355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Китайгородский » Заглянем в будущее » Текст книги (страница 8)
Заглянем в будущее
  • Текст добавлен: 9 октября 2016, 14:24

Текст книги "Заглянем в будущее"


Автор книги: Александр Китайгородский


Соавторы: Арон Кобринский,Натан Кобринский,Николай Семенов,Николай Петрович,В. Молярчук,Игорь Петрянов-Соколов
сообщить о нарушении

Текущая страница: 8 (всего у книги 16 страниц)

Так что, занимаясь экстраполяцией сегодняшнего хода науки, нам придется допустить, что на книжных полках библиотек будет стоять не одна книга «Структуры белка», а многотомное издание.

Трудности структурного анализа не останавливают бурного темпа развития молекулярной биологии в деле выяснения связи структуры белков с механикой управления деятельностью живого существа.

Хочется обратить внимание на совершенно новые черты в организации научных работ в этой области.

Гемоглобин – важный белок: этого не надо доказывать даже и тому, кто не ведает, что эта молекула выполняет важнейшую функцию переноса кислорода. Читатель, беспокоящийся о здоровье своих близких, знает, сколь худо, если анализ дает малый процент гемоглобина в крови.


Гемоглобин – важный белок, но вряд ли имеется в организме сколь-нибудь значительное число «неважных» белков, без которых можно было бы обойтись. Среди белков бездельников нет. Знать механизм действия каждого из них – задача, которая рано или поздно должна быть и будет решена. И ее решением будут заниматься поколения ученых, которые сейчас сидят на школьных и вузовских скамьях и которые сегодня уже в рядах армии исследователей.

До большинства белков у молекулярных биологов еще не дошли руки. А вот за гемоглобин взялись как следует. В мире существует примерно 100–200 человек, которые занимаются изучением связи структуры и свойств гемоглобина. Гемоглобин – это их профессия.

Поскольку нет преград для международных общений ученых, работающих в области структуры и свойств гемоглобина, – это вещество не взрывчато и в качестве материала для атомной бомбы не подходит, люди, занимающиеся одной проблемой, тянутся друг к другу. Им не приходится рыться в журналах для того, чтобы найти статьи друг друга. Они часто встречаются на симпозиумах и конференциях, ведут активную переписку и, таким образом, всегда в курсе последних событий.

Эта международная коллективность работы является характерной приметой сегодняшних фундаментальных (или, как говорят на Западе, «чистых») наук.

Не приходится и говорить, сколь дотошно знают эти 100–200 человек свой предмет. Не так давно мне пришлось присутствовать на докладе, посвященном гемоглобину. Докладчик помнил наизусть, какой аминокислотный остаток расположен за каким. «Обратите внимание, – говорил он, – вот на это место молекулы гемоглобина. Здесь расположен триптофан номер 93, вот здесь, где 48-й остаток сопряжен с 54-м, основная цепь молекулы изгибается…» Рассказ о молекуле гемоглобина шел в тех же тонах и был похож на рассказ географа, прожившего с десяток лет на крошечном острове, где он изучил расположение каждой кочки и толщину ствола каждого дерева.

Нет никакого сомнения, что, «навалившись» таким образом на гемоглобин, это дружное интернациональное общество откроет в течение ближайших лет все секреты его деятельности. А затем отправится на штурм других белков так, как это делает группа строителей, построившая Братскую ГЭС и отправляющаяся после этого на Усть-Илим.

Можно допустить, что, изучив в деталях связь структуры, форму завитков всех белков с их функцией в организме, наука составит рецепты подправки скверно работающих молекул.

Однако представляется более вероятным, что через несколько десятилетий научная медицина будет заниматься исправлением директора клетки – молекулы ДНК. Эта молекула занята фабрикацией белков. Так что вместо того, чтобы подправлять недоброкачественную продукцию, выпускаемую заводом, не лучше ли заменить его директора и парк машин и автоматов?..

Структура молекулы ДНК – дезоксирибонуклеиновой кислоты – была скорее угадана, чем экспериментально найдена. Авторы этого замечательного открытия Д. Уотсон и Ф. Крик широко пользовались сведениями из родственных областей – химии, генетики, кристаллографии. Разумеется, без эксперимента они не смогли бы обойтись. Но тем не менее можно без преувеличения сказать, что они придумали двойную спираль, а когда придумали, то сразу же увидели, как легко и непринужденно эта модель объясняет все известные факты. Такая изящная гипотеза не могла оказаться неверной. И не оказалась. Серия исследований, последовавших за работой Д. Уотсона и Ф. Крика, показала безошибочность модели двойной спирали.

Молекула ДНК командует живым организмом. Она выполняет две функции. Во-первых, служит матрицей для синтеза другой тождественной молекулы ДНК – это процесс, лежащий в основе деления клетки. Во-вторых, ДНК фабрикует белки. Эту операцию она выполняет в две стадии. Молекула ДНК матрицирует молекулы РНК (рибонуклеиновой кислоты), а уж эти молекулы по кусочкам изготовляют разные белки.

Молекула ДНК ответственна за передачу наследственных признаков. Значит, молекула ДНК – это и есть ген? Нет, не так. Генами являются участки молекулы ДНК. Но об этом чуть позже.

Какому главному условию должна удовлетворять молекула, ответственная за передачу наследственности? Принципиальный ответ на этот вопрос был дан еще в 1945 году одним из первооткрывателей квантовой механики Э. Шредингером в своей маленькой книжке «Что такое жизнь?», которая оказала огромное влияние на тех, кто через десятилетие стал называть себя молекулярными биологами. Э. Шредингеру было ясно, что молекула, ответственная за передачу наследственности, должна быть апериодическим кристаллом. Сочетанием этих двух слов, звучащих примерно как «сладкая горечь», поскольку периодичность является признаком кристалла, Э. Шредингер хотел подчеркнуть, что ген должен каким-то образом (каким именно, он не имел представления) сочетать в себе упорядоченность с беспорядком.

Упорядоченность необходима по той причине, что имеется огромное множество одинаковых генов, входящих в состав разных клеток. Но строгий порядок несовместим с идеей хранилища наследственной информации. Упорядоченная система может быть описана десятком, ну сотней параметров, что свидетельствует об информативной бедности ее. Мы не можем послать сколько-нибудь содержательную телеграмму при помощи одних точек, или одних тире, или точек, регулярно чередующихся с тире.

Напротив, система, в которой точки и тире следуют друг за другом в произвольной последовательности, имеет неограниченные возможности для передачи информации.

До того как Д. Уотсон и Ф. Крик приступили к работе, уже было известно, что молекула ДНК представляет собой длинную цепь с боковыми привесками четырех типов. Эти привески, называемые нуклеотидами, суть тимин, цитозин, аденин и гуанин. Первые два привеска поменьше размером, хоть и разные, но очень похожи друг на друга. Два других, побольше, также отличаются друг от друга совсем незначительно.

Незадолго до того, как два будущих нобелевских лауреата приступили к своему поиску, химики стали подозревать, что нуклеотиды молекул ДНК разных особей следуют друг за другом в разном порядке. Длинная молекула, в которой похожие друг на друга, но все же разные нуклеотиды расположены в произвольном порядке, вполне соответствует идее Э. Шредингера об апериодическом кристалле.

Молекула ДНК простейшей бактерии имеет огромную длину. Число привесков измеряется 6 миллионами. Нетрудно прикинуть, что с помощью 6 миллионов слов четырехбуквенного алфавита мы сможем составить книгу объемом в 3 тысячи страниц. Так что концы с концами сходятся великолепно. Трех тысяч страниц вполне хватит, чтобы обрисовать во всех тончайших деталях строение бактерии.

Задачей Д. Уотсона и Ф. Крика являлось придать идее длинной апериодической молекулы конкретные черты и предложить такую модель, которая объяснила бы две основные функции молекулы ДНК – репликацию, то есть способность производить свои копии, и производство молекул белка, строго специфичных для каждого организма.

Д. Уотсон и Ф. Крик показали, что при сближении двух молекул ДНК существует лишь единственный удобный способ сплетения в одно целое двух тождественных молекул. Оказалось, что маленькому привеску тимину удобно подойти к большому аденину, а маленькому привеску цитозину удобно подойти к гуанину.

Природа пошла по пути механика, изготовляющего замок. Замок открывается лишь тогда, когда все выступы ключа попадут в соответствующие впадины замка. Так же точно существует единственная возможность сплетения молекул в двойную спираль: маленькие привески играют роль скважин, а большие – выступов ключей. Достаточно в одну из спариваемых молекул внести изменения, как свивание в двойную спираль станет невозможным.


Принцип «ключ-замок» непредвзято объясняет деление клеток. Двойная спираль расплетается, и каждая из половинок «собирает из имеющегося сырья» вторую молекулу, тождественную родительской.

Это объяснение представляется настолько естественным, что справедливость его была единодушно признана до получения прямых доказательств, которые, впрочем, не заставили себя долго ждать.

Механизм производства белковых молекул выглядел значительно сложнее. «Единицей» передачи наследственности оказалась последовательность примерно тысячи нуклеотидов. Она получила название цистрона. Каждый цистрон ответствен за производство полипептида – цепочки аминокислот, связанных пептидными связями. На смену формуле «один ген – один фермент» пришло правило «один цистрон – один полипептид».

Ген оказался не молекулой, а частью молекулы.

Командиром производства является молекула ДНК В любом крупном промышленном предприятии директор осуществляет руководство производством не непосредственно, а через своих помощников, скажем главного металлурга, главного конструктора и т. д. Как правило, директор сам назначает своих помощников. Так же поступает и молекула ДНК, с тем, однако, различием, что она не только выбирает, но и изготовляет своих сотрудников. Ближайшими исполнителями воли начальства являются молекулы рибонуклеиновых кислот, играющие роли посланцев (м-РНК). Молекула м-РНК (буква «м» – обозначение слова messenger, что значит «посланец») является точной копией участка молекулы ДНК длиной в один цистрон.

Таким образом, производство белков поручается молекулам м-РНК. И правильно. Ибо в противном случае около молекулы ДНК происходила бы нежелательная толчея, приходилось бы распутываться в потоке «сырья», нужного для изготовления разных полипептидов, производство шло бы медленнее и всякого рода ошибки были бы весьма вероятными.

Молекула ДНК производит большое число молекул м-РНК. В принципе столько, сколько она содержит генов-цистронов. Молекулы м-РНК отправляются фабриковать белковые молекулы в цехи, которые называются рибосомами.

Но к этим цехам надо доставить сырье! Это выполняют молекулы-транспортеры – рибонуклеиновые кислоты, но другого сорта. Их обозначают т-РНК. Транспортеров столько, сколько аминокислот. Каждый транспортер тащит свою аминокислоту. Так происходит функционирование организма.

Справедливость этой модели доказана прямыми опытами. Разумеется, нет возможности дать представление обо всем комплексе доказательств, лежащем в основе гипотезы. Мы рассказали о механизме работы живой клетки лишь в самых общих словах. В последние годы даже тонкие детали этого процесса изучены биологами. Секреты производства живой материи стали достоянием науки.


* * *

Любое познание вызывает вопросы: зачем, для чего, увеличит ли это счастье на Земле?

Ответы на них достаточно очевидны. Во-первых, зная кухню изготовления живого, можно вмешаться в ее работу и подправлять повара, если он плохо справляется с задачей. Во-вторых, голова кружится лишь от одной мысли о возможности создавать искусственные существа по заданному плану. Обе задачи еще очень далеки от осуществления и сегодня могут быть названы фантастическими. Однако только что сказанное показывает, что если речь и идет о фантастическом плане действия, то все же оба пункта программы являются реалистическими и не противоречат законам природы. И далее, достаточно ясно, чему надо учиться! Одной из важнейших проблем науки должна быть названа задача синтеза белков и нуклеиновых кислот.

Трудно еще сейчас сказать, в какой форме это умение будет использовано для решения обоих пунктов программы вмешательства в производство живой материи. Есть основания предполагать, что зачастую можно будет «обманывать» клетку, подсовывая ей искусственную нуклеиновую кислоту и меняя таким образом процесс изготовления того или иного белка.

При изучении тонких эффектов работы клетки исключительно важным для биологии является моделирование отдельных стадий процессов, протекающих в живом организме. Для этой цели также нужно научиться изготовлять по заданному плану молекулы белков, молекулы РНК и другие биологические макромолекулы.

Наиболее отдаленной мечтой является, видимо, изготовление самого командира производства – молекулы ДНК. Если эта задача станет реальной, то весь процесс создания живого удастся осуществлять в колбе.

Однако автор этих строк не заносится в своих мыслях столь далеко. Ему хотелось бы, чтобы его ближайшие потомки стали очевидцами превращения медицины в точную науку. А это возможно лишь в том случае, если биохимики и физики научатся определять структуру белков и нуклеиновых кислот каждого индивидуума, сумеют понять молекулярный механизм любой болезни и овладеют техникой вмешательства в жизнедеятельность организма, которая заключается в замене «больных» молекул на «здоровые».

Все перечисленные задачи требуют грандиозных усилий. Но они по плечу современной науке. Автор полагает, что любое химическое исследование оправдано, если оно вносит какой-либо вклад в решение проблем биологии. Мне кажется, что все другие задачи по производству новых молекул и новых веществ являются второстепенными по сравнению с теми задачами, которые ставит перед синтетиками молекулярная биология.

В конце концов, наука, как я уже говорил, выполнила почти все, что от нее требуется для того, чтобы обеспечить человеку комфортабельную жизнь. Но достижение мечты человечества – построение коммунизма – не сводится к успехам техники. Новое общество должно быть содружеством счастливых, здоровых людей. Уничтожение болезней и воспитание гармоничного человека – задачи не менее важные, чем создание новых средств связи, транспорта и жилья. Эти проблемы еще не решены, и здесь наука в долгу у человечества.

Вот по этой причине я и полагаю, что главный прогноз статьи, посвященной будущему науки о веществе, звучит так: будут прежде всего развиваться все области физической химии, которые в той или иной степени содействуют нашему пониманию природы жизнедеятельности и преследуют цель овладения способами вмешательства в святая святых – в производство живой материи.

Доктор технических наук В. С. Молярчук рассказывает о транспорте будущего

Транспорт, являясь отраслью материального производства, в своем развитии подчиняется общим законам экономического и социального развития, в соответствии с которыми функционирует все народное хозяйство. Причем особенностью деятельности транспорта является то, что процесс перевозки состоит практически в превращении тепловой или электрической энергии в энергию механическую, непосредственно используемую для перемещения грузов и пассажиров, то есть совершения транспортной работы.

Это и определяет наличие тесной функциональной зависимости между производительностью труда и энерговооруженностью работников, занятых на транспорте.

Под энерговооруженностью работников транспорта в данном случае понимается количество «лошадиных сил» (л. с.) номинальной мощности парка тяговых средств и установок, приходящихся на одного работающего, то есть частное от деления суммарной мощности тяговых и технических средств на среднегодовое число людей, занятых в эксплуатации.

Теоретическая формула, связывающая величины производительности труда и его энерговооруженности для транспортных средств наземного и водного транспорта, выражается общим уравнением:

П = А · Nу тонно-километров (ТКМ)/человеко-год

Коэффициент А включает такие показатели, характеризующие транспортный процесс, как грузоподъемность подвижного состава, скорость движения, коэффициент рабочего времени технических средств, коэффициент ходового времени, коэффициенты использования грузоподъемности и номинальной мощности технических средств.

Однако анализ этого уравнения с использованием фактических показателей за двадцатилетний период работы всех названных видов транспорта показал, что благодаря комплексному влиянию всех этих факторов величина коэффициента А остается практически постоянной, равной для железнодорожного транспорта 69 500, речного – 97 750 и автомобильного – 3000.

Поэтому можно считать, что на протяжении всего предшествующего двадцатилетия производительность труда этих видов транспорта была прямо пропорциональна только изменению их энерговооруженности.


* * *

Анализ динамики удельной энерговооруженности труда на магистральных видах транспорта, в частности на железнодорожном, показал, что основной причиной ее непрерывного роста является увеличение мощности тяговых средств (в данном случае – локомотивов), используемых для совершения транспортной работы при сравнительно небольшом изменении общего контингента работающих. Именно рост средней мощности локомотива с 2000 до 3500 л. с. обусловил увеличение средней энерговооруженности труда с 11,5 до 20,4 л. с. на человека и соответствующее увеличение производительности труда с 800 до 1400 тысяч тонно-километров (ткм) в год на одного работающего в эксплуатации транспорта. Производительность труда на транспорте росла благодаря тому, что с возрастанием мощности тяговых средств появилась возможность увеличивать вес поездов на железных дорогах, грузоподъемность автомобилей, судов морского и речного флота, а также увеличивать число пассажирских мест на самолетах с одновременным ростом скоростей их движения.

Главнейшим требованием, предъявляемым к транспортным силовым установкам, является требование удовлетворять жестким весовым и габаритным ограничениям, вытекающим из условия их размещения на подвижном составе. Транспортные установки должны быть экономичны по расходу топлива, так как увеличение запаса горючего, расходуемого на собственные нужды, снижает их полезную грузоподъемность и сокращает радиус действия судов, самолетов, автомобилей и локомотивов.

Во второй половине нашего века паровые поршневые машины, устанавливаемые на всех видах наземного транспорта, достигли предела возможных габаритных и весовых норм и стали сдерживать дальнейший рост мощности тяговых средств и объема транспортной работы в целом. Поэтому 50-е и 60-е годы нашего столетия ознаменовались интенсивным процессом энергетического перевооружения транспорта.


Так называемая техническая реконструкция транспортных средств как в нашей стране, так и за рубежом заключалась в замене паровых поршневых машин двигателями внутреннего сгорания (ДВС) с электрическим и гидромеханическим приводами. Благодаря этому вместо 70–90 килограммов веса конструкций, которые приходились на каждую л. с. паровоза, стало достаточно 45–60 килограммов на тепловозах и 23–37 килограммов на электровозах. Или при тех же нагрузках на ось локомотива, которые жестко лимитируются в условиях железных дорог, представилась возможность повысить мощность тепловозов в 2,2 раза и электровозов в 2,7 раза по сравнению с мощностью наиболее совершенного паровоза. Кроме того, переход на двигатели внутреннего сгорания позволил в 4–5 раз снизить расход топлива на совершение одной и той же работы, увеличив при этом в 5–10 раз радиус действия электровозов и тепловозов.

Жизненная необходимость повышения мощности силовых установок транспорта определила весьма быстрые темпы их реконструкции. Так, только с 1960 по 1970 год процент локомотивов с новыми прогрессивными энергоустановками на железнодорожном транспорте СССР возрос с 26,2 до 92, двигателей внутреннего сгорания на морском флоте с 66,9 до 85 и речном транспорте с 70 до 94.

Еще больший эффект был достигнут при замене поршневых двигателей на самолетах турбореактивными. Значительно снизился удельный вес силовых установок, приходящийся на 1 л. с. Если в поршневых авиационных двигателях на 1 л. с. приходилось 0,55 килограмма, то в турбовинтовых – около 0,06 килограмма. Это позволило создавать двигатели огромной мощности, а самолеты – большой грузоподъемности и высоких скоростей полета, недостижимых на поршневых самолетах как из-за большого веса двигателей, так и свойств пропеллера, тяговые качества которого резко ухудшаются при достижении скоростей полета в 700–750 километров в час.

Замена поршневых двигателей турбореактивными позволила в весьма короткие сроки повысить грузоподъемность отечественных самолетов в 3–4 раза и скорость в 2–2,5 раза.

Таким образом, проведенная в последние годы техническая реконструкция средств тяги и силовых транспортных установок сняла ограничения, наступившие в дальнейшем прогрессе паровых двигателей, и создала все условия для беспрепятственного развития традиционных видов транспорта. Это значит, что в ближайшие десятилетия, вплоть до рубежа XX и XXI веков, транспортировка грузов будет осуществляться на традиционных видах транспорта и в первую очередь на железнодорожном транспорте.

В связи с укреплением международных связей и расширением международной торговли существенное развитие получит морской транспортный флот. Не потеряет своего значения речной транспорт. Получит дальнейшее развитие автомобильный и трубопроводный. Все большая роль в перевозках пассажиров будет принадлежать гражданской авиации и автомобилям общественного и личного пользования.

Стимулировать развитие каждого вида транспорта и определять его возможности будет в первую очередь прогресс энергетических установок, ибо они оказывают решающее влияние на его рабочие характеристики, экономику, безопасность и мобильность.

Усовершенствование двигателей влечет за собой не только повышение основных эксплуатационных показателей транспортных систем, но и может даже расширить и изменить сферы их рационального использования как с точки зрения народного хозяйства, так и обороны страны.

Использование электрической и дизельной тяги на железных дорогах позволило за истекшие двадцать лет повысить вес поезда в 1,8 раза и скорость движения на 60 процентов, то есть резко улучшить основные показатели транспортного процесса. Благодаря этому объем перевозок возрос за двадцатилетие более чем в 4 раза. Существенно облегчился труд персонала, так как были ликвидированы тяжелые и трудоемкие операции по обслуживанию локомотивов.

Автоматизированные системы управления тепловозами и электровозами позволяют использовать их по системе многих единиц, а дистанционное управление может обеспечить такое размещение локомотивов в составе поезда, при котором будет достигнуто равномерное распределение тяговых усилий и действия тормозных систем. Эти новые свойства электрической и тепловозной тяги дают возможность практически неограниченно повышать вес поездов и в то же время предъявлять меньшие требования к увеличению агрегатной мощности локомотивов, величина которой может быть доведена до 4–6 тысяч л. с. в секции для тепловозов и до 10–14 тысяч л. с. для электровозов.

Наряду с повышением мощности локомотивов будет повышаться их экономичность за счет применения новых систем управления с использованием полупроводниковых схем, улучшения рекуперации (возвращение) электрической энергии в контактную сеть, применения более совершенной изоляции и других специальных материалов.

Не исключена возможность использования на железнодорожных локомотивах газовых турбин большой мощности, работающих на тяжелых сортах жидкого топлива. Газотурбинные двигатели для скоростного мотор-вагонного подвижного состава на неэлектрифицированных линиях уже применяются на некоторых зарубежных линиях.

Особенность профиля пути железных дорог заключается в том, что трудные участки, на которых используется полная мощность локомотивов, составляют всего 20 процентов от общей длины сети. Эта особенность предполагает целесообразность появления комбинированных локомотивов, имеющих дизель как постоянную установку и газовую турбину в качестве форсажного средства для разгона поезда и преодоления трудных участков пути. Образцы подобных локомотивов уже созданы в ФРГ.

И все же, несмотря на использование всех этих новых тяговых средств, можно уверенно считать, что электровозы и тепловозы, начавшие строиться в 20-х и 30-х годах нашего столетия по личному указанию В. И. Ленина и получившие массовое распространение к 70-м годам, еще десятилетия будут служить основной движущей силой на наших железных дорогах.


* * *

В настоящее время дизельные двигатели являются главной силовой установкой на судах. Судовой дизель достаточно надежен в эксплуатации, реверсивен, то есть позволяет изменять направление вращения вала и осуществлять маневры судна без дополнительных сложных механизмов, достаточно экономичен, так как использует топливо с к.п.д. 40 процентов. Делая 90–125 оборотов в минуту, он передает энергию непосредственно на гребные винты без сложных и дорогостоящих редукторов.

Однако такой дизель имеет и существенные недостатки. Во-первых, он относительно тяжел. При удельном весе 35–40 килограммов на 1 л. с. вес современных двигателей мощностью 20 тысяч л. с. достигает 700–800 тонн. Во-вторых, он довольно громоздок: длина такого дизеля 25 и высота около 12 метров. Для размещения такой машины нужно большое помещение. В-третьих, наличие шатунно-кривошипного механизма и массивных поршней и шатунов, работающих с большими инерционными нагрузками, требует повышенной прочности корпуса и всех конструкций машинного отделения.

Все это дает основание считать, что дальнейшее увеличение мощности судовых дизелей даже при переходе к среднеоборотным конструкциям хоть и будет возрастать, но ограничится 50–60 тысячами л. с.

В последнее время на судах получили применение, и другие типы установок и в первую очередь паровые и газовые турбины (ГТУ). Газотурбинный двигатель судового типа, созданный на базе конвертированной авиационной газовой турбины, почти в 15 раз легче равного ему по мощности дизеля. И, несмотря на то, что топливная экономичность газовых турбин ниже, чем ДВС, – их термический к.п.д. не превышает 20–23 процентов против 40–45 у ДВС, – ряд преимуществ ГТУ делает их достаточно конкурентоспособными, так как они более дешевы в эксплуатации и допускают большую степень автоматизации, чем дизели. Газовая турбина проста в ремонте и техническом обслуживании, более надежна в работе, поскольку не имеет сложных механических систем регулирования и управления, быстро запускается.


У конвертированных авиационных газовых турбин малый по сравнению с другими силовыми установками моторесурс. Но, пожалуй, это единственные двигатели, пригодные для мощных скоростных судов, использующих новые принципы движения. В настоящее время они применяются на кораблях Военно-Морского Флота в качестве двигателей форсирования.

Надводные суда Военно-Морского Флота по роду своей службы должны подолгу находиться в море. Большую часть времени они курсируют с умеренными скоростями и затратами мощности. Но должны иметь возможность совершать кратковременные переходы и маневры на высоких скоростях. В первом случае к.п.д. силовой установки имеет большое значение; во втором ее экономичность уже не играет такой роли. Вот почему на судах подобного типа стали сочетать более экономические силовые установки (дизели, паровые турбины) длительного режима с мощными газовыми турбинами, включаемыми на короткое время.

Диктовалось такое сочетание еще характером и природой сопротивления, оказываемого движению морских судов. Если сопротивление движению наземного транспорта растет пропорционально квадрату скорости, то сопротивление движению судов из-за создаваемого ими дополнительного волнового сопротивления растет пропорционально кубу скорости. С увеличением скорости хода резко возрастает расход мощности силовой установки. Так, эсминец для движения со скоростью 25 узлов затрачивает мощность 15 тысяч л. с., со скоростью 31 узел – 30 тысяч л. с., а при увеличении до 35 узлов – 45 тысяч л. с. Учитывая это, англичане на строящемся эсминце предусматривают 15-тысячесильную паротурбинную установку и газовую турбину авиационного типа мощностью 30 тысяч л. с., использующуюся только в режиме форсированной работы.

В США на судах морской пограничной охраны военно-морского флота устанавливаются дизельные двигатели мощностью 600 л. с. совместно с газотурбинными двигателями мощностью 14 тысяч л. с.

Не исключена возможность такого сочетания и на транспортных судах, работающих как в водоизмещающем, так и высокоскоростном глиссирующем режимах или с использованием выдвижных подводных крыльев при перевозках особо ценных грузов.

На обычных водоизмещающих судах в ряде случаев ставятся экспериментальные турбины более тяжелого типа с повышенными экономичностью и моторесурсом. В 60-х годах в США было построено военно-транспортное судно «Каллаген», снабженное двумя газовыми турбинами мощностью по 20 тысяч л. с. и развивающее скорость хода до 25 узлов (46 километров в час). В нашей стране уже несколько лет работает аналогичное газотурбинное судно «Парижская коммуна». Строят суда с такими же газотурбинными двигателями и другие государства: сейчас заложено семь подобных кораблей.

Газотурбинные суда постройки 70-х годов будут существенно отличаться от уже работающих; они будут снабжены силовыми установками большей экономичности и большей надежности. Как свидетельствуют расчеты, проведенные в ЦНИИМФе, применение теплоутилизационных контуров позволит довести эффективный к.п.д. судовых газотурбинных установок до 30–32 процентов и выше.

Учитывая тот факт, что газовые турбины намного компактнее и легче дизельных установок, и то, что агрегатную мощность газовых турбин можно доводить до 100 тысяч л. с., в будущем на скоростных и специализированных судах морского и речного флота газовые турбины будут играть существенную роль в качестве силовых установок.

Разработка атомной силовой установки (АЭУ) явилась, пожалуй, наиболее значительным инженерным достижением Военно-Морского Флота. Этот успех во многом изменил роль и значение отдельных его родов и, в частности, роль и значение атомного подводного флота. Современные атомные подводные лодки способны многие месяцы находиться в действии; они обладают высокой скоростью хода, труднопоражаемы и способны производить стрельбу ядерными снарядами из погруженного положения.

Все эти качества и возможности, которые не могут быть обеспечены никакими другими средствами, оправдывают большие строительные затраты и высокие эксплуатационные расходы, связанные с использованием атомной энергии.


    Ваша оценка произведения:

Популярные книги за неделю