355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Штейнгауз » Завод без людей » Текст книги (страница 5)
Завод без людей
  • Текст добавлен: 26 мая 2017, 10:00

Текст книги "Завод без людей"


Автор книги: Александр Штейнгауз



сообщить о нарушении

Текущая страница: 5 (всего у книги 10 страниц)

Мы с вами уже знаем, что развитие техники направлено на повышение продуктивности человеческого труда, на удовлетворение постоянно расширяющихся и растущих потребностей человеческого общества. Техника всегда развивается одновременно по нескольким путям, и среди них очень важное значение имеют следующие:

Создание новых, более совершенных, более мощных к стойких двигателей, способных выполнять разнообразную работу и заменять мускульную силу человека в различных областях его труда.

Создание устройств, заменяющих или обостряющих человеческие чувства, что позволяет лучше и точнее проводить производственные процессы.

И очень близкий, часто не отличимый путь – создание устройств, позволяющих измерять различные величины и свойства предметов и процессов.

Есть еще один путь. Это путь создания таких устройств, которые могли бы управлять некоторым процессом без вмешательства человека. Такие устройства должны заменить собой не силу человека, не его чувства, а его мозг.

Сочетание всех названных путей и приводит в конце концов к созданию нового, особого вида машин, которые могут выполнять всю работу или какую-то ее часть без участия человека. Такие машины, как мы знаем с вами, называются машинами-автоматами.

Первыми автоматами были механические автоматы: часы, золотник, центробежный регулятор. Регулятор уровня воды в резервуаре, изобретенный И. И. Ползуновым, и предохранительный клапан парового котла – тоже устройства автоматики. Сюда же может быть отнесено и первое автоматическое оружие: пулемет, созданный в 1883 году, самодвижущаяся торпеда.

Но все-таки в те годы, когда в мире господствовала механика, автоматов было очень немного. И не потому, что механика не могла создавать их. Совсем нет. Все дело заключалось в том, что вплоть до начала нашего столетия только в очень редких случаях техника не могла обойтись без автоматических устройств.

Но заслуги механики прошлого века и без того огромны.

Машиностроение, промышленность, которая дает жизнь всем остальным отраслям техники, единственная в своем роде промышленность, потому что только она может создавать себя самое – вот главнейшая задача, решавшаяся и решаемая в настоящее время механикой.

Эра электричества

ам я – инженер-радиотехник. Занимаюсь я разработкой разной аппаратуры. И, конечно, радио и электротехника мне ближе всего, и больше всего я люблю радиотехнику. Я вам рассказывал, что я, как и все мои сверстники, как и вы, мечтал о многих и самых разнообразных жизненных занятиях, от путешественника и археолога до радиотехника. Вы по себе и своим старшим товарищам знаете, что выбор специальности чаще всего все-таки оказывается делом случая. Конечно, одни никогда и ни при каких условиях не пойдут в технику или математику, других калачом не заманишь в медицину или педагогику, третьих не тянет в искусство. Но всегда имеется очень широкая область, будь то медицина, биология, механика или та же электротехника, внутри которой тоже имеется огромный выбор.

Но все-таки, когда я учился в школе и даже в институте, об электротехнике и о радиотехнике, об их месте в промышленности я имел очень неполное представление, а вернее, устаревшее. Я думал, электротехника и радиотехника, несмотря на то что они основаны на общих физических законах, – отдельные и мало соприкасающиеся области техники. Что же касается механики, то она казалась мне и вовсе не связанной с электричеством и тем более с радиотехникой.

Ведь, говоря об электротехнике, мы обычно представляем себе мощные генераторы, электродвигатели, прожектора, осветительные лампы, электропечи, мощные трансформаторы и различные бытовые приборы.

Говоря о радиотехнике и электронике, мы представляем себе радиоприемники, телевизоры, радиостанции, радиолокаторы, электронные лампы и телевизионные кинескопы.

Так думал и я даже в первые поды войны, тем более, что о такой важной области радио, как радиолокация, в те годы знали только очень немногие люди.

Что касается механики, то я знал, что она, конечно, широко использовалась и в электротехнике и даже в радиотехнике. Но только как подсобный работник. Радиоинженеру нужно создать устройство для излучения радиоволн. Пожалуйста! Это очень просто! Радиоинженер смотрит в свои радиокниги, берет логарифмическую линейку, исписывает формулами и цифрами кипу листов бумаги и, наконец, изрядно помучившись, выдает задание механику. А задание, прямо скажем, не простое. Для того чтобы длинноволновую радиостанцию было слышно во всей Европе, нужно, чтобы высота антенны была 300–500 метров! Инженер-механик хватается за голову, а может быть, и за сердце, но ничего не поделаешь: раз радиоинженер говорит, значит, так оно и есть. Здесь радиоинженер хозяин, а механик только помощник.

Такую башню для установки передающих телевизионных антенн скоро воздвигнут в Москве. Ее высота будет достигать 500 метров.

То же самое и в электротехнике. После изобретения генераторов переменного тока и после разработки методов расчета таких генераторов инженер-электрик вполне мог бы провести электрический расчет генератора на самые колоссальные мощности; лишь бы механики смогли создать надежную, экономичную конструкцию.

Отношения же между электротехникой и радиотехникой казались мне такими же простыми. Электротехника дает ток, и работают радиостанции, радиоприемники, работают охладительные насосы и вентиляторы, на антеннах горят красные предупредительные огни. Все в порядке.

Такое представление отчасти было правильным, но только устарелым. Оно как раз начинало стареть, когда я кончал школу и начинал учиться в институте, то есть в конце тридцатых, начале сороковых годов. В наши дни во многих случаях положение резко изменилось. Теперь частенько инженер-механик предъявляет свои требования к электротехнике и радиотехнике. Да такие, что у электриков и радистов перехватывает дыхание.

Вы, может, думаете, что из-за этого вражда какая-нибудь возникает между ними? Нет, конечно! Наоборот, если раньше механики по основной своей линии мало нуждались в электротехниках и радиотехниках, если электротехнике и особенно радиотехнике механика нужна была только как подсобная техника, то теперь все эти три важнейшие отрасли техники завязались в такой плотный узел, что ни один важный вопрос механики не решается без помощи электричества и радио; ни один важный вопрос в электротехнике не может быть решен без помощи механика и радиста, а радист для создания новых радиоустройств не обойдется без механики и электротехники.

Но если это так, если еще вспомнить успехи других наук, почему же можно наше время назвать эрой электричества? Вопрос этот очень правильный, но коротко на него не ответишь.

Давайте-ка сначала вспомним, как шло развитие науки и техники в более раннюю эпоху. Сперва техника овладела несколькими источниками механической энергии: энергией ветра, энергией воды. Были созданы и соответствующие двигатели: ветряной и водяной. Уровень и возможности промышленности соответствовали возможности этих двигателей. Потом техника научилась превращать тепловую энергию в механическую; появилась паровая машина. К какому огромному толчку в развитии промышленности привело освоение энергии огня и изобретение паровой машины, вы уже знаете.

Так же дело складывалось и в электричестве. Сперва электричеством интересовались только немногие. Но вот в 1799 году А. Вольта создал первый источник электрической энергии – вольтов столб. В течение долгого времени он был единственным источником электрического тока. Именно «посредством огромной наипаче баттереи, состоявшей иногда из 4200 медных и цинковых кружков», удалось В. В. Петрову открыть то явление, которое мы называем «электрической дугой». Именно с помощью вольтова столба было открыто Г. Эрстедом взаимодействие электрического тока и магнита, а М. Фарадей открыл законы электролиза.

Постепенно химические источники электричества, то есть такие, в которых осуществлялось преобразование химической энергии в электрическую, были значительно усовершенствованы. И хотя они продолжали оставаться очень дорогими, начали делаться попытки применить электрическую энергию для создания двигателей на новом виде энергии, на электрической энергии.

Одним из первых электрических двигателей был двигатель русского ученого Б. С. Якоби. Над этим двигателем Якоби работал около трех лет. В 1838 году при содействии адмирала Крузенштерна Якоби получил возможность установить свой двигатель на шлюпке. Двигатель питался электрическим током от 320 гальванических элементов. Летом 1838 года лодка с пассажирами поплыла по Неве.

Но все-таки электрический двигатель не мог еще соперничать с тепловым. И не только потому, что был несовершенным, а потому, что источники электрической энергии были громоздки, дороги и еще менее пригодны чем сам электрический двигатель.

Зато в области связи даже такие несовершенные источники, как гальванические элементы, позволили создать такие удобства, которые искупали дороговизну и низкие качества источников. Даже если бы они стоили во много раз дороже, их все равно выгодно было бы применять.

Первый в мире электромагнитный телеграф был построен в России. Он был изобретен П. Л. Шиллингом. В 1832 году уже действовала телеграфная линия между Зимним дворцом и министерством путей сообщения.

Знаменитый телеграф, изобретенный профессором изящных искусств С. Морзе в 1837 году, после долгих мук и лишений, испытанных изобретателем, начал действовать только в 1844 году на линии между Вашингтоном и Балтиморой. Зато в последующие годы он стал необыкновенно быстро распространяться.

В 1876 году переехавший на жительство в Соединенные Штаты Америки из Шотландии Г. Белл подал изобретательскую заявку на «говорящий телеграф». Заявка была сделана в марте, а в августе в Америке были включены первые 778 телефонов.

Микрофон и наушник телефона Белла.

Это были изобретения, которые никогда не могли бы быть осуществлены средствами механики. А ведь они были чрезвычайно важны уже и в то время. Об этом говорит быстрота распространения этих изобретений.

Электричество начинало переходить из области науки в область техники. Но до эры электричества было еще очень далеко. Очень. Нужен был мощный, надежный и дешевый источник электроэнергии. Нужен был простой и надежный электрический двигатель.

Много людей в разных странах участвовали в разработке основ современных электрических машин.

Было выяснено, что электрические машины обратимы, то есть одна и та же машина может работать как двигатель, если в нее подается электрический ток, и как генератор, если ее привести во вращение. Машины постоянного тока долго считали единственно пригодными. Это происходило потому, что ток, который люди уже хорошо успели изучить, получая электроэнергию от гальванических элементов, был постоянный. Свойства же переменного тока не были еще изучены, с ним не умели обращаться, не умели его измерять, да и вообще к току, который огромное число раз в секунду меняет свое направление, мечется из стороны в сторону, относились с недоверием.

Одним из первых, кто не побоялся применить переменный ток, был П. Н. Яблочков. В его знаменитой «свече» было два параллельно поставленных угля. При питании их током возникала ярко светившаяся дуга. Однако, если к «свече» подводился постоянный ток, один из углей выгорал быстрее. Тогда Яблочков и решил применить для питания своих «свечей» переменный ток.

Он же сконструировал первый генератор переменного тока. Это замечательное устройство по идее мало чем отличалось от современных генераторов.

Яблочкову пришлось решать и другую задачу, не менее важную. Дело в том, что от одного общего источника не могло одновременно питаться большое количество «свечей». А между тем «свечи» должны были устанавливаться в разных местах для того, чтобы получить освещение во всех нужных пунктах. Для этого требовалось, как тогда говорили, «дробить свет».

Приходилось делать много отдельных генераторов, что было очень неудобно и дорого. Яблочков по-разному решал задачу дробления света. Но в конце концов он нашел самый правильный путь – применил «индуктирующую катушку», или, как теперь ее называют, трансформатор переменного тока.

Вначале электротехники не задумывались о том, на какое расстояние может передаваться по проводам электрическая энергия. Этим занялся французский инженер М. Депре, который построил линию электропередач между Мисбахом и Мюнхеном длиной в 57 километров. В Мисбахе находилась водяная турбина, приводившая в движение генератор, а в Мюнхене – небольшой электродвигатель, вращавший насос. Электродвигатель и насос были установлены в выставочном зале проводившейся в 1882 году выставки. Понятно, что в таких условиях опыты Депре привлекали внимание и получили быстрое признание.

Выгодность электропередачи возрастает при увеличении напряжения передаваемого тока. Так, Депре в своих дальнейших опытах передавал электрическую энергию при напряжении 6000 вольт. Более высокого напряжения Депре намеревался достичь, включая генераторы последовательно. Однако такой способ не был хорошим. Нужно было искать другие пути.

Как раз в эти годы итальянец Феррарис показал, что, пользуясь двухфазным переменным током, можно в электрической машине получить вращающееся магнитное поле. Это было очень важное открытие, позволившее вновь и, наконец, с большим успехом заняться переменным током. Дело в том, что все прежние двигатели переменного тока были однофазные и имели один решающий недостаток: при включении тока они «не хотели» начинать вращение. Их нужно было сперва раскручивать, а потом уже они продолжали работать сами. В двигателях двухфазного тока получавшееся вращающееся магнитное поле увлекало за собой ротор двигателя, и он начинал вращаться без посторонней помощи.

Двухфазный ток получил даже некоторое промышленное распространение. Но вскоре замечательный русский ученый и инженер М. О. Доливо-Добровольский предложил новую систему переменного тока: трехфазный переменный ток. Трехфазный ток тоже позволял получать вращающееся магнитное поле и, кроме того, давал и другие важные преимущества. С тех пор система трехфазного тока не претерпела почти никаких изменений. В наши дни она применяется в промышленности повсеместно.

Для передачи энергии трехфазным током требуется три провода. Если вы взглянете на высоковольтную линию электропередач, вы увидите, что число проводов, подвешенных на опорах, всегда три или кратно трем. Правда, на высоковольтных линиях над проводами протянуто еще два провода, но они навешиваются для защиты линии электропередачи от грозы. В наши квартиры, как вы знаете, входит только по два провода, хотя по ним также подается переменный ток. Для бытовых нужд не требуется трехфазный ток, достаточно заводить провода от одной фазы и средней точки или от выводов двух фаз. Все бытовые электрические приборы могут работать от однофазного переменного тока. В электропроигрывателях граммофонных пластинок, например, чаще всего устанавливают асинхронный двигатель переменного тока. Для того чтобы он начал вращаться сам, применены специальные устройства, позволяющие получать из однофазного тока двухфазный.

Не менее важной работой М. О. Доливо-Добровольского было создание трехфазных машин переменного тока. Он изобрел и построил асинхронный двигатель переменного тока. В наше время это наиболее распространенный электрический двигатель.

В 1891 году во Франкфурте-на-Майне состоялась электротехническая выставка. На выставке в одном из павильонов был установлен понижающий трансформатор. Он был подключен к трехфазной линии передач. Напряжение на этой линии было 8500 вольт. Трансформатор понижал это высокое напряжение до 65 вольт. От трансформатора питались тысяча ламп, освещавших выставку, и трехфазный двигатель Доливо-Добровольского, вращавший мощный водяной насос. Насос подавал воду на искусственный водопад. В те годы было трудно поверить, что электрическая энергия подавалась на выставку из Лауфена, отстоявшего от Франкфурта на 175 километров!

Передача электроэнергии открыла новые огромные возможности. Ведь это означало, что электростанцию вовсе не нужно строить именно там, где требуется большой расход электроэнергии, в городах или около крупных заводов. Электростанции можно было строить там, где ее выработка оказывалась наиболее дешевой и простой: в богатых топливом местах, возле каменноугольных шахт или на больших реках.

Тут-то и помог трансформатор переменного тока, который легко и просто позволил повышать напряжение, получаемое от генераторов, до многих десятков тысяч вольт и вновь понижать его до удобных для эксплуатации напряжений в местах потребления электроэнергии. Мы знаем с вами, что теперь напряжение на дальних линиях электропередач доходит до 400 тысяч вольт, а через несколько лет оно будет поднято еще выше, до 600 тысяч вольт.

Какую роль сыграло применение нового вида энергии – электроэнергии в производстве, описать почти невозможно. Я приведу вам только один пример, показывающий, как изменились методы использования силы для привода в действие станков.

Возле дома, где я жил, было много заводов. Все они в начале тридцатых годов либо строились заново, либо значительно расширялись и обновлялись. Нужда в квалифицированных рабочих была очень большая, а рабочих еще не хватало. И вот почти каждый крупный завод создавал свои училища, так называемые ФЗУ – фабрично-заводские училища, где и подготавливались новые квалифицированные рабочие.

Построили ФЗУ и в нашем дворе. Здание было большое, просторное, с прекрасным физкультурным залом, кинозалом, учебными помещениями и замечательными мастерскими. Особенно большой была механическая мастерская. Она была похожа на большой цех. Завод, строивший ФЗУ, не поскупился и оборудовал мастерскую хорошими станками, особенно по тем временам.

Мы, мальчишки и девчонки, могли по целым дням стоять под ее окнами. Мы подставляли кирпичи под окнами и повисали животами на подоконниках. Все нам было интересно: и токарные станки, из которых, завиваясь и закручиваясь, ползла упругая синяя стружка, и механическая ножовка, запросто перепиливавшая толстые металлические чушки, и стоявшие в отдалении фрезерные станки. Сам тепловатый воздух, выходивший из мастерской, пахнувший перегретым маслом и металлом, вдыхали мы с наслаждением и завистью. До чего же хотелось нам самим покрутить разные ручки у станков, сделать какую-нибудь деталь, а потом, с важным видом, прищурив один глаз, выверять ее угольником, кронциркулем или «штангелем»!

И сейчас, когда я прохожу по цехам завода, где я работаю, я часто вспоминаю о той первой в жизни мастерской, которую я видел. Все так же в цехах бежит из-под резцов стружка, все так же пахнет перегретым машинным маслом и металлом, все так же звенит наждачный круг, затачивая резцы. Но как много перемен! И прежде всего бросается в глаза отсутствие самого непременного, без чего раньше не могли работать станки: отсутствие трансмиссий.

Старый цех.

В той механической мастерской, в которую я засматривался в детстве, станки, конечно, уже приводились в движение не от паровой машины, а от электродвигателя. Но одного из важнейших преимуществ, даваемых электричеством, в те годы еще почти не использовали. Паровая машина ушла, но ее наследство – трансмиссии – осталось. Вероятно потому, что в те годы только начинали выпускать двигатели для привода одного отдельного станка. Такие двигатели должны были иметь порядочную мощность и в то же время иметь малые размеры.

Вместо того чтобы каждый станок приводить в движение отдельным двигателем, в механической мастерской ФЗУ вынуждены были действовать еще по старинке. В одном месте мастерской, под потолком, был установлен большой, немного похожий на борова, электрический мотор. На валу мотора сидел шкив. Под потолком шло несколько рядов металлических валов. Каждый вал над своим рядом станков. На каждом таком валу тоже были насажены шкивы, над каждым станком по шкиву. И, кроме того, на каждом валу сидел еще один шкив, от которого шел приводной ремень к специальному валу, соединенному ременной передачей со шкивом электромотора.

Для того чтобы менять число оборотов станка, шкивы, установленные над каждым из станков, и шкивы, установленные непосредственно в станках, были ступенчатые. Они имели по три или четыре ступени. Для включения или выключения станка надо было расцепить или сцепить шкив, сидящий на валу, с валом. Это делалось рычагом. Рычаг находился, кажется, возле левой руки рабочего. Он поднимался к верхнему шкиву и был здорово похож на деревянную оглоблю.

Представляете? Даже когда нужно было включить только один станок, приходилось включать мотор очень большой мощности и заставлять вращаться всю эту «индустрию». Вот что такое трансмиссия!

А какая мука, сколько времени терялось, когда нужно было поменять скорость вращения станка! Приходилось расцеплять вал и шкив, а потом, затрачивая много усилий, в очень неудобной позе, перебрасывать ремень с одной ступени шкивов на другую. Менять скорость станка малыми порциями было невозможно.

Мне еще пришлось во время войны немного поработать на станках с ременным приводом. Очень было неудобно. Ремень часто ослабевал и проскальзывал на шкиве, а то и просто рвался. На заводе для починки ремней специально держали шорника. Да и опасно работать с ременной передачей. Я сперва посмеивался. Мне очень нравилось бросать кепку в трансмиссию, по ходу ремня. Бросишь ее, она нырнет под шкив, обогнет его, а потом со страшной быстротой вылетает и ударяется в потолок. Но однажды я работал на сверлильном станке, у которого ограждение ремня было снято. Тут уж получилось не так весело. Я работал без шапки и, как говорится, «ахнуть не успел», как волосы мои втянуло в ремень и меня с размаху ударило лицом об станок. К счастью, я отделался клоком волос, разбитым носом и шишкой на лбу. Но могло быть и хуже.

А теперь трансмиссии такой нет. У каждого станка мотор внутри, бывает даже по нескольку. Если привод от мотора к станку осуществлен с помощью ремня (так еще часто делают), то и ремень находится внутри станка. И никаких валов под потолком, и никаких оглобель для включения. Есть на каждом станке маленькая коробочка с черной и красной кнопкой: «Пуск» и «Стоп», а для переключения скоростей достаточно повернуть рычаги. И, что не менее важно, получается большая экономия электроэнергии.

Где только не устанавливаются теперь электродвигатели!

Мощный электродвигатель для рольгангов прокатного стана.

От громадных, мощностью в тысячи лошадиных сил, моторов, вращающих прокатные станы, до микродвигателей, величиной с наперсток, устанавливаемых в различной аппаратуре. Устанавливают двигатели и на дизель-электрических судах и поездах, на электровозах, трамваях, составах метро, троллейбуса, на швейных машинках, в бритвах и на самых неприятных машинах на свете – на бормашинах. Даже автомобили и те не обходятся без них. Только точильщики крутят свои точила, как и тысячу лет назад, – ногой.

Микродвигатель.

Если бы электричество позволило только ввести в практику новый тип двигателя, то и тогда его вклад в промышленность был бы очень велик. Но электричество позволило и многое другое. Так, например, оно позволило создать новые средства связи. О некоторых из них – телеграфе и телефоне мы уже знаем. Электротехника создала весьма совершенные источники света, от дуговых ламп и ламп накаливания до ламп дневного света.

Однако электричество сыграло в промышленности гораздо большую роль. Оно определило развитие промышленности, не только дав ей новый источник силы, но и вмешавшись в самые методы производства продукции, в технологию. Вспомним, например, открытие гальванопластики и гальваностегии, сделанное в 1838 году Б. С. Якоби.

Но и это далеко не все. Если бы только этим ограничивались достоинства электрической энергии, Владимир Ильич Ленин, может быть, и не дал бы своего знаменитого определения, что «Коммунизм это есть Советская власть плюс электрификация всей страны». Недаром Ленин в самые первые годы Советской власти лично руководил составлением знаменитого плана электрификации России, плана ГОЭЛРО (плана Государственной комиссии по электрификации России).

Он создавался в 1920 году, когда Советской России приходилось испытывать громадные трудности: ведь еще не кончилась гражданская война, не работали многие заводы и фабрики, не хватало самого необходимого. В декабре 1920 года состоялся Восьмой Всероссийский съезд Советов. На этом съезде был одобрен план ГОЭЛРО. Он предусматривал сооружение 30 районных электростанций. Их строительство было завершено досрочно, в 1931 году.

Ленин не был специалистом в электротехнике. Он был гениальным философом-марксистом, и это давало ему возможность видеть в электричестве и электротехнике такие стороны, которые в те времена еще неясны были ни ученым, ни инженерам. Так же знал Ленин и об электричестве. И его определение коммунизма говорит об очень важном, основном принципе развития не только общественных отношений, но и промышленности при социализме и коммунизме.

Какие же качества дали возможность получить столько пользы от электричества и позволяют нам ждать от электрической энергии гораздо большего?

Давайте перечислим, какие виды энергии мы знаем на сегодняшний день и используем для наших целей.

Прежде всего, энергия механическая – энергия ветра, падающей воды, энергия вращения любого двигателя, энергия движения любого тела.

Затем следует энергия тепловая – энергия солнца, энергия пара, энергия, освобождающаяся при сгорании различных видов топлива. По существу, горение, окисление есть химический процесс, при котором энергия химическая переходит в тепловую. При других реакциях тепловая энергия может переходить в химическую.

Далее идет электрическая энергия. Потом лучистая энергия – световая, электромагнитная. И, наконец, новейшие достижения физики открыли нам и позволяют приступить к использованию атомной энергии.

Давайте рассмотрим основные свойства электрической энергии. Одним из важнейших ее свойств и достоинств является то, что она легко и прямым путем преобразуется в любой другой вид энергии: в механическую, с помощью различных электродвигателей и электромагнитов; в тепловую, с помощью разнообразных электронагревательных приборов; в лучистую, с помощью электроосветительных и радиоприборов, а также рентгеновских трубок; в химическую – в аккумуляторах. Другое, не менее важное свойство электроэнергии – это то, что она также прямым путем может быть получена из всех других видов энергии. Правда, пока еще не нашли путей прямого преобразования атомной энергии в электрическую. Но работы в этом направлении ведутся большие, и, возможно, не за горами то время, когда будет найдено решение этой великой задачи.

Что означает, когда говорят, что электрическая энергия прямым путем может быть преобразована из любых других видов энергии?

Возьмем, к примеру, получение электрической энергии из тепловой. Есть несколько методов. Первый, наиболее распространенный, вам хорошо известен, это метод, используемый на электростанциях; он относится к косвенным методам получения электроэнергии. Топливо сжигают в топках. Сгорая, оно нагревает воду. Получившийся в результате пар высокой температуры и высокого давления подается в турбину. Под воздействием струи пара турбина вращается и приводит в движение генератор. На выходе генератора развивается электрическое напряжение. Вот сколько получилось этапов: преобразование энергии огня в энергию пара с помощью котла, преобразование энергии пара в механическую энергию с помощью турбины и, наконец, преобразование механической энергии в электрическую с помощью генератора – три этапа!

Второй метод не требует столь сложных и громоздких преобразований. Вы слышали о так называемых термоэлементах. С помощью термоэлементов энергия получается из тепловой непосредственно. Достаточно нагреть спай двух металлов, например меди и висмута, составляющих термоэлемент, чтобы возникла электродвижущая сила. Термоэлектрический эффект был открыт членом Берлинской академии Т. Зеебеком еще в 1821 году. Такой метод получения электроэнергии, как мы видим, является методом прямого получения электрической энергии из тепловой. Беда только в том, что он очень мало эффективен и не может быть применен для создания мощных источников электрического тока.

В последние годы найден новый метод прямого получения электрической энергии из тепловой. Электрическая энергия получается с помощью новых полупроводниковых материалов. Этот путь преобразования тепловой энергии в электрическую уже гораздо более эффективен. Так, тепла обычной керосиновой лампы – «молнии» хватает, чтобы от полупроводникового термоэлемента работал радиоприемник.

Полупроводниковый термогенератор.

Важнейшим свойством электроэнергии является ее способность дробиться на любые доли. Тепловая энергия тоже может дробиться. Возьмите хотя бы систему парового отопления: от одного котла питаются сотни радиаторов, установленных в разных частях здания. Но сколько же приходится затрачивать труда и металла на прокладку соединительных труб! Как это громоздко и неудобно! Не лучше обстоит дело и с дроблением механической энергии. Вспомните об устройстве трансмиссий в мастерской ФЗУ. А с электричеством все это делается очень просто – два или три тонких провода, и энергию можно вести к любому электроприбору.

Но особенно заметно преимущество электрической энергии, когда требуется передавать ее на большие расстояния. Тут уж с ней ничто не может равняться. Механическую энергию вообще не передают на дальние расстояния, тепловую же энергию можно передавать с помощью горячей воды или пара от силы на несколько километров. С электрической энергией может соперничать только ее ближайшая родственница – лучистая энергия: энергия электромагнитная, радиоволн, – и энергия световая. Однако с помощью лучистой энергии люди еще не научились передавать большие мощности в узком параллельном пучке. Сумеют ли они осуществить когда-нибудь передачу энергии без проводов и окажется ли это необходимым, сейчас трудно сказать. Во всяком случае задача такая очень заманчива.

Вот эти-то все свойства электроэнергии позволили Ленину предвидеть всю важность и универсальность применения электроэнергии. Эти-то свойства и дают нам ключ к решению тысяч и тысяч разнообразнейших задач, решение которых средствами механики или вовсе невозможно, или значительно более сложно и дорого.

Прежде чем закончить главу, я хочу вам рассказать о двух крупнейших изобретениях, сделанных в России в конце XIX века: о радио и самолете. Каждому из них предстояло оказать решающую роль в создании техники сегодняшнего дня.


    Ваша оценка произведения:

Популярные книги за неделю