355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Китайгородский » Невероятно – не факт » Текст книги (страница 5)
Невероятно – не факт
  • Текст добавлен: 10 сентября 2016, 01:01

Текст книги "Невероятно – не факт"


Автор книги: Александр Китайгородский


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 5 (всего у книги 17 страниц)

Если вероятности невелики…

Во время войны довольно часто стреляли из винтовок по вражеским самолётам. Может показаться, что это безнадёжное дело; о прицельной стрельбе здесь и речи быть не может, поскольку лишь пули, пробивающие бензобак или поражающие лётчика, приносят результат. Было установлено, что вероятность удачного выстрела равнялась 0,001. Действительно мало. Но если стреляет одновременно много бойцов, то картина меняется.

Примеров, в которых нас интересует вероятность многократно осуществлённого события, обладающего малой вероятностью, множество. Например, с задачей попадания в самолёт из винтовки полностью совпадает задача о выигрыше в лотерею по нескольким билетам.

Каждая серия «выстрелов» может быть как неудачной, так и закончиться одной удачей, а то и несколькими. Соответствующее распределение вероятностей было найдено французским математиком Пуассоном.

В любом математическом справочнике вы найдёте формулу Пуассона, а также таблицы, позволяющие найти интересующую вас вероятность без расчёта.

Средняя частота – это результат, идеально совпавший с предсказанием теории вероятностей. Если вероятность выигрыша равняется 0,01, то из ста билетов выиграет 1, а из тысячи – 10. Единица и десять это и есть средние частоты выигрыша для серий в сто и тысячу билетов. Конечно, средняя частота может быть и дробным числом. Так, для серий в десять билетов при том же значении вероятности средняя частота выигрыша равняется 0,1. Это значит, что в среднем одна из десяти серий по десяти билетов будет содержать один выигрыш.

В таблицах Пуассона приводятся цифровые данные для всевозможных значений средних частот. Чтобы было ясно, в каком виде нам сообщаются эти сведения и для общей ориентировки приведём несколько чисел характеризующих распределение вероятности при средней частоте, равной единице. Вот эти числа.

Ста выстрелами при вероятности попадания в 0,01 или тысячью выстрелами при вероятности попадания в 0,001, или миллионом при вероятности в 0,000001, мы поразим цель один раз в 37 процентах случая, 2 раза в 18 процентах, 3 раза в 6 процентах… 8 раз лишь в 0,001 процента. А промахнёмся сколько раз? Промахов точно столько же, сколько одноразовых попаданий, то есть 37 процентов.

Приведённые проценты, как и любые числа вероятностей, работают точно лишь для очень большого числа серий. Если миллион людей приобрёл лотерейные билеты, выигрывающие с вероятностью в 0,01, то 37 процентов из них не выиграют ни разу, а 37 процентов других лиц обязательно выиграют по одному билету и т.д. Если же мы заинтересуемся выигрышами только 100 человек, то должны считаться с вероятными отклонениями от среднего. В «среднем» 37 из них не выиграют ни разу. Отклонения здесь от «среднего» не превысят 6?sqrt(37). А с такими отклонениями, как мы уже знаем, следует считаться и помнить, что число неудачников будет находиться между 31 и 43. Конечно, не исключены и бо?льшие отклонения в обе стороны, но их вероятность совсем уж невелика.

Узнав из условий розыгрыша, что в среднем на сотню лотерейных билетов один выигрывает, владелец билетов будет считать себя несчастливым, если на его 100 билетов выигрыш не упадёт ни разу. Если же ему не повезёт несколько раз, то он, возможно, заподозрит устроителей лотереи в несправедливости. Однако сделаем простой расчёт. Если вероятность одного «промаха» равна 0,37 (37%), то вероятность двух «непопаданий» равна квадрату этого числа (0,14), а трех – кубу (0,05). А это не такие уж малые доли, чтобы делать столь решительные выводы.

Теория рекламы

Мой знакомый – американский математик мистер В., ранее занимавшийся достаточно успешно приложениями теории вероятностей к вопросам структуры жидкостей, переменил область своей деятельности.

– Я занимаюсь теорией рекламы, – сообщил он мне при последней нашей встрече.

– И это интересно?

– Бесспорно. Здесь много занятных тонкостей.

– А, собственно говоря, что же является конечной целью теории?

– Хотя бы получение ответа на вопрос, который интересует любого нашего промышленника: сколько денег имеет смысл потратить на рекламу?

– Но каковы же математические методы, которые вы используете?

– Да все те же, с которыми я имел дело до сих пор. Теория рекламы, теория популярности актёра, теория известности писателя, прогноз бестселлеров литературы – все это классический предмет теории вероятностей. Не я один, а много моих коллег заняты этим приложением теории вероятностей к проблемам нашей капиталистической действительности.

– Может быть, вы расскажете мне о наиболее интересных теоретических находках в этой области?

– С удовольствием. Надеюсь, мне не надо доказывать вам, что, прежде чем добиться того, чтобы вещь, или событие, или некая персона понравились, надо, чтобы они стали известными потребителю?

– Без сомнения.

– Поэтому не будем пока касаться проблемы «нравится», а остановимся на вероятности получения неким гражданином сведений о существовании сигарет Честерфилд, лезвий для бритья фирмы Вильсон, романа Агаты Кристи «Убийство по азбуке» или киноактрисы Бетти Симпсон. Мы оставим в стороне систематические знания, приобретаемые в результате обучения в школе или университете, и будем интересоваться лишь теми сведениями, которые люди приобретают «на ходу», не преследуя образовательных целей. На каждого из нас через разные каналы: радио, газеты, телевидение, болтовню с друзьями – обрушивается мощный поток информации, получаемой «по случаю». Фамилии актёров, названия книжных новинок, новых сортов сигарет, лезвий для бритья и многое другое мы узнаем большей частью случайно. В зависимости от размаха рекламы, от интереса, который общество проявляет к тому или иному «модному» предмету, имеется некоторая определённая вероятность о нём услышать. Эта вероятность более или менее одинакова для однородной группы населения – скажем, для жителей города, имеющих телевизоры и радиоприёмники и выписывающих две-три наиболее распространённые газеты.

Разумеется, равная вероятность получить информацию вовсе не означает, что по истечении какого-либо срока все люди окажутся одинаково сведущими. Случайное получение информации очень похоже на лотерейный выигрыш. Действительно, среди тысячи обладателей по десяти лотерейных билетов окажутся лица, которые не выиграют ни разу, которые выиграют один раз, найдутся обладатели двух счастливых билетов, будут и такие везучие игроки, у которых выигрыши выпадут на три, четыре и более билетов. Так что…

– Вы хотите сказать, что вероятность «столкновения» с рекламой, вернее, не с рекламой, а с упоминанием о предмете или лице, известность которого обсуждается, подчиняется распределению Пуассона?

– Совершенно верно. Если, скажем, вероятность натолкнуться на соответствующую информацию в течение одного дня равна одной сотой, то через сто дней 37 процентов населения, так сказать, омываемого этим потоком информации, так и не столкнётся с этой рекламой, другие 37 процентов встретятся с упоминанием о рекламируемом предмете 1 раз, 18 процентов – два раза, 6 процентов – три раза и т.д. Эти числа, как вы, конечно, помните, даёт закон Пуассона.

– Значит, при вероятности узнавания, равной одной сотой в день, через сто дней обеспечивается известность среди 63 процентов населения?

– Не совсем так. У людей, к сожалению торговцев, память коротка, да и жизнь суматошная. С одного взгляда на рекламу мало кто запоминает рекламируемую вещь.

– Так что у вероятности узнавания имеется ещё и второй множитель?

– Вот именно!

– А какова величина этой поправки на невнимательность?

– Разумеется, она различна в зависимости от того, о чём идёт речь. Я могу вам сообщить, к примеру, данные, полученные из анализа анкет, распространявшихся среди телезрителей. Из этих данных была вычислена вероятность запоминания с одной встречи. Оказалось, что она колеблется между 0,01 и 0,1.

– Существенная поправка к распределению Пуассона!..

– Конечно. Судите сами: если подсчитать процент населения, который получит информацию через сто дней, то из 37 процентов «столкнувшихся» с рекламой один раз, информированными окажутся лишь 3,7 процента (если мы примем вероятность запоминания с одной встречи равной 0,1). Из 18 процентов «сталкивавшихся» с информацией два раза доля лиц, усвоивших рекламу, будет больше. Действительно, вероятность не запомнить с одного раза равна 0,9, а не запомнить после двух встреч равна квадрату этой величины, то есть 0,81. Запомнивших будет 0,19. Таким образом, процент информированного населения в нашем примере будет подсчитываться так:

37·0,1 + 18·0,19 + 6·0,27 + …

– Да, до 63 процентов далеко!..

– Вот этот коэффициент невнимательности и приводит к необходимости назойливой, торчащей на всех углах рекламы. Чтобы каждый потребитель узнал о товаре, он должен сталкиваться с соответствующей информацией очень часто.

– Мы всё время говорим с вами об известности. Но ведь знать – это ещё не значит предпочитать!

– Так-то оно так, – улыбнулся мой собеседник. – Но роль рекламы оказывается решающей. Недостаточная реклама означает малую известность, а малая известность влечёт двойной проигрыш в конкурсе на высшую оценку. Первая причина ясна. Те, кто не знает, естественно, не могут подать голос за то, что им неизвестно. Вторая причина состоит вот в чём. Менее популярные вещи, книги, актёры, писатели… известны наиболее образованным людям. Но поскольку они образованны, они делают свой выбор среди значительно большего числа конкурентов. По этой причине вероятность высшей оценки предмета или объекта, который выбирается знатоками, становится меньше вероятности высшей оценки, которую выносит менее осведомлённый судья.

– Я начинаю теперь понимать, почему в вашей стране тратят столько денег на рекламу!

– Ещё бы!.. Вот вам простая числовая иллюстрация. Имеется 10 лучших ресторанов в городе. Из них два, скажем, «Империал» и «Континенталь», разрекламированы много более других. Гурманы знают о существовании всех десяти ресторанов, которые примерно одинаково хороши. Случайные же посетители ресторанов, как правило ужинающие у себя дома, знают лишь о существовании «Империала» и «Континенталя». Положим, что тысяча человек собирается сегодня вечером поужинать вне дома. Из них 500 знатоков и 500 профанов. На первый взгляд может показаться, что менее разрекламированные рестораны не будут в проигрыше. Однако, будут – и в очень большом! 500 профанов с вероятностью 1/2 выберут один из двух наиболее известных ресторанов. Из них 250 очутится в «Империале» и 250 в «Континентале». А 500 знатоков с вероятностью 1/10 выберут один из десяти ресторанов. Таким образом, в «Империале» и «Континентале» окажется по 300 человек, а в остальных 8 ресторанах – по 50. Как видите, наименее компетентные потребители играют решающую роль.

– Да, воистину реклама – двигатель торговли!

– Бог с ней, с торговлей. Меня огорчает во всём этом деле столь лёгкая возможность искажения истинной цены культуры. Как несправедливо получается, что в популярности человека искусства, произведения искусства самую последнюю роль играет мнение знатоков!

– Не забывайте, что такой вывод верен только в том случае, если реклама находится в нечестных руках. Если же знатоки будут влиять на то, чтобы объём рекламы был пропорционален заслугам, то всё будет на своём месте!

– Это верно, – вздохнул мой собеседник, – но как этого у нас добиться?

Случайности, складывающиеся в законы

Кривая статистического распределения, построенная на основе большого числа измерений, испытаний или опросов, передаёт сущность событий и является их законом.

Пожалуй, первый вопрос, который заинтересует исследователя, – это стабильность кривой распределения. Действительно, если я знаю, что явление меняется медленно, то могу использовать сегодняшнюю кривую для предсказаний завтрашних событий.

В то же время сам факт систематического смещения кривых распределения весьма многозначителен и свидетельствует о каких-то важных переменах. Допустим, смещается кривая распределения солнечных дней, построенная по данным ряда десятилетий, – значит, происходят изменения в геофизических факторах, определяющих погоду; в изменениях кривой распределения среднего возраста жизни заложена информация о борьбе с болезнями, и т.д.

Напротив, если обнаруживается исключительное постоянство кривой распределения, например рождения мальчиков и девочек, то это значит, что отношение младенцев обоего пола есть генетическое свойство, глубоко запрятанное в живой клетке и не поддающееся влиянию внешней среды.

Покажем, какие богатые выводы можно сделать из постоянства статистических данных.

Во Франции в течение долгого времени число ежегодно рождавшихся мальчиков относилось к числу девочек как 22:21. Иными словами, нормальная кривая для этого отношения, построенная по месяцам за много лет, имеет максимум при 22:21. Просматривая записи рождений мальчиков и девочек в Париже (собранные за 39 лет), Лаплас нашёл, что максимум кривой лежит при отношении 26:25. (26:25 < 22:21). Используя теорию нормальной кривой, можно убедиться, что это отклонение – различие в дробях – не может быть случайным. А если так, то оно должно иметь реальное объяснение. «Когда я стал размышлять об этом, – пишет Лаплас, – то мне показалось, что замеченная разница зависит от того, что родители из деревни и провинции оставляют при себе мальчиков (мужчина в хозяйстве – более ценная рабочая сила), а в приют для подкидышей отправляют девочек». Он действительно изучил списки приютов и убедился в справедливости своего предположения.

Встречается множество случаев, когда нет преимуществ у отклонений по кривой «вправо» или «влево». А если эти отклонения являются суммарным эффектом большого числа случайностей, то распределение будет гауссовым. (Математики могут доказать справедливость этого утверждения достаточно строго.)

Если же мы ждали симметричной кривой, а получили «хвост» в одну сторону и даже в стороне от колокола наметился ещё один холмик поменьше, то над этим фактом стоит задуматься: вероятно, исследованию подвергалась неоднородная группа явлений. Как это может быть? Например, речь идёт об измерениях роста жителей какого-нибудь города, в котором живут представители двух рас. Пусть девяносто процентов жителей относится к высокорослой расе, а десять процентов – к низкорослой. В этом случае результаты измерений роста не создадут симметричную гауссову кривую: сбоку от среднего роста может наметиться добавочный горб кривой, во всяком случае, кривая распределения будет иметь разные хвосты влево и вправо.

Выводы статистики приобретают ценность тем большую, чем обширнее материал, на основе которого построена гауссова или иная статистическая кривая.

Имея перед глазами кривую статистического распределения или статистические таблицы, мы можем делать предсказания двух типов: уверенные – детерминистские, если речь идёт о средних значениях, и вероятностные – если речь идёт об индивидуальном событии. Правда, обычно вероятностные предсказания не распространяются на конкретное лицо. Скажем, если известно, что средний процент брака в цехе равен 1,5 процента, то есть смысл говорить о вероятности, что 15 деталей из тысячи, изготовленных слесарем Ивановым, попадут в ящик для стружки лишь в том случае, если об Иванове ничего не известно.

На земле живёт очень много людей, они выполняют похожие дела, совершают похожие поступки. Поэтому почти все события, в том числе и такие, которые кажутся редкими и исключительными, свершаются достаточно часто и являются предметом статистики.

Обратимся к таким печальным событиям, как автомобильные катастрофы. Их, оказывается, так много, что можно говорить не только о средних числах катастроф вообще, но и «рассортировать» их по типам причин, из-за которых они произошли. Исследователям известно, например, сколько аварий происходит по вине велосипедистов; есть данные для сравнения числа катастроф, происшедших по вине велосипедистов, имеющих фонари и не имеющих; в сводках автомобильных катастроф, публикуемых ООН, можно увидеть, как они распределяются по возрастным категориям водителей. Из этих сводок видно, что наиболее безопасными для окружающих являются водители среднего возраста; наиболее опасными оказываются мальчишки; небольшое увеличение числа несчастных случаев наблюдается у водителей, перешагнувших за семьдесят. Внутри каждой категории возрастов введены графы для разной погоды, разного времени дня и ночи и т.д. и т.п. И приходится только поражаться стабильности этих данных.

Отнесённые к числу, характеризующему интенсивность движения в стране (что-то вроде числа автомобилей на число километров дорог), данные по катастрофам оказываются совершенно универсальными.

Казалось бы, что может быть случайнее столкновения двух машин. Здесь и усталость водителей, и состояние дороги, и то, что автоинспектора называют «дорожная обстановка», тут и случайно подвернувшийся прохожий, и каток, оставленный на обочине дорожными рабочими, тут и состояние тормозов автомобилей, и ещё бесчисленное множество маленьких и больших факторов. Да, действительно, это типично случайное событие, но так как причин очень много, то законы статистики здесь выполняются безупречно строго.

Недавно был опубликован анализ статистических данных, казалось бы, очень редких событий – исследовалось творчество в области научно-технической деятельности. В статье ставился вопрос: сколь часто одно и то же открытие или изобретение делается одновременно несколькими людьми. Обработка материала привела к следующим выводам: за определённый промежуток времени два человека одновременно пришли к одному научному результату в 179 случаях, три человека – в 51, четыре человека – в 17, пять человек – в 6… Исследователь убедительно показал, что к творческой научной деятельности можно смело применять законы теории вероятностей. Рассуждал он следующим образом.

Представьте себе сад научных открытий. В нём имеется яблоня, на которой растёт тысяча спелых яблок. По саду гуляет тысяча учёных, глаза которых завязаны. Их подводят к яблоне и просят одновременно сорвать по одному яблоку. (Поскольку задача математическая, то мы просим снисхождения к реальности обстановки.) Предполагается, что каждый из участников может дотянуться с равной вероятностью до любого яблока. При такой постановке вопроса можно рассчитать, каковы же шансы обнаружить на одном яблоке одну или несколько рук друзей по профессии. Получаются данные, поразительно близкие к тем, которые мы привели выше.

Статистические распределения всегда представляют познавательный интерес, а в очень многих случаях знание статистики даёт руководство к действиям.

Остановимся же на двух важных примерах: на страховании жизни и предсказании погоды.

Двум… не бывать!

Люди не очень любят размышлять о грядущей неприятности, а тем более о кончине дней своих и своих близких. По этой причине наш разговор о статистике смертей может показаться излишним и бестактным. Однако наступает день, когда мы начинаем интересоваться дальнейшей своей судьбой и вопросами страховки.

Допустим, вы хотите застраховать в одну тысячу рублей свой дом от пожара, своё имущество от кражи или свою жизнь от смерти сроком на один год. То есть вы хотите, чтобы в случае, если произойдёт какая-либо из этих неприятностей, вам (или вашим наследникам) уплатили тысячу рублей. Чему должен равняться страховой взнос за год, чтобы государству (или страховой компании) имело бы смысл заключить с вами контракт?

Нетрудно сообразить, что суть дела состоит в том, чтобы знать вероятность того несчастного случая, от которого вы себя страхуете. Не всегда это простая задача. Волей-неволей страховой агент должен абстрагироваться от частностей, скажем он постарается учесть состояние вашего здоровья, чтобы отнести вас к определённой категории плательщиков. Правда, ему останется неизвестно, насколько умело и нерискованно вы водите свой автомобиль или насколько вы вспыльчивы и как часто вступаете в уличные драки. Однако, пренебрегая всем этим и многим другим, Госстрах отнесёт вас к одной из возрастных категорий, составленных на основании длительных наблюдений и о которых известна статистика смертей. Эти статистические данные сведены в таблицы «дожития». В них записано, сколько из миллиона родившихся в один и тот же год мужчин в данной категории доживают до определённого возраста. Например, во Франции в 1895 году (у меня эти таблицы под рукой, а все примеры одинаково показательны) до 40 лет доживало 717 338 человек, а до 41 года – 711 352 человека. Таким образом, вероятность сорокалетнего человека прожить ближайший год равняется 0,992, соответственно вероятность умереть равняется 0,008. Из миллиона человек до 80 лет «добралось» 166 162, до 81 года – 145 553. Вероятность прожить год с 80 до 81 уже равняется 0,876, а вероятность покинуть мир 0,124.

Чтобы вести свою работу, так сказать, «вничью», страховой организации следует определить страховые взносы по страховкам следующим образом. Меньше чем в одном случае из ста страховок придётся выплатить тысячу рублей семьям сорокалетних клиентов. Чтобы оправдать эту тысячу рублей, надо установить страховой взнос что-нибудь около 10 рублей в год за тысячу рублей страховки. Принимая во внимание, что страхование должно приносить доход, эта сумма должна быть соответственно увеличена. Страховка восьмидесятилетних стариков возможна лишь на гораздо более дорогих началах: из ста страховок уплатить придётся в среднем более чем в двенадцати случаях. Следовательно, годовой страховой взнос должен быть выше чем 120 рублей за тысячу.

Надеюсь, что читатель не сердится на меня за напоминание о конечности жизни; мне кажется, что «Momento mori!» – полезный возглас. Человек живёт значительно разумнее, спокойнее и полнее, если он время от времени вспоминает о сроке, отпущенном ему природой, зная, сколько «в среднем» живут люди его возраста.

Кстати, для ответа на этот последний вопрос существуют особые таблицы среднего срока ожидаемой жизни. Скажем, для пятидесяти лет этот срок близок к 20 годам, для шестидесяти – к 13, для семидесяти – к 8 и для восьмидесяти – к 4 годам. Смысл этих чисел таков: средняя продолжительность жизни лиц, перешагнувших за пятьдесят, равна 70 годам, за шестьдесят – 73, за семьдесят – 78 и за восемьдесят – 84.

Так что не надо прибегать к услугам кукушки, чтобы выяснить, сколько ещё осталось лет для того, чтобы поумнее распорядиться своей жизнью.


    Ваша оценка произведения:

Популярные книги за неделю