355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Китайгородский » Невероятно – не факт » Текст книги (страница 4)
Невероятно – не факт
  • Текст добавлен: 10 сентября 2016, 01:01

Текст книги "Невероятно – не факт"


Автор книги: Александр Китайгородский


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 4 (всего у книги 17 страниц)

Таким образом случайность изгоняется, и трапезы львов получают своё истолкование. К сожалению, миф не даёт нам возможности заранее узнать, с каким львом мы имеем дело; его категория выясняется лишь после его обеда.

Понимание законов вероятности ставит все на свои места и является важнейшим оружием против мифов, против религии, против фатализма.

С одной стороны, нельзя и не надо искать объяснения случайным событиям, вероятность которых хотя и мала, но вполне разумна. Скажем, очень соблазнительно приписать всесильности материнской любви чудесное избавление от гибели её ребёнка. Ребёнок играл под балконом, мать отозвала его, а через пять секунд от карниза оторвался огромный кусок штукатурки и упал на то самое место, где играло дитя. Так и хочется сказать, что «Сердце матери – вещун», или «Материнская любовь – большая сила», или «Бог не допустил гибели невинного младенчика» и т.д. и т.п. Но происшедшее не нуждается в таких ремарках, ибо вероятность события вполне приемлема и иного объяснения не требует.

С другой – владение законами вероятности позволяет с уверенностью отнести определённый класс событий к невозможным. И если большое число случайных линий все же пересеклось, вероятность события ничтожно мала, а невозможное событие все же совершилось, то, значит, не «что-то в этом есть», а «что-то здесь не так!».

Математик спешит на свидание

– Ты не забыл, что завтра мы идём в консерваторию?

– Ну конечно, нет.

– Заедешь за мной?

– Дел невпроворот. Давай мне билет, я приду один.

– Вот так всегда. Опять подруги надо мной посмеются. Завела, скажут, кавалера, который с тобою и показаться не желает.

– Ну ладно, давай встретимся. Где?

– У входа в продуктовый, что поближе к Никитским воротам.

– Так это на другой стороне улицы.

– Конечно. Мне не хочется, чтобы видели, как я тебя жду.

– Неизвестно, кто кого будет ждать… Но знаешь, завтра мне и правда время рассчитать трудно. От 18.00 до 19.00 я буду на месте как штык, а точнее – не скажу.

– Выходит, я час тебя буду ждать?

– Я и говорю: встретимся на месте.

– Не хочу.

– Тогда предлагаю компромиссное решение. Оба приходим между 17.40 и 18.40. И ждём не более двадцати минут.

– А если ты придёшь в 18.00, а я в 18.30?

– Значит, я буду уже в зале.

– Да так мы никогда не встретимся на улице.

– Вероятность встречи довольно значительная. Хочешь, подсчитаю?

– Да не берись за карандаш, горе ты моё. И надо было влюбиться в математика…

Я, конечно, был бы рад продолжить рассказ о радостях и горестях влюблённых математика и девушки, далёкой от чисел и интегралов. Тут бездна интересных психологических моментов. Но увы! Тема книги вынуждает вернуться к «сухой» науке.

Как же действительно подсчитать вероятность встречи математика с его любимой? Мы уже выяснили, что вероятность – это отношение числа благоприятных случаев к общему числу событий. А здесь как быть? Ведь встреча может состояться или не состояться в любой момент часового интервала.

Благоприятным исходом рассматриваемой задачи является мгновение встречи. Но мгновений бесконечно много. Ведь часовой интервал я могу разбить на минуты, на секунды и даже на микросекунды. Значит, здесь бесконечное число исходов, а не два, как в опыте с монетой, и не шесть, как в опыте с кубиком (игральной костью). Как же определяются вероятности в задачах такого рода? Оказывается, геометрическим путём. А поскольку геометрия требует наглядности, нам придётся прибегнуть к нехитрому рисунку.

Отложим по горизонтали время прибытия девушки на свидание. На вертикальной прямой отметим минуты появления нашего героя. Если бы не было условия – ждать не более двадцати минут, то встреча могла бы произойти в любой точке квадрата, обнимающего часовые ожидания. При наличии же дополнительного условия моменты встречи попадут в заштрихованную область. Пожалуйста, проверяйте.

Девушка пришла без двадцати шесть. Встреча состоится, если кавалер явится до шести. Этому соответствует первый отрезок.

Девушка пришла в 18.00. Встреча состоится, если кавалер явится от 17.40 до 18.20. Такой встречи соответствует второй отрезок, построенный на рисунке.

Если девушка пришла в 18.20, то встреча состоится при условии, если математик явится к продуктовому магазину между 18.00 часами и крайним сроком – 18.40. Вот вам третий отрезок.

Теперь ещё одна точка, и заштрихованная область будет готова: девушка успела прибежать на свидание в 18.40. Она застанет своего возлюбленного, если он явился не раньше 18.20.

Что же дальше? Где же искомая вероятность? Нетрудно догадаться, что она будет равняться частному от деления площади заштрихованной области на площадь всего квадрата.

По сути дела, определение вероятности остаётся тем же – благоприятные варианты относятся ко всем возможным. Но если ранее мерой было число случаев, то теперь мерой является площадь на графике.

Два незаштрихованных треугольника образуют квадрат со стороной, соответствующей 40 минутам. Его площадь 40. Таким образом, искомую вероятность получим, поделив (3600-1600) на 3600. Итого 5/9.

Будем надеяться, что математик встретится со своей девушкой.

Применение теории вероятностей к событиям с непрерывным рядом исходов намного расширяет её возможности.

Одной из исторически первых задач такого рода была проблема, поставленная и решённая французским естествоиспытателем XVIII века Бюффоном.

На большом листе бумаги начерчен ряд параллельных линий. Наобум бросается игла, длина которой много меньше расстояния между линиями на бумаге. Игла может пересечь одну из линий, а может очутиться и между линиями. Надо оценить вероятность того, что пересечение произойдёт.

Предполагается, что центр иглы с равной вероятностью может попасть в любое место бумажного листа. Так же точно считается, что угол наклона иглы к начерченным линиям может принять какое угодно значение. Если игла попадёт на середину между линиями, то она не пересечёт линии, как бы она ни оказалась повёрнутой. Если же центр иглы очутился вблизи линии, то пересечение не произойдёт, если игла установится параллельно линии или около того, и напротив, игла пересечёт линию, если образует угол, близкий к прямому. Получается так: чем ближе к линии попадёт центр иглы, тем больше вероятность её пересечения.

Задача может быть решена без всякой математики. Попробуйте свои силы.

Треугольник Паскаля

Однажды я медленно шёл по Парижу, разглядывал витрины магазинов и читал вывески. Цветастая надпись над входом грязновато-серого здания настойчиво приглашала зайти и попытать счастья. Я удивился, что игорный дом работает среди бела дня, – это не соответствовало сведениям, почерпнутым мною из классической литературы – и… я зашёл. Взору представилась поразительная картина: десятки людей стояли лицом к стене, и перед каждым находился цветной ящик. Подойдя ближе, я увидел, что они либо нажимали кнопку, либо дёргали за ручку, будто заводя заглохший лодочный мотор.

Через несколько минут я понял, в чём дело: люди играли с автоматами. Зрелище это неприятное, но великолепное поле для наблюдений психолога. Человек играет с судьбой. Один на один. Все побочные обстоятельства отсеяны. Нет ни соперничеств, ни личной неприязни, ни необходимости скрывать свои чувства.

Есть автоматы, у которых вы можете выиграть только конфетку или сигареты, есть такие, которые играют на деньги, и, наконец, существует возможность наслаждаться игрой безгранично, вступив в единоборство с автоматом, выигрыш у которого даёт лишь право дальнейшей игры. Бессмысленно, не правда ли? Но вот так оно есть. Эти автоматы вы можете найти в любом баре, в любом кафе любого города Америки и Западной Европы.

В чём же состоит игра? В принципе она сводится к следующему. Выпускается на волю шарик, который под действием силы тяжести или щелчка пружины движется по доске, на которой установлены препятствия. От каждой преграды шарик может отскочить куда попало. Получив несколько десятков таких случайных щелчков, шарик добирается до дна ящика и успокаивается в каком-то положении.

В зависимости от формы преград и от того, как они установлены, разные места дна ящика будут достижимы в различной степени. Определив из многочисленных опытов значения вероятностей окончания путешествия шарика в том или ином конечном пункте, нетрудно построить правила игры, которые позволят автомату уверенно обыгрывать своего живого партнёра.

В самой простой своей форме игровой автомат похож на так называемую доску Гальтона, которую используют в лекционных демонстрациях.

Прошу взглянуть на рисунок. В воронку насыпаются шарики. По очереди они мчатся вниз, отскакивают то вправо то влево от препятствий и наконец достигают какой-то ячейки. В качестве препятствий можно брать шестиугольные бляшки или вбить в доску гвоздики. Для доски Гальтона разработана детальная теория. Мы попытаемся обойтись без неё и предположить, что от каждого гвоздика шарик с равной вероятностью может отскочить влево или вправо. Отклонение вправо и влево будет происходить совершенно по тем же законам, что и появление в рулетке красного и чёрного. На одну комбинацию лллллл… или пппппп… приходится множество комбинаций, состоящих из примерно равного числа отклонений влево и вправо. Поэтому чаще всего шарик будет попадать в среднюю пробирку и реже всего в самые крайние.

Можно провести большое число опытов, и каждый раз шарики будут распределяться примерно одинаково. Если усреднить результаты, то получим гладкую симметричную колоколообразную кривую, которая называется кривой Гаусса или кривой нормального распределения. Не кажется ли вам, читатель, странным, что какой-то кривой мы уделяем так много внимания. На небольшом клочке бумаги можно начертить сколько угодно самых разнообразных кривых, и никому не придёт в голову присваивать им имена или названия. А наша этой чести удостаивается. Почему? Не имеет ли она какой-то математический признак, раз она заслужила специальное название.

Несомненно. Сейчас мы поясним, в чём состоит её математическая общность, только разрешите от реального опыта перейти к абстрактной схеме. И пожалуйста, имейте в виду, что так поступают всегда физики-теоретики, поэтому абстрагированием мы не нарушаем канонов науки.

Упрощение, которое мы введём, состоит в следующем: будем считать, что каждый столбик отличается от соседнего на единицу отклонений. Положим для конкретности, что доска состоит из 10 рядов препятствий. Будем считать, что шарик обязательно встречается с одним из препятствий каждого ряда и с равной вероятностью отскакивает вправо или влево, при этом отклонения происходят всегда на один интервал.

Тогда шарик, который попал в среднюю пробирку, отклонился 5 раз влево, 5 раз вправо. Следующая ячейка заполнена шариками, путь которых состоял из шести отклонений в одну сторону и четырех в другую. Далее идут пробирки, заполняющиеся шариками в соответствии с вариантами 7—3, 8—2, 9—1 и 10—0.

Вариант 5—5 осуществляется максимальным числом способов, 6—4 – уже несколько меньшим, 7—3 – ещё меньшим… 10—0 – самая редкая комбинация. Отсюда и характерный вид кривой, проходящей через вершины столбиков.

Высоты столбиков пропорциональны числу комбинаций, с помощью которых осуществляется тот или иной вариант. Об этом мы уже говорили (обратитесь, пожалуйста, к стр. 17) [ссылка], рассматривая все возможные варианты серии из 5 игр в рулетку.

Надо было бы для ясности выписать все комбинации для серии из 10 опытов. Пожалуй, мы пойдём на большее. На этой странице изображён так называемый треугольник Паскаля, с помощью которого можно определять числа комбинаций для любых рядов испытаний. Для того чтобы продолжить этот треугольник хоть до бесконечности, нужно лишь время и умение складывать. Даже таблицу умножения знать не обязательно, поскольку каждое число треугольника равно сумме двух чисел, а именно соседних левого и правого верхней строки.

В результате этих наипростейших арифметических операций мы получаем числа комбинаций левого и правого, красного и чёрного и вообще любых статистических «да» и «нет».

Как же пользоваться треугольником? Любая из его строк даёт числа комбинаций для определённого числа элементов. На рисунке выделена пятая строка. Она отвечает на все вопросы, касающиеся рядов из пяти испытаний. Числам 1, 5, 10, 10, 5, 1 (мы помним их) пропорциональны вероятности появления красного цвета в пяти последовательных поворотах колеса рулетки 0 раз, 1 раз, 2 раза, 3 раза, 4 раза и 5 раз. Значение вероятностей мы получим, поделив каждое число треугольника Паскаля на общее число испытаний, которое равно сумме чисел строки.

Возвращаясь к доске Гальтона мы можем сказать, что при десяти случайных встречах с препятствиями число шариков, которые попадут в крайние пробирки (все встречи привели к одним лишь левым или к одним лишь правым отклонениям), будет в среднем в 252 раза меньше числа шариков, попавших в средний приёмник.

С гауссовой кривой приходится сталкиваться во всех областях знания. Универсальность её объясняется очень просто: на неё укладываются вероятности отклонений от среднего во всех случаях, если только отклонения «вправо» и «влево» равновероятны. Если же отклонения от среднего невелики, как это бывает очень часто, то подобное требование осуществляется всегда. Сейчас мы продолжим знакомство с этой замечательной кривой, лежащей в основе любой статистики.

Случайные отклонения

Вкусы у людей, как известно, чрезвычайно разные. Одни сникают при взгляде на длинные колонки цифр, на графики с ниспадающими и вздымающимися вверх ломаными и плавными кривыми, на масштабные столбики, высота которых описывает все, что угодно, – урожаи, рост, потребление водки или посещаемость театров. У других же, и их немало, глаза загораются при взгляде на это богатство информации. Жадно рыщут они взглядом вдоль цифровых столбцов, просматривают графики и приходят к интересным и важным выводам в области экономики страны, понимания человеческого характера или ещё в чем-нибудь. Люди эти – статистики, – нужное и важное племя работников, значительный отряд министерств и ведомств.

Задачи статистики (так называются не только люди, но и область деятельности) разнообразны и обширны. На десятках тысяч библиографических карточек приведены данные о промышленном производстве, о народном образовании, о смертности населения, о функционировании поликлиник и больниц, об автомобильных катастрофах, о посещаемости кинофильмов и бог весть ещё о чём. Статистиков интересуют самые разные вещи: динамика роста тех или иных показателей, сопоставление данных по значению какого-либо параметра в разные времена года, или в разные часы дня, или среди мужчин и женщин, или среди лиц разного возраста.

Особое место занимают в статистике измерения средних значений и отклонений от средних. Весьма распространены измерения роста и веса. Вес цыплят, которыми торгует птицеферма, интересен потому, что характеризует её работу; рост людей интересен для швейной промышленности, выпускающей одежду ог 46-го до 56-го размеров, и т.д. Так как все это известно читателю из газет и радиопередач, приводящих всевозможные числа, то перейдём к нашей теме, а именно, к проявлению во всей этой массе чисел законов случая.

Один из скучных рисунков, фигурирующих в сочинениях по статистике, нам придётся привести. Мы с художником долго ломали голову над тем, как сделать это масштабное построение более приемлемым в книге серии «Эврика». Результат творчества изображён на странице 71 [ссылка]. Рисунок показывает диаграмму и кривую, которая носит название кривой статистического распределения.

Чтобы рисунок лучше рассмотреть, поверните, пожалуйста, книжку на 90 градусов. Правда, новобранцы очутились в лежачем положении. Но, ей-богу, ничего более толкового не придумаешь. Теперь (в повёрнутом положении) высота кривой показывает число будущих солдат определённого роста. Величины роста нанесены на уровне носа. Выбран конкретный пример измерения роста 1375 ребят. Столбики – это результат измерения, а плавная линия – наиболее близкая к опыту – гауссова кривая.

Статистикам известна следующая замечательная вещь: чем больше привлечённый для построения графика материал (в данном случае чем больше ребят), тем плавнее и ближе к теории кривая, соединяющая вершины масштабных столбиков.

Самым замечательным обстоятельством является то, что кривая, получающаяся при измерении любых объектов, имеет форму той же самой кривой Гаусса, на которую, как мы видели, ложатся числа комбинаций «красного» и «чёрного»!

Теперь рассмотрим вид кривой нормального распределения в деталях. Нормальная кривая примерно похожа на колокол; она спадает одинаково в обе стороны сначала медленно, а потом быстро. Чтобы построить её, математику достаточно знать три параметра: высоту её максимума, среднее значение изучаемой величины (то есть то место на горизонтальной оси, которое соответствует среднему значению) и ширину кривой. Вершине колокола как раз и соответствует то, что мы называем средней величиной. (Как получить среднее, известно даже тем, кто враждует с арифметикой: надо сложить все измерения и разделить на число измерений.) Откуда же видно, что максимум кривой Гаусса придётся на среднюю величину? Доказательство лёгкое: нужно проинтегрировать гауссову кривую. Но так как это занятие здесь неуместно, то просим поверить на слово, что теорема доказывается совсем просто.

Итак, остаётся пояснить, что такое ширина нормальной кривой. Условно меряют ширину на полувысоте колокола. Очевидно, что ширина показывает, насколько часто или редко мы встречаемся с отклонениями от среднего. Чем уже колокол, тем реже значительные отклонения от среднего.

Нормальная кривая распределения роста, которая была нарисована на предыдущей странице, описывается такими словами: «Высота кривой 200 человек», то есть двести человек имеют средний рост (первый параметр кривой).

Заметим тут же, что иметь строго средний рост невозможно, можно иметь средний рост с точностью 1, 2, 5 сантиметров и т.д. На нашем графике каждая точка представляет группу ребят, рост которых лежит в пределах 2,5 сантиметра. Средняя высота новобранцев, как мы видим по диаграмме, равна 158 сантиметрам – это второй параметр.

Третьим параметром является ширина колокола, равная в этом случае 15 сантиметрам. Знание ширины кривой позволяет сразу же оценить, с какими отклонениями от среднего мы можем встретиться.

Нормальная кривая универсальна и относится к любым событиям, поэтому, смотря все на тот же рисунок, мы можем делать общие заключения, справедливые для любых нормальных кривых. Скажем, отклонения больше трех полуширин практически не встречаются. Так обстоит дело всегда, вне зависимости от того, о чём идёт речь.

Для характеристики вероятности отклонения от среднего значения в технике и статистике существуют ещё среднее отклонение по абсолютной величине, среднее квадратичное отклонение, вероятное отклонение, мера точности. Все эти величины связаны между собой и с полушириной гауссовой кривой числовыми множителями, близкими к единице.

Вообще говоря, каких-либо доводов в пользу того, чтобы те или иные статистические сведения ложились на гауссову кривую, нет. Правда, кое-что мы чуть позже увидим. Сейчас же надо подчеркнуть, что точные представления о нормальном распределении случайных событий показывает кривая числа комбинаций «красного» и «чёрного». И к идеалу, с точки зрения математической, эта кривая приближается тем лучше, чем большее число испытаний проводится. Если число событий, которые мы обрабатываем статистически, исчисляется десятками, то ординаты кривой будут отличаться от идеальных на десятые доли процента; при сотнях испытаний разница уменьшится до сотых долей процента. Во всяком случае, на рисунке размером в страницу мы не отличим кривую распределения, построенную для тридцати событий, от гауссовой кривой идеальной.

Без преувеличения можно сказать, что закон Гаусса является важнейшим оружием в технике, в физике, в медицине – в любой науке.

Знание среднего значения случайной величины и ширины кривой нормального распределения позволяет уверенно судить о возможном и невозможном.

В технике беспорядочные колебания случайной величины около её среднего значения называют шумом. Такой шум вы слышите, когда снимаете телефонную трубку. Шумом называют обыкновенный белый свет. Шумит молния, излучая весь спектр электромагнитных колебаний. Если шум изображать на телевизионном экране (осциллографе), то будет видна беспорядочная зигзагообразная кривая.

Шум нетрудно ограничить двумя горизонтальными линиями; так сказать, вписать его между нулём и некоторым максимумом. Что можно сказать об этом максимуме, о верхнем пределе шума?

В зависимости от природы, источника, от излучателя, шум может быть как угодно большим. По-одному шумит громкоговоритель в квартире, по-другому – на маленьком полустанке и совсем иной шум громкоговорителей, работающих на улицах Москвы во время парада на Красной площади. Разница основательная. Но если построить графики этих трех шумов, то одну общую черту, продиктованную законом Гаусса, мы обнаружили бы без труда: верхний предел шума превышает средний шум примерно в четыре раза. То есть колокол гауссовой кривой весьма крутой и обрывается исключительно резко, несмотря на то, что с точки зрения формальной математики крылья кривой продолжаются в бесконечность. Из этого графика мы бы увидели, какое маловероятное событие становится практически невозможным. Ещё одно замечание: всякое заметное превышение шума над граничной горизонталью, дающее более чем пятикратное отклонение от среднего шума, называется уже не шумом, а сигналом.

Кривая гауссова распределения показывает, на что надо, а на что не надо обращать внимания, когда речь идёт о случайной величине. Физические измерения, как и математический анализ, показывают, что отклонения, не превышающие четырехкратного значения среднего отклонения, являются нормой и поэтому не заслуживают ни особого внимания, ни объяснения. Скажем, известно, что физики могут измерять расстояния между атомами с точностью до 0,01 ангстрема. Некто Иванов публично заявил, что его измерения на 0,03 ангстрема отличаются от ранее полученных результатов, и пытается доказать, что его результат лучше имеющегося. Не стоило ему так поступать: не спорить ему надо, а сообщить учёному миру, что он лишь подтвердил ранее достигнутый физиками результат. Вот если бы его измерения отличались на 0,06 ангстрема, тогда другое дело; тогда можно было бы говорить, что какая-то из двух величин неверна и некто Петров был бы прав с точки зрения научной этики, приступив к измерению того же межатомного расстояния третий раз.

Зная гауссовы кривые для разных случайных событий, статистики отвергнут газетное сообщение о новорождённом весом в 6 килограммов, о том, что в городе Киеве 12-го числа рождались только мальчики, а 13-го только девочки, о том, что в Москве в мае месяце не было ни одного дня с температурой ниже 30 градусов, о том, что число автомобильных катастроф в декабре было в десять раз больше, чем в январе, что во вторник по всему городу не было продано ни одного куска мыла, а в среду никто не приобрёл в аптеке таблеток пирамидона и т.д.

И право же, такой скептицизм, базирующийся на хорошей статистике и знании закона вероятности, обоснован не хуже, чем расчёты траектории космического корабля. Словом, невероятно – не факт.


    Ваша оценка произведения:

Популярные книги за неделю