355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Китайгородский » Заглянем в будущее » Текст книги (страница 9)
Заглянем в будущее
  • Текст добавлен: 9 октября 2016, 14:24

Текст книги "Заглянем в будущее"


Автор книги: Александр Китайгородский


Соавторы: Арон Кобринский,Натан Кобринский,Николай Семенов,Николай Петрович,В. Молярчук,Игорь Петрянов-Соколов
сообщить о нарушении

Текущая страница: 9 (всего у книги 16 страниц)

Применение атомных двигателей на судах транспортного флота, как показывает опыт ледокола «Ленин» (1959 г.) и транспортного грузопассажирского судна «Саванна» (1962 г., США), а также расчеты, связанные с постройкой атомных рудовозов «Отто Хан» (ФРГ) и «Мицу» (Япония), пока носят не столько коммерческий характер, сколько характер крупного эксперимента.

Так, затраты, связанные с установкой и использованием атомного двигателя на судне «Саванна», составили около 60 процентов общей стоимости судна, тогда как на обычном судне подобного типа стоимость котельной установки не превышает 4–5 процентов стоимости всего судна. Стоимость реакторной установки на судне «Отто Хан» составляет 27,5 миллиона марок, в то время как стоимость обычной котельной установки равной мощности составила бы около 1,9 миллиона марок.

Вес реакторной установки на судне «Саванна» достигает 2500 тонн, что в 8–10 раз больше веса паровых котлов равной мощности. Вес механизмов машинного отделения атомохода на 10–30 процентов выше веса механизмов обычных судов.

Однако, оценивая результаты строительства и эксплуатации первых судов с атомными силовыми установками, надо иметь в виду их экспериментальный характер. Необходимо ясно видеть те резервы повышения экономичности, которые заключаются в совершенствовании конструкции реакторов и силовых установок в целом, параметров их рабочих процессов, в стоимости постройки и освоения новой техники, связанной с использованием атомной энергии, и т. д.

Высокую стоимость самого атомного судна и большие расходы на содержание его экипажа может и должен компенсировать выигрыш в суммарном весе и объеме энергетической установки и запасов горючего, а также выигрыш на эксплуатации и повышении производительности атомных судов, обусловленной более высокой скоростью хода.

Следует отметить, что, несмотря, на казалось бы, довольно негативные практические результаты использования атомных силовых установок на судах транспортного флота, во многих странах продолжаются интенсивные научно-исследовательские и конструкторские работы по улучшению характеристик судовых атомных установок и соответственно судов.

В 1958–1963 годах в Японии проводились проектно-поисковые разработки и выполнены проекты атомного танкера дедвейтом (дедвейт – суммарный вес всех переменных грузов в тоннах) 45 тысяч тонн, пассажирского и исследовательского океанографического судов. Были спроектированы шведско-норвежский рудовоз дедвейтом 67 тысяч тонн и танкер с атомной силовой установкой в Нидерландах. Проводились такие же работы в Дании. В 1958–1959 годах были спроектированы подводные атомные танкеры дедвейтом 41 500 и 21 200 тонн в США. В 1963 году там же по контракту с Канадой была исследована экономическая целесообразность создания атомных подводных танкеров для транспортировки нефти в арктических районах Канады, причем расчеты показали, что подводный танкер с АЭУ будет лишь на 30 процентов дороже надводных танкеров с обычной энергетической установкой.

Дальнейшие разработки в области атомных силовых установок идут по пути совершенствования их конструкций, в первую очередь за счет совмещения в едином блоке агрегатов активной зоны, парогенерирующих и паросепарирующих устройств, циркуляционных насосов, а также части вспомогательного оборудования парового контура. Это должно снизить стоимость и существенно повысить надежность их работы.


В этих же целях принимались меры к снижению давления воды в паровом контуре. В некоторых проектах оно достигалось путем использования вместо воды других теплоносителей, как-то: перегретого пара, воздуха и т. д.

В результате научных исследований были существенно улучшены весовые характеристики реакторов и параметры рабочего процесса установок. Если вес атомных двигателей вместе с биологической защитой, установленных на атомном ледоколе «Ленин» и грузопассажирском судне «Саванна», отнести к их мощностям, то на 1 л. с. соответственно приходилось 80 и 125 килограммов, на рудовозе «Отто Хан» – свыше 90, на проектируемых же он снижен до 29 и 13,9 килограмма. Давление теплоносителя в первом контуре предусматривалось снизить со 123–180 атмосфер до 45,7, а давление во втором контуре увеличить с 28–35 до 46–62 атмосфер и температуру с 240–310 до 460–510 градусов, что позволяет использовать высокоэффективные современные паровые турбины.

Многочисленные технико-экономические расчеты, проведенные в разных странах, учитывающие новые, более прогрессивные параметры атомных силовых установок, показывают, что принципиально уже на данном этапе их развития возможно создание атомных судов, которые смогут успешно конкурировать по экономическим показателям с обычными судами.

Например, расчеты, проведенные в США, показывают, что атомные суда грузоподъемностью 7100 тонн, оборудованные атомными реакторами 63OA и CNSG, могут развивать скорость в 30 узлов против 21 узла, развиваемую судами с обычной силовой установкой, занимающей такое же пространство (с учетом запасов топлива). Такой выигрыш в скорости делает эти суда практически столь же экономичными, как и обычные, при эксплуатации их в Северной Атлантике, а на более протяженных тихоокеанских линиях атомные суда могут дать и больший экономический эффект.

Расчеты, произведенные английскими фирмами, показывают, что использование атомных силовых установок может быть достаточно эффективным на пассажирских лайнерах, крупнотоннажных танкерах и рефрижераторных судах.

Можно с достаточной уверенностью считать, что использование как в ближайшие годы, так и в отдаленном будущем атомных силовых установок мощностью 30–100 и более тысяч л. с. для крупнотоннажных и скоростных судов получит широкое распространение.

Все возрастающая мощность энергетических установок вызывает совершенствование тяговых устройств и движителей, которое идет, во-первых, по пути дальнейшего улучшения конструкций гребного винта и, во-вторых, – создания принципиально новых движителей.

В 60-е годы конструкторы гребных винтов все чаще обращаются к принципу регулируемого шага. Применение таких винтов позволит путем подбора оптимального шага обеспечить максимальный к.п.д. движителя. Кроме того, винты с регулируемым шагом обеспечивают реверсирование тяги на движителе при использовании газовых турбин.

Находят все более широкое применение суперкавитирующие гребные винты.

Хорошая перспектива применения и у водометных движителей в связи с расширением сферы применения судов на подводных крыльях и воздушной подушке. Идея водометного движителя состоит в следующем.

Забортная вода засасывается мощными насосами и выбрасывается за кормой судна над поверхностью воды, обеспечивая реактивную тягу. Количество воды, перебрасываемой насосами, меньше, чем захватываемое гребным винтом, но выходная скорость струи выше. К.п.д. водометных движителей при скоростях движения свыше 50 узлов может достигать 50–55 процентов.

Суда водометного типа более легкие, простые, безопасные для плавания по мелководью и удобные в обслуживании.

При скоростях движения свыше 100 узлов все водные тяговые устройства оказываются малоэффективными, поэтому для высокоскоростного движения водного транспорта, очевидно, самыми перспективными могут стать воздушные винты большого диаметра, к.п.д. которых может достигать порядка 80–85 процентов. Применение реактивных движителей в этом случае менее экономично.

Габариты и веса судов морского транспорта ограничиваются значительно меньше, чем габариты и веса других видов транспорта. Поэтому флот допускает более широкое применение новых силовых установок, таких, как атомные, и, возможно, мощных МГД-генераторов, обеспечивающих высокую эффективность использования горючего.


* * *

Однако технический прогресс в области двигателей, диктуемый объективными условиями экономического и социального развития страны, будет затрагивать и другие виды транспорта. Остановимся на развитии автомобильного транспорта и, в частности, его энергетической базы.

Автомобильный транспорт в силу особых свойств, обусловливающих возможности широкого использования в народном хозяйстве, развивается исключительно высокими темпами. Если первый автомобиль появился в 1885 году и к 1 января 1900 года общее количество автомобилей в мире составляло 6200 единиц, то на 1 января 1972 года число их перевалило за четверть миллиарда, а по прогнозам ряда специалистов на конец нашего столетия мировой парк достигнет 500–750 миллионов автомобилей.

Отечественное автомобилестроение фактически возникло в годы первых пятилеток, и если на 1 января 1931 года мировой автомобильный парк уже составлял 35,8 миллиона единиц, то в СССР их было только 28,5 тысячи. Однако массовое поточное производство автомобилей на Горьковском, Московском и других автозаводах позволило успешно оснащать народное хозяйство автомобилями и за период с 1935 по 1970 год увеличить грузооборот автомобильного транспорта с 3,5 до 220,8 миллиарда тонно-километров.

И тем не менее автомобиль еще не принял на себя того объема работы, какой он выполняет в экономически развитых зарубежных странах. Доля грузооборота автомобильного транспорта в нашей стране в настоящее время составляет 6–7 процентов, что почти в четыре раза ниже уровня, достигнутого в ряде капиталистических стран. А роль, принадлежащая автомобильному транспорту в обслуживании народного хозяйства, исключительно важна. Без него не может нормально развиваться регулярная кооперация предприятий на базе специализации, являющаяся самым перспективным направлением развития промышленного производства, не может быть развернута организация современного поточного крупноблочного строительства жилых и промышленных зданий, невозможна индустриальная организация крупного сельскохозяйственного производства, немыслимы современные способы открытой разработки полезных ископаемых. Наконец, автомобильный транспорт в большинстве случаев начинает и завершает транспортный процесс, являясь транспортом-посредником между клиентурой и магистральными видами транспорта.

Все это определяет и будет определять возрастание доли участия автомобильного транспорта в транспортной системе страны.

За истекшее время автомобильные двигатели стали совершенными по форме, отличными по конструкции и по уровню мощности соответствуют потребностям народного хозяйства.

Основным типом автомобильного двигателя в нашей стране и во всем мире является карбюраторный двигатель с внешним смесеобразованием и принудительным воспламенением. Примерно на 10 процентах большегрузных автомобилей стоят дизели с воспламенением от сжатия. На автомобилях очень большой грузоподъемности и автосамосвалах уже начинают ставиться газовые турбины. Можно считать, что на автомобильном транспорте будущего газовая турбина мощностью до 1000–1200 л. с. найдет себе достойное место, так как сфера применения автомобилей этих категорий будет расширяться. Однако двигатели внутреннего сгорания будут иметь массовое распространение.


У карбюраторных двигателей есть много достоинств по сравнению с дизельными, они дешевле, у них меньший вес при той же мощности и меньшая стоимость ремонта. В то же время у дизеля более совершенный и экономичный рабочий процесс и меньшая токсичность выхлопных газов. Средний к.п.д. карбюраторных автомобилей отечественного парка составляет 24,3 процента, а автомобилей, оборудованных дизелями, – 33,6 процента, последние экономичнее с точки зрения расхода горючего на 28 процентов, а с учетом более благоприятных режимных характеристик экономия может достигнуть 30 и более процентов. При массовом же распространении автомобилей сокращение расхода горючего на 30 процентов представляет весьма серьезный фактор, определяющий уровень использования наиболее дефицитных видов топлив.

Как известно, массовое распространение автомобилей влечет за собой серьезные социальные последствия, выражающиеся в значительном загрязнении воздушного бассейна городов. По разным оценкам один автомобиль с карбюраторным двигателем выбрасывает в атмосферу в течение года от 800 до 900 килограммов вредных продуктов. По данным специального доклада конгрессу США, количество выброшенных в атмосферу вредных продуктов с выхлопными газами автомобилей составило в течение 1966 года более 80 миллионов тонн, в том числе 60 миллионов тонн окиси углерода, около 7 миллионов тонн углеводородов и 5 миллионов тонн окислов азота. В загрязненном воздухе образуются активные кислоты, которые воздействуют на металлические конструкции и сооружения. Убытки от этого воздействия оценивались в 11 миллиардов долларов. А вредное влияние отравленного воздушного бассейн городов на здоровье их жителей подсчитать невозможно. Смог в таких городах, как Лос-Анджелес, Токио, Нью-Йорк и других, превратился в подлинное бедствие для населения этих городов. Кроме того, шум, производимый армадой снующих по улицам автомобилей, также вредно отражается на здоровье людей.

Таким образом, массовое использование автомобилей не только удовлетворяет нужды современного общества в перевозках грузов и пассажиров, но и ставит серьезные социальные проблемы и проблемы использования все сокращающихся энергетических ресурсов.

Одним из возможных решений этих проблем является оснащение большей части строящихся грузовых автомобилей средней и большой грузоподъемности, а также автобусов двигателями Дизеля. Следует отметить, что по этому направлению пошли, и достаточно успешно, многие страны: в ФРГ сейчас на дизелях работают 52 процента грузовых автомобилей, 90 процентов автобусов, 100 процентов автотягачей; в Англии – 38 процентов грузовых автомобилей и 90 процентов автобусов; во Франции – 24 процента грузовых автомобилей и 71 процент автобусов и т. д.

Расчеты показывают, что если бы нам парк дизельных автомобилей довести до уровня парка ФРГ, то даже при существующем объеме перевозок был бы снижен расход горючего на 7,5–8 миллионов тонн и существенно повысилась бы чистота воздушного бассейна наших городов.

Делаются попытки повысить экономичность и улучшить рабочий процесс карбюраторных двигателей также применением внешнего впрыска топлива; однако экономический эффект при этом примерно в 3 раза ниже, чем при использовании дизелей.

Снизить шум, создаваемый автомобилями, а также уменьшить их вес и габариты, вероятно, удастся применением двигателя роторно-поршневой конструкции Ванкеля. Такие автомобили уже выпускаются в Японии, а также налаживается их производство в ФРГ и США.

Однако сейчас роторно-поршневые двигатели еще менее экономичны и с несколько худшим рабочим процессом, что приводит к увеличению токсичности выхлопных газов.

Лучшим решением санитарно-гигиенических и экономических проблем, вызванных широким размахом автомобилестроения, решением, которому принадлежит будущее, является переход к электромобилю, работающему на химических источниках тока.

Электромобиль имеет примерно такой же возраст, как и автомобиль; однако сложность его создания привела к тому, что при наличии 250 миллионов автомобилей во всех странах мира сегодня насчитывается только 40–45 тысяч электромобилей. Около 29 тысяч из них приходится на долю Англии, около 3 тысяч – на ФРГ, остальные – в США (около 200), в Италии (около 200), во Франции, в Японии и в других странах.

Современные электромобили почти все являются грузовыми, грузоподъемностью 800–1000 килограммов. Используются они на подвозке товаров, продуктов и т. п. По данным за 1969 год, в мире насчитывалось также около 100 легковых электромобилей и несколько экспериментальных электробусов.

Основной причиной, сдерживающей развитие электромобилей, является отсутствие источников тока – аккумуляторов, удовлетворяющих современным требованиям транспортных средств. Электромобиль сейчас дороже обычного автомобиля. У него ограниченные скорость и пробег между зарядками аккумуляторов. Стоимость его электрооборудования достигает половины общей стоимости, причем 90 процентов этой половины падает на аккумуляторные батареи.

В настоящее время в качестве источников тока используются лишь свинцовые, железо-никелевые и кадмиево-никелевые аккумуляторы емкостью 200–500 ампер-часов, удельной мощностью 33–36 ватт на килограмм (вт/кг) (до 100 вт/кг в кратковременном режиме) и сроком службы 1600–1800 циклов.

Как показали расчеты, полноценная конструкция электромобиля должна была бы иметь следующие показатели.


Как видно из таблицы, существующие аккумуляторные батареи не могут удовлетворять современным требованиям, предъявляемым к транспортным средствам. Они годны лишь для электромобилей небольшой грузоподъемности, с запасом хода в 30–40 километров и скоростью движения 25–26 километров в час.

Массовое применение таких электромобилей, помимо ряда неудобств, связанных с их эксплуатацией, резко ухудшило бы движение на городских улицах, которое и так находится сейчас во многих городах на пределе. Этим и объясняется их весьма небольшое распространение, хотя даже при существующих аккумуляторах они могли бы претендовать на большее внимание. Имеющиеся в иностранной литературе данные свидетельствуют, что там, где они используются, они могут обеспечить не только равную, но даже меньшую, чем у автомобиля, себестоимость перевозок.


Обострение проблемы загрязнения воздушной среды и борьбы с шумом вновь сделало весьма актуальной задачу создания электромобилей, способных во всех отношениях заменить автомобили. Значительно расширились исследовательские и экспериментально-конструкторские работы по созданию аккумуляторов и электромобилей более совершенных систем и конструкций. В течение 1965–1971 годов были созданы новейшие образцы электромобилей с запасом хода до 64–80 километров и максимальной скоростью до 40–50 километров в час. В настоящее время фирмой «Мессершмитт-Белков-Блом» разрабатывается электромобиль марки МВВ грузоподъемностью в 1 тонну. Работают над созданием грузовых и особенно легковых электромобилей многие фирмы США, ФРГ, Англии, Японии, Италии, Голландии, Франции. Созданы опытные образцы электромобилей у нас, а также в ЧССР и Болгарии.

Совершенствуя электромобили, конструкторы идут и по пути использования топливных элементов. В отличие от аккумуляторов, у которых электроды участвуют в образовании электрохимической энергии, топливный элемент представляет собой электрохимический генератор, в котором осуществляется прямое преобразование химической энергии топлива в электрическую. В наши дни стоимость топливных элементов еще весьма высока, а выходная мощность, приходящаяся на единицу веса, в 50 раз ниже, чем у двигателя внутреннего сгорания, хотя и находится на уровне самых эффективных современных аккумуляторов.

Топливные элементы в качестве генератора энергии имеют довольно высокий к.п.д., теоретически близкий к 100, а практически – в пределах 40–80 процентов.

Создание электромобиля, равного по своим эксплуатационным качествам и мобильности обыкновенному автомобилю, представляется пока весьма трудной задачей, что подтверждается следующим сравнением удельной энергии силовых генераторов (см. таблицу).


Если учесть, что практически могут быть применены только первые два вида аккумуляторных батарей, так как промышленное производство всех остальных обходится весьма дорого, то становится очевидной трудность решения поставленной задачи. И тем не менее она будет решена, так как этого настоятельно требует жизнь, в этом социальный заказ конструкторам.

Однако поскольку проблему сохранения чистоты воздушного бассейна городов необходимо решать сейчас, ряд фирм занялся снижением токсичности выхлопных газов автомобилей и созданием опытных образцов легковых автомобилей с комбинированным энергопитанием, сочетающих аккумуляторную батарею с легким двигателем внутреннего сгорания.

Такое сочетание выполняется либо по последовательной схеме, когда вся мощность двигателя используется для привода генератора, питающего тяговый двигатель и подзаряжающего аккумуляторную батарею, либо по параллельной, когда лишь часть мощности двигателя идет на генератор, подзаряжающий батарею, а часть – непосредственно на силовую передачу к ведущим колесам. Распределение энергии, снимаемой с генератора и двигателя внутреннего сгорания, равно как и идущей на подзарядку батарей аккумуляторов, осуществляется блоком системы автоматического контроля и регулирования.

Применение комбинированных схем позволяет в некоторых конструкциях в 8–10 раз уменьшить вес энергосиловой установки по сравнению с аккумуляторной батареей и практически создать электромобиль с гибким регулированием затрат энергоносителя и возможностями, не уступающими обычному автомобилю.

Известны опытные образцы автомобилей, сконструированных в США фирмой «Дженерал моторе» («Стирллек-1»). В качестве двигателя в них применен поршневой двигатель типа «Стирлинг» с внешним сгоранием, дающий минимальный выброс токсичных продуктов. Такие же двигатели имеют японские модели «Юаса Батери» и «Тойо Когуо», канадская модель, созданная в университете города Торонто.

Специалисты, оценивая перспективы массового применения электромобилей, полагают, что начиная с 1975–1977 годов можно рассчитывать на более или менее массовый выпуск электромобилей с комбинированным питанием, а после 2000 года – электромобилей на химических источниках тока. Представляется, что, если не появятся какие-либо новые решения в использовании топливных элементов, автомобильный парк нашей страны также начнет пополняться сначала автомобилями комбинированного питания, а эра собственно электромобилей наступит за пределами нашего века.


* * *

Рассмотренные транспортные энергетические установки являются достаточно универсальными. Применение их, а также их возможных модификаций может быть в принципе целесообразно на каждом виде наземного транспорта.

Что касается авиации, то в 30–40-х годах нашего столетия был создан реактивный двигатель, совершивший в ней подлинную революцию. Эта силовая установка логикой самого рабочего процесса приспособлена именно для этого скоростного и сверхскоростного вида транспорта. Если экономичность дизеля, газовой турбины и атомной силовой установки зависит только от эффективности их рабочего процесса, то транспортная эффективность реактивной установки, ее тяговый к.п.д., зависит от скорости движения самого транспортного средства и выражается уравнением:

ητ 2V/U + V ,

где ητ – тяговый к.п.д.; U – скорость струи реактивного двигателя; V – скорость движения транспортного средства.

Таким образом, если реактивный двигатель со скоростью истечения газов из сопла 2100 километров в час позволяет развить скорость полета самолета, равную 970 километрам в час, то тяговый к.п.д. его составит 63 процента. Если же такой двигатель установить на железнодорожном или водном транспортном средстве, следующем со скоростью 200 километров в час, тяговый к.п.д. его снизится до 17,4 процента.

Вот почему реактивный тяговый двигатель представляет собой силовую установку, приспособленную только для воздушного транспорта. Максимальный тяговый к.п.д. он развивает лишь тогда, когда скорость полета только в два раза менее скорости истечения струи газов из двигателя. Это обстоятельство определяет и будет определять дальнейшее совершенствование энергосиловых установок самолетов. Будут созданы новые разновидности газотурбинных двигателей, именно турбореактивных, турбовентиляторных и турбореактивных с дожиганием топлива за турбиной.

Прогресс в области двигателестроения приведет к созданию компрессоров и турбин с высоким перепадом давления, а также охлаждаемых воздухом турбинных лопаток, на которые можно будет подавать газ, нагретый до 1000–1100 градусов.

Основным реактивным двигателем, очевидно, станет двухконтурный турбовентиляторный двигатель с высоким расходом воздуха через внешний контур и с высокой степенью сжатия порядка 25. Заметим, что это сжатие почти вдвое выше, чем у нынешних реактивных двигателей, и больше, чем у дизельного двигателя.

Высокая степень сжатия и высокая температура газов, подаваемых на лопатки, позволяют повысить тяговый и общий к.п.д. двигателя до 35 процентов. Установка таких двигателей на самолетах существенно повысит их грузоподъемность, доведя ее до 100–120 тонн при скорости 920–950 километров в час.


Дальнейшее развитие получат и реактивные двигатели для сверхзвуковых самолетов. Двигательные системы этих самолетов состоят из воздухосборника, собственно двигателя и реактивного сопла с изменяемой геометрией. В двигателе, кроме того, есть форсажная камера, в которой подогревается газ для повышения скорости его истечения.

Вероятно, на сверхзвуковых самолетах будут ставиться двигатели и принципиально иных конструктивных схем, в которых с целью форсирования используется подогрев воздуха, засасываемого вентилятором. В такой силовой установке тяговое усилие увеличивается на 30–40 процентов.

Тяга таких высокофорсированных двигателей достигает очень высоких величин. Например, на самолете «ТУ-144» при скорости 2500 километров в час она достигает 17 400 килограммов, а суммарная тяга четырех двигателей – 69 600 килограммов, что эквивалентно мощности 172 тысяч л. с. Суммарная тяга двигателей самолета «конкорд», рассчитанного на скорость 2,2М, то есть 2260 километров в час, составляет 72 тысячи килограммов, а проект американского сверхзвукового самолета «Боинг-2707», предназначавшегося для полетов со скоростью 2900 километров в час, предусматривал установку четырех реактивных двигателей общей тягой 114 тысяч килограммов, что эквивалентно мощности 450 тысяч л. с., необходимой для набора высоты при дозвуковой скорости. Таковы масштабы силовых установок сверхскоростной авиации!

Новые силовые установки разрабатываются и будут разрабатываться для самолетов вертикального взлета и посадки. Предназначаются они для замены вертолетов, высокая стоимость которых и большие эксплуатационные расходы затрудняют их использование на междугородных линиях.

Для вертикального взлета требуется тяга, несколько большая, чем вес летательного аппарата. Тогда как величина тяги, требуемая для высокоскоростного горизонтального полета, составляет от 6 до 10 процентов его веса. Это обстоятельство обусловливает целесообразность использования двух двигателей – подъемного и маршевого, хотя не исключаются и другие схемы. Двигатель для подъема может быть очень легким и компактным с удельной тягой порядка 20–30 килограммов и с небольшим моторесурсом. Моторесурс такого двигателя, равный 500 часам, обеспечил бы до 5000 полетов, что соответствовало бы сроку службы маршевых двигателей современных конструкций.

В настоящее время есть довольно много экспериментальных образцов самолетов вертикального взлета и посадки, но только для военных целей. Поэтому можно полагать, что появления таких самолетов на Гражданском воздушном флоте, очевидно, следует ожидать не ранее 2000 года или даже первых лет нового столетия.


* * *

Мощные источники энергии, такие, как дизельные двигатели, паровые и газовые турбины и атомные паросиловые установки, таят еще в себе резервы дальнейшего повышения мощности, экономичности и надежности работы.

Дальнейший технический прогресс в области силовых установок может привести к созданию более совершенных комбинированных агрегатов. К ним можно будет отнести установку, сочетающую двигатели внутреннего сгорания с газовой турбиной. Возможно сочетание газовой турбины с паровой установкой. Наконец, возможна установка, объединяющая газовую турбину с атомным реактором, обеспечивающая неограниченный радиус действия транспортного средства, на котором она будет применена.


К началу будущего столетия или в первые его годы, вероятно, получат широкое использование электрохимические источники энергии на автономных транспортных средствах, почти не загрязняющие воздушный бассейн и с низким уровнем шума.

Энергосиловые установки, обусловливая определенный уровень развития транспорта, решают, так сказать, задачу количественного взаимодействия транспорта с народным хозяйством. Они определяют объем перевозок грузов и скорость их перемещения. Что же касается качественной стороны этого взаимодействия, предусматривающей максимальную сохранность перевозимых грузов, минимальные затраты общественного труда на перевозки и погрузочно-разгрузочные работы, то оно решается не тяговыми средствами транспорта, а наличием подвижного состава и тоннажа, отвечающего по своим конструктивным и эксплуатационным характеристикам требованиям народного хозяйства.

Поэтому следующим направлением прогресса на транспорте является приспособление подвижного состава и тоннажа к структуре и свойствам перевозимых грузов; их партионности максимальному использованию комплексной механизации и автоматизации грузовых работ. Причем если реконструкция тяговых средств, начатая в середине нашего столетия, развернулась достаточно широко и дает уже хорошие результаты, то реконструкция подвижного состава и тоннажа практически только начинается. Идет она как по пути совершенствования конструкций, так и по пути последовательного увеличения их грузоподъемности. Такой подход обеспечивает снижение и относительной стоимости их изготовления, и себестоимости перевозок.

На железнодорожном транспорте за истекшие 20 лет грузоподъемность условного вагона возросла на 27 процентов при увеличении числа осей. Это явилось следствием начатой еще в 30-е годы замены двухосных вагонов на четырехосные грузоподъемностью 50–62 тонны. В настоящее время уже разработаны и выпускаются промышленностью восьмиосные полувагоны грузоподъемностью до 125 тонн, восьмиосные цистерны грузоподъемностью 120 тонн.

В недалеком будущем подвижной состав станет более широким, шириной в 3750 миллиметров вместо теперешнего в 3400 миллиметров. Это улучшит весовые параметры грузовых вагонов и позволит удвоить в течение 15–20 лет их грузоподъемность и емкость.

Средняя грузоподъемность автомобиля в нашей стране за истекшее десятилетие выросла на 20 процентов и к концу текущей пятилетки увеличится на 32 процента по сравнению с 1960 годом. Сейчас в автомобильном парке преобладают автомобили грузоподъемностью 2,5–4,0 тонны, в то время как около 75 процентов перевозимых ими грузов представляют собой массовые навалочные грузы, для эффективной перевозки которых требуются автомобили грузоподъемностью 5–8 тонн. А количество их в парке составляет всего 7 процентов. Столь малая доля автомобилей большой грузоподъемности объясняется тем, что для ускорения процесса создания автомобильного транспорта в нашей стране использован принцип массового поточного производства автомобилей при минимальном количестве их конструктивных типов.


    Ваша оценка произведения:

Популярные книги за неделю