку десятков штук. Например, сорок сопротивлений. А в более сложных устройствах их может насчитываться сотни и даже тысячи штук.

Сопротивления типа ВС.

В год наша промышленность выпускает очень большое количество радиоприемников, телевизоров и одновременно с этим массу различных радио– и электронных приборов – от слуховых протезов до радиолокаторов и математических машин. В них тоже используются такие же самые сопротивления. Значит, за один год требуется выпустить сотни миллионов и даже миллиарды штук сопротивлений.

Как же быть в таком случае? Ведь радиоприемник отличается от радиолокатора, телевизор – от слухового протеза, математическая машина – от радиостанции. Казалось бы, для каждого такого устройства нужны свои типы сопротивлений. Но тут вы со мной сразу не согласитесь.

Вовсе и не нужно. Требуется лишь, чтобы наличный ассортимент сопротивлений был достаточен и чтобы инженеры, разрабатывающие разнообразную радиоаппаратуру, использовали только те сопротивления, которые имеются в этом ассортименте. Правильно. Но это-то и есть стандартизация. Просто мы так привыкли к ней, что даже не замечаем ее, и решение делать для каждого радиоустройства свои сопротивления кажется нам диким.

Действительно, никто не делает сопротивления специально для данного устройства. Это было бы так же неразумно, как делать для каждого строящегося здания свои кирпичи.

Сопротивления типа МЛТ.

Стандартизация установила шкалу сопротивлений. Например, сопротивления от 10 ом до 100 ом выпускаются только таких номиналов: 10, 11, 12, 13, 15, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 43, 47, 51, 56, 62, 68, 75, 82, 91, 100 ом. Если требуются большие значения сопротивлений, то их номиналы могут быть в 10, 100, 1000, 10 000 и 100 000 раз больше. Значит, всего имеется 150 номинальных значений сопротивления. И оказывается, что этих значений вполне достаточно, чтобы собрать любое радио– или электронное устройство. Но это еще не все.

Если, например, на схеме устройства обозначено, что данное сопротивление имеет номинал 4700 ом, значит ли это, что сопротивление, которое мы получим с завода-изготовителя с таким же точно номиналом, будет действительно иметь не 4701 и не 4699 ом, а точно 4700 ом. Нет, вовсе не значит! И было бы безумием требовать такого точного соответствия. Стоимость такого сопротивления, если его делать таким точным, оказалась бы очень большой, зачастую дороже всего радиотехнического устройства. Да и что может случиться с тем же приемником или телевизором, если вместо 4700 ом в его схему впаять 4750 или 4650 ом? Если телевизор правильно разработан и сконструирован, ровным счетом ничего не случится. Но, может быть, тогда можно вообще взять и поставить сопротивление не 4700 ом, а 3900 или 5600 ом? Нет, нельзя. Такие большие отклонения от номинала могут вызвать всякого рода неприятности и уж во всяком случае потребуют дополнительной регулировки прибора.

Когда такой прибор один, его не так уж сложно подрегулировать. Но представьте себе, что такую замену сделали при сборке телевизора на конвейере. С конвейера, скажем, через каждые две минуты сходит готовый телевизор. Наладка такого телевизора занимает, например, 20 минут. И вдруг на складе не оказалось сопротивлений с номиналом 4700 ом. Что делать? Не останавливать же весь конвейер?

Технолог или начальник цеха, на свой страх и риск, нарушая различные правила и постановления, приказывает заменить это злополучное сопротивление самым близким. И как на грех, самым близким оказывается сопротивление, уже довольно значительно отличающееся, – 5600 ом. Все-таки решили ставить. Конвейер опять тронулся, монтажницы работают ритмично и спокойно и даже поют хором.

Но что это происходит? Почему, покрывая пение и ровный шум вентилятора, из конторки несется голос начальника цеха, который пытается доказать кому-то по телефону, что его без ножа зарезали? Почему засуетился контрольный мастер, почему цеховой кладовщик бегает по всему заводу? Почему возле наладчиков уже начинает громоздиться целая гора неотрегулированных телевизоров?

Да потому, что теперь вместо 20 минут на регулировку телевизора потребовалось на 120 секунд больше. Всего 120 секунд. Раньше с наладкой всех телевизоров могли справляться десять человек. Но теперь они уже не поспевают. Если обычно каждый из них за смену налаживал 24 телевизора, то теперь, при такой же затрате труда, только 21. И значит, все десять наладчиков к концу смены оставят неналаженными 30 телевизоров! Вот как плохо, когда нет стандартных деталей! Производительность труда падает, и качество тоже.

Значит, нельзя слишком резко отклоняться от указанных при разработке номиналов, а с другой стороны, не нужно требовать и слишком большой точности. Поэтому при конструировании всегда берутся запасы. Редко-редко 1–2 %, иногда 5 %, а чаще 10 % или даже 20 %. Исходя из этих запасов, устанавливаются и допускаемые отклонения от номинальной величины сопротивления, или, как их называют, допуски. Для непроволочных сопротивлений их всего три: ± 5 %; ±10 % и ±20 %.

Сопротивления отличаются друг от друга не только номиналом, но и габаритами. Так, например, размер 100-омного сопротивления и 100 000-омного может быть одинаковым. А бывает, что сопротивления одинакового номинала имеют разные размеры. Дело в том, что сопротивления, когда через них протекает ток, нагреваются. И если ток будет слишком велик, они могут перегореть. Для того чтобы этого не случалось, сопротивления делают разных размеров. Чем больше размер сопротивления, тем большее количество тепла оно может рассеять в окружающее пространство, то есть может рассеять большую мощность. Поэтому сопротивления выпускаются на разные мощности, разных размеров. Чаще всего используются сопротивления на мощности рассеяния 0,25; 0,5; 1 и 2 ватта.

Теперь давайте подсчитаем, сколько же всего различных видов сопротивлений выпускается. Имеется 150 номинальных значений сопротивления. Кроме того, они выпускаются с тремя допусками по точности и на четыре различные мощности рассеяния. Значит, всего: 150 X 3 X 4 = 1800 видов, или типономиналов. Это вместо миллиарда! Теперь мы можем сказать, что в год выпускается не менее 500 тысяч штук сопротивлений одного типономинала. 500 тысяч штук одинаковых сопротивлений!

Вот это дело! Тут есть где развернуться. Можно так организовать и наладить производство, что каждое сопротивление будет очень хорошего качества и в то же время очень дешевым. Так это на самом деле и есть. Сопротивления теперь великолепные и стоят дешево.

Вот вам и ответ на то, почему раньше не было стандартов. Сидел себе сапожник, держал в губах деревянные гвоздики, вынимал по одному и забивал молоточком в подошву. Делал он таким путем, может, два сапога за день. И они не могли стоить дешево. Ведь сапожнику за них нужно было столько денег получить, чтобы худо-бедно себя и семью прокормить, да еще на новые сапоги товару приобрести. Шили у таких сапожников обувь на заказ только люди с деньгами, а люди победней в лаптях ходили да босиком, а свои сапоги в сундуке держали и только по большим праздникам их одевали. Зато с чистой совестью могли говорить: «Разве теперь обувь? Разве теперь товар? Вот мне сапожник сапоги сшил, я их двадцать лет носил, а они всё как новые. Дорого, да мило, не то, что фабричное».

Так работали не только сапожники. Все ремесленники не знали, что такое стандарт, и поэтому каждое новое их изделие всегда чем-нибудь да отличалось от предыдущего. Но как только возникло мануфактурное, а затем и заводское производство, как только возникло разделение труда, стала зарождаться и стандартизация. Сперва ею пользовались бессознательно. Потом поняли всю ее выгоду, особенно при большом количестве выпускаемых изделий, и стали стандартизацию вводить намеренно. Только при капитализме, особенно раннем, стандартизация не выходила за пределы владений каждого хозяина.

Но потом с ростом промышленности капиталистам пришлось все-таки договариваться между собой, чтобы удобнее было сбывать продукцию. Даже между отдельными странами заключались соглашения. Вот, например, патрон для электрической лампы: он одинаков во всех странах. Имеются международные стандарты и на такие продукты, как хлопок, древесина, зерно. Однако при капитализме, даже монополистическом, не может быть достигнут очень высокий уровень стандартизации, потому что это затрудняет сбыт продукции. Наоборот, желательно сбывать такую продукцию, которую никакая другая фирма заменить не может. Иногда при этом дело доходит до курьезов. Американская радиокорпорация выпускает долгоиграющие пластинки. Для того чтобы обеспечить сбыт, она сделала эти пластинки с очень большим, раз в пять больше нормального центральным отверстием, а рабочие обороты тоже выбраны необычные – 45 оборотов в минуту. Эта же фирма продает и проигрыватели. Кто имеет такой проигрыватель, должен покупать пластинки только этой корпорации. Часто такие нелепые вещи делаются только для того, чтобы обойти патентное законодательство. Например, выпускает одна фирма какой-нибудь ходкий товар и имеет на него патент. Если другие фирмы хотят выпускать тот же товар, они должны платить фирме, имеющей патент, деньги. Но это невыгодно. Тогда вносят в конструкцию или внешний вид товара какие-нибудь несущественные, но заметные изменения и пытаются доказать, что это уже совсем другое изобретение. Если такой фокус удается, появляется новая разновидность того же товара. А смысл в этом только тот, что не хочется капиталисту деньги лишние из своего кармана выкладывать. Часто такие вещи приводят к тому, что товар становится только хуже, но это ничего, лишь бы была прибыль для заводчика.

Совсем по-другому обстоит дело с возможностями стандартизации у нас. Я уже говорил, в каких самых разнообразных областях производства введены стандарты. На 1 января 1952 года в СССР было 8600 действующих ГОСТов. С тех пор прошло уже более пяти лет. И эти годы были годами больших перемен в нашей промышленности. Надо думать, что сейчас количество ГОСТов значительно возросло. Роль стандартов в социалистическом народном хозяйстве очень велика. По существу, только в плановом едином социалистическом хозяйстве могут быть полностью использованы все преимущества и возможности, даваемые стандартизацией.

Судите сами, ведь у нас нет патентных ограничений, нет и конкурентной борьбы между отдельными заводами и, что самое главное, у нас один хозяин – народ и его государство. И именно у нас стандартизация приносит наибольшую пользу в деле экономии труда, повышения его производительности, снижения затрат на производство продукции и, вследствие всего этого, в деле снижения себестоимости продукции.

Все вы знаете о трансформаторах. О громадных, величиной с небольшой дом, силовых трансформаторах для мощных электрических подстанций и о маленьких трансформаторах, применяемых в радиопромышленности, в телефонии, в автоматике. Каждый трансформатор состоит из сердечника и катушки, намотанной медной проволокой. В наше время большинство трансформаторных сердечников изготовляется из пластин. Эти пластины штампуются из разных сортов листовой электротехнической стали; они часто похожи на букву Ш.

Предположим, нам понадобилось изготовить выходные трансформаторы для усилителя звуковых частот.

Методы расчета таких трансформаторов хорошо известны и не представляют больших трудностей. Рассчитав трансформатор, мы определим, сколько витков требуется намотать в первичной обмотке, сколько во вторичной; узнаем диаметры провода для первичной и вторичной обмоток; узнаем мы и конструктивные данные сердечника – его сечение, размеры каждого участка пластины и ее общие размеры.

Как бы нам пришлось действовать дальше, если бы на трансформаторные пластины не существовало ГОСТа?

Прежде всего, нам пришлось бы приобрести листы трансформаторной стали. Они имеют определенные размеры: примерно 700–800 миллиметров в ширину и 1200–1500 миллиметров в длину. Далее, из этих листов нужно было бы нарезать полосы, ширина которых соответствует, с небольшим запасом, ширине трансформаторной пластины. Если у нас имеется готовый штамп, то дело просто. Устанавливаем штамп в прессе и начинаем штамповать пластины.

На рисунке можно видеть нарезанные полосы, отштампованные пластины и отходы листовой стали после штамповки. Вы видите, что на заготовленных полосах, особенно на концах, осталось еще изрядно материала. Но в сравнении с основным отходом, который получается при просечке окон в пластине, это – капля. И все-таки так нередко делается еще. Многие заводы продолжают штамповать трансформаторные пластины у себя в цехе. Если приходится много штамповать, то потери все же оказываются терпимыми. Правда, я уверен, что скоро откажутся от этого.

Стадии изготовления трансформаторных пластин.

Но совсем плохо будет, если для новых пластин придется изготавливать штамп. Его изготовление, особенно на тех предприятиях, где этим специально не занимаются, дело непростое. Уходит очень много труда рабочих высокой квалификации, долгое время заняты станки, тратится качественная сталь. Бывает и так: изготовят штамп, а начнут его калить, матрицу – основную часть штампа – и «поведет», то есть изогнется она. Может она при закалке и лопнуть. Тогда труд пропал, и начинай все сначала.

Затраты труда на изготовление штампа становятся тем более ощутимыми, чем меньше придется штамповать пластин. Изготовление штампа обходится дорого, больше тысячи рублей, если его делают в полукустарных условиях. Тысяча рублей – это 100 000 копеек. Надо стоимость штампа разложить на количество пластин. Бывает, что их нужно всего тысяч десять. Вот и получается, что одна пластина обойдется в 10 копеек! Обычно пластин в выходном трансформаторе бывает от 50 до 100 штук. Значит, только один сердечник будет стоить 5—10 рублей, не считая оплаты за штамповку и не считая стоимости материала и его перевозки. А ведь основная стоимость обычного трансформатора не сердечником определяется. Если таким же кустарным способом мотать и катушку для трансформатора, то получится он очень дорогим: рублей 40–50.

Все будет совсем по-другому, если трансформаторные пластины изготовлять на специализированном заводе в соответствии с ГОСТом. Здесь буквально на всем можно сэкономить. Штамп будет дешевле в изготовлении, потому что можно создать цех специально для изготовления и ремонта штампов. Стоимость штампа будет раскладываться не на жалкие десять тысяч пластин, а на сотни тысяч. Гораздо лучше будет дело обстоять с отходами. Из отходов от больших пластин можно наштамповать маленькие пластины или пустить эти отходы для другого назначения, других типов пластин. С завода выходит готовая продукция, ее вес почти в два раза меньший, чем вес исходного материала: опять же экономия – меньше расходы на перевозку. В общем, в результате того что на специализированном предприятии трансформаторные пластины становятся массовой продукцией, удается осуществить огромную экономию труда, экономию материалов. Можно в этом случае создавать даже очень дорогие специализированные станки.

И хоть они будут очень дорогими, эти станки, все равно стоимость одной пластины можно будет свести к малым долям копейки. Стоимость машины разложится на очень большое число пластин, а, кроме того, она сама будет приносить экономию; она повысит производительность труда, снизит непроизводительные затраты, уменьшит отходы. Если же вести речь о потребностях всей страны, такая экономия даст огромный выигрыш. Снизив себестоимость пластины на 0,5 копейки, мы на миллионе пластин получим экономию 5000 рублей. А ведь специализированный завод штампует их десятками миллионов!

Не стоит ли сделать еще шаг и стандартизовать не только пластины, но и сами выходные трансформаторы и тоже делать их на специализированном заводе? Что же, если таких трансформаторов требуется много, то такой шаг принесет большую пользу. Так и делается. Теперь во всех телевизорах, независимо от типа и названия, стоят одинаковые трансформаторы – так называемые унифицированные трансформаторы. И трансформаторы стали от этого только лучше, хотя и не подорожали, а, наоборот, подешевели.

Так всегда бывает. Сперва стандартизуют только самое необходимое, самое общее. А потом, по мере развития производства, стандартизация распространяется даже на очень сложные, очень тонкие детали и устройства, лишь бы их делали в больших количествах.

Вот что нам дает стандартизация. Но она помогает не только сократить затраты материалов, увеличить производительность труда и снизить стоимость продукции. В любом ГОСТе всегда предусмотрены жесткие требования к качеству продукции, к постоянству и неизменности ее, к внешнему виду. ГОСТ говорит и о том, как производить контроль, испытания и приемку готовой продукции. Если учесть, что ОТК – отдел технического контроля – не подчиняется непосредственно директору предприятия, а ГОСТ имеет силу закона, можно понять, что с помощью ГОСТа на любом заводе, на любой фабрике можно навести хороший порядок, поднять культуру производства.

Мы уже говорили о часах, даже чуть-чуть познакомились с их устройством. Но говорили мы о больших, маятниковых часах, которые на руку не наденешь. Самыми же распространенными часами являются часы небольших размеров с пружинным заводом вместо гирь и с балансиром вместо качающегося маятника. Такие часы удобно носить на руке или в кармане. Их во всем мире сотни миллионов, и стоимость у них сравнительно небольшая. Если вдуматься, это же поразительный факт: такое сложное устройство, необыкновенно точное, и в то же время их может свободно купить большинство людей! Часы, которые уходят на одну минуту за сутки, считаются не очень точными. А между тем это соответствует точности в 1/1440, то есть меньше 0,1 %.

Вольтметр или амперметр такой точности обойдется в несколько тысяч рублей. При этом, чтобы он работал со столь высокой точностью, нужно поместить его в таком месте, где температура не выше и не ниже определенной, установить на ровном, совершенно неподвижном основании, выровнять по ватерпасу и особым образом расположить относительно Северного и Южного полюсов Земли.

Часы ничего этого не требуют и все-таки обеспечивают великолепную точность и стоят дешево. Этому есть две причины. Об одной, о стабилизирующем действии маятника, который в обычных часах заменен также очень точным пружинным маятником – балансиром, я уже говорил. Вторая причина заключается в том, что даже очень точный и сложный прибор можно сделать дешевым, если его производить в массовых количествах, методами массового производства. Точных вольтметров или амперметров, может быть, нужно несколько тысяч, да и то они производятся в разных странах, разными заводами. Поэтому перевести их на массовое производство нельзя. Вот они и стоят дорого.

Получается парадокс: очень сложные, тонкие приборы или машины, изготовленные массовым путем, могут стоить значительно дешевле, чем более простые приборы и машины, изготовленные малыми сериями. На примере изготовления трансформатора мы выяснили некоторые причины, почему так получается. Но есть и другие причины, о которых я хочу еще рассказать.

Прежде всего, какое оборудование имеется на заводе, где выпуск продукции осуществляется мелкими сериями? Какие, например, в этом случае применяются металлообрабатывающие станки?

Если на одном и том же станке приходится выполнять различные операции – сегодня, например, обтачивать какие-либо оси, на другой день нарезать болты, а на третий торцевать поверхности, – то, естественно, станок должен «уметь» выполнять все эти работы. То есть он должен быть в известной степени универсальным. Так и бывает на самом деле. Промышленностью выпускается для этих целей большое количество универсальных токарно-винторезных станков.

Современный универсальный токарный станок.

Такие станки выпускаются различных типоразмеров к позволяют производить множество самых разнообразных токарных операций. Тут и грубая обдирка болванок и тонкая, почти зеркальная, обточка, когда диаметр детали должен быть выдержан с очень высокой точностью. Тут и проточка внутренних отверстий и нарезка наружных и внутренних резьб разного профиля. На токарном станке можно обрабатывать не только цилиндрические поверхности; можно вытачивать конусы, шары и другие виды поверхностей. Важно только, чтобы они были поверхностями вращения. Но можно обрабатывать и плоскости – «торцевать». Само название вида обработки говорит, что изделие обрабатывается с торца. В этом случае токарный станок дает возможность получить очень хорошие, чистые поверхности.

Обслуживать такой станок не просто. Хороший токарь-универсал должен многое знать и многое уметь. Уметь использовать все свойства станка и его возможности; уметь пользоваться разнообразным мерительным инструментом. Знать свойства обрабатываемых материалов, режимы обработки, свойства и возможности инструмента. Стать токарем-универсалом высокой квалификации нелегко. Для того чтобы получить высший разряд, нужно много учиться и теоретически и практически. Обычно на это требуется несколько лет.


    Ваша оценка произведения:

Популярные книги за неделю