355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Китайгородский » Невероятно – не факт » Текст книги (страница 13)
Невероятно – не факт
  • Текст добавлен: 10 сентября 2016, 01:01

Текст книги "Невероятно – не факт"


Автор книги: Александр Китайгородский


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 13 (всего у книги 17 страниц)

Энтропия

Внесём небольшое терминологическое изменение в закон о максимальной вероятности равновесного состояния.

Очень часто в физике величины, которые меняются в больших пределах, заменяют их логарифмами.

Напомним, что такое логарифм. Когда я пишу о науке для так называемого массового читателя, для читателя вообще («дженерал ридер» – по-английски) и вынужден использовать какой-либо термин, который в науке имеет такое же самое распространение, как, ну скажем, поэма в литературе, то впадаю в смущение. Объяснять?! Можно обидеть читателя, который вправе сказать: «За кого ты меня принимаешь, неграмотный я, что ли?» Не объяснять? А вдруг он позабыл и не поймёт того, о чём будет говориться дальше. Поэтому все же напомню: 10= 100; 10= 1000; 10= 10000 и т.д. Числа 2, 3, 4 и т.д. представляют собой десятичные логарифмы 100, 1000, 10000 и т.д. Как видим, само число возросло в сто раз, а логарифм лишь вдвое.

Логарифмы оказываются полезными и в нашем случае. Вместо того чтобы пользоваться «вероятностью состояния», в обиход вводят «логарифм вероятности состояния». Этот логарифм и называется энтропией.

Закон природы, согласно которому тепло не переходит от холодного к горячему, маховик не раскручивается за счёт охлаждения оси и прилегающего к нему воздуха и раствор медного купороса не делится на воду и купорос, кратко формулируется так: энтропия в естественных процессах всегда растёт.

Закон возрастания энтропии – важнейший закон природы. Из него вытекает, в частности, и невозможность создания вечного двигателя второго рода, и, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию.

Закон возрастания энтропии иногда называют «вторым началом термодинамики» (термодинамика – учение о тепле). А что такое первое начало? Это закон сохранения энергии.

Название «начала термодинамики» для этих законов природы сложилось исторически. Нельзя сказать, что объединение «под одну шапку» обоих начал было делом удачным. Ведь закон сохранения энергии – это механический закон, которому подчиняются неукоснительно как большие тела, так и отдельные атомы и молекулы. Что же касается закона возрастания энтропии, то, как следует из сказанного выше, он применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.

Статистический (это и означает – относящийся к большому собранию частиц) характер второго начала термодинамики нисколько не принижает его значения. Закон возрастания энтропии предопределяет направление процессов. В этом смысле энтропию можно назвать директором-распорядителем природных богатств, а энергия служит у неё бухгалтером.

Кому же принадлежит честь открытия этого важного закона природы? Здесь нельзя ограничиться одним именем. У второго начала термодинамики есть своя история.

Как и в истории первого начала термодинамики, в первую очередь должно быть упомянуто имя француза Сади Карно. В 1824 году он издал на свои средства печатный труд под названием «Размышления о движущей силе огня». В этой работе впервые было указано, что тепло не может переходить от холодного тела к тёплому само собой без затраты работы. Карно показал также, что максимальный коэффициент полезного действия тепловой машины определяется лишь разностью температур нагревателя и охлаждающей среды.

Только после смерти Карно, в 1832 году на эту работу обратили внимание другие физики. Однако она мало повлияла на дальнейшее развитие науки из-за того, что все сочинение Карно было построено на признании неразрушимого и несоздаваемого «вещества» – теплорода.

Лишь вслед за исследованиями и размышлениями Майера, Джоуля и Гельмгольца, установивших закон эквивалентности тепла и работы, немецкий физик Рудольф Клаузиус (1822—1888 гг.) пришёл ко второму началу термодинамики и математически сформулировал его. Клаузиус ввёл в рассмотрение энтропию и показал, что сущность второго начала термодинамики сводится к неизбежному росту энтропии во всех реальных процессах.

Все, что мы сказали ранее по поводу истолкования естественного хода процессов, несомненно, очень остроумно и очень похоже на правду. Но тем не менее набросанную картину никак нельзя назвать завершённой. В таком виде наши молекулярно-кинетические рассуждения могут быть скептиками отнесены к разряду болтовни. Так оно, кстати, и было в конце XIX века. О наскоках противников молекул на статистическую теорию мы расскажем чуть ниже. Но уже сейчас можно утверждать, что выступления сторонников теории, заканчивающиеся чем-нибудь вроде: «Итак, мы показали, что второе начало термодинамики хорошо объясняется молекулярно-кинетической гипотезой», комментировались противниками примерно следующим образом: «Ну что же, гипотеза ваша выиграла, но наука от этого ничего не получила».

Дело заключается в том – об этом мы тоже уже говорили выше, – что теория становится теорией лишь тогда, когда с её помощью можно что-то предсказать. Объяснения постфактум – это не наука; объяснения постфактум создают лишь ощущение умственного комфорта. Но, право же, ценность теории близка к нулю, если её значение оказывается аналогичным значимости в нашей жизни удобного кресла.

Таким образом, перед сторонниками молекулярно-кинетической гипотезы встала задача перекинуть мост между молекулярными характеристиками и непосредственно измеряемыми физическими свойствами вещества. Мало того, надо было построить такую теорию, которая предсказывала бы, как те или иные свойства вещества будут изменяться с изменением состояния тела, то есть что будет делаться с тем или иным веществом, если растёт температура, увеличивается давление…

На пути решения этой грандиозной задачи и возникла новая физика, получившая название статистической физики.

Статистическая физика

У нас, конечно, есть все основания говорить, что статистическая физика – это новая физика. Огромность числа частиц тела не позволяет описывать состояние каждой из них. Но в то же время эта огромность позволяет применить к изучению физических тел новые «статистические» методы. Основы статистической физики были заложены замечательным австрийским физиком Людвигом Больцманом (1844—1906 гг.). В серии работ Больцман показал, как осуществить для газов программу построения теории, связывающей средние характеристики молекулярного движения с физическими свойствами.

В 1877 году логическим завершением этих исследований явилось данное Больцманом статистическое истолкование второго начала термодинамики. Формула, связывающая энтропию и вероятность состояния системы, высечена на его памятнике.

Трудно переоценить научный подвиг Больцмана, нашедшего в теоретической физике совершенно новые пути. Исследования этого замечательного учёного подвергались при его жизни насмешкам со стороны консервативной немецкой профессуры: в то время атомные и молекулярные представления считались многими корифеями науки наивными и ненаучными. Больцман покончил жизнь самоубийством, и обстановка, несомненно, сыграла в этом далеко не последнюю роль.

Здание статистической физики было в значительной степени завершено трудами выдающегося американского физика Джошуа Вилларда Гиббса (1839—1903 гг.). Гиббс обобщил методы Больцмана и показал, каким образом можно распространить статистический подход на все тела. Последняя работа его вышла в свет уже в начале XX века. И прошло порядочное число лет, пока его замечательные исследования стали известны всем физикам. А все дело заключалось в скромности. Из-за неё Гиббс печатал свои труды в известиях небольшого провинциального университета.

Что же это за путь, по которому надо идти, чтобы найти связь между хаотическим молекулярным движением и свойствами тела? Как экспериментальным путём измерить вероятность состояния тела?

Одна из самых важных работ Людвига Больцмана показала следующее. Если телу сообщить небольшое количество энергии в форме тепла и разделить затраченное число калорий на температуру, при которой происходит эта передача энергии, то полученное частное будет равняться приросту энтропии. А прирост энтропии, как помнит тот читатель, который не позабыл свойства логарифмов, равен относительному приросту вероятности состояния (ибо разность логарифмов равна логарифму частного).

Доказывать эту теорему я не имею возможности. Но такова уж участь читателей литературы о науке – они должны иногда верить автору на слово. Правда, в наш недоверчивый век я стараюсь не злоупотреблять этой прерогативой, но сейчас прошу поверить: все сказанное верно, и энтропию, вычисляемую из вероятности состояния, можно (и не очень трудно) измерить на опыте.

Гиббсом были даны формулы, которые позволяли проводить вычисление любых физических свойств любых тел, если известна вероятность состояния.

На первый взгляд может показаться, что прогресс не очень-то велик и что молекулярно-кинетическая теория осталась «вещью в себе». Ну получили формулу для расчёта свойств тела! Но ведь для того, чтобы произвести этот расчёт, надо знать вероятность состояния, то есть число микросостояний! А откуда её взять? Гиббс показал, что вместо числа микросостояний достаточно знать их распределение по энергии.

Долгое время казалось, что от этого легче не стало. И лишь относительно недавно мощь статистической физики проявилась. Лет пятьдесят назад физики научились измерять распределение микросостояний по энергии с помощью спектрального анализа. И тогда создалась возможность использовать статистическую физику так, как должно, то есть для предсказаний.

Вот пример схемы действий, которая приводит в восхищение физика и, кстати говоря, формирует его мировоззрение и психологию.

Вы, осветив какой-либо газ, ну, скажем, для определённости углекислый газ, подвергаете его спектральному исследованию и получаете красивую спектрограмму, состоящую из множества чётких спектральных линий. Спектрограмма расшифровывается с помощью ЭВМ, и вы получаете список энергии микросостояний молекул в виде ряда чисел. Полученные числа подставляются в формулы статистической физики. Если лень считать самому, можете и эту задачу поручить ЭВМ. В результате расчёта вы получите, например, зависимость теплоёмкости углекислого газа от температуры. Теперь отправимся в другую лабораторию – калориметрическую. Здесь можно измерить, сколько тепла надо затратить, чтобы один грамм газа нагреть от 20 градусов до 21, от 21 градуса до 22 и т.д. Это и значит, что вы измеряете кривую теплоёмкости. Вы отмечаете крестиками полученные на опыте данные на миллиметровой бумаге. Здесь же, в том же масштабе, изображена кривая теплоёмкости, которую вы вычислили теоретически. И видите, что крестики строго ложатся на теоретическую кривую.

Вдумайтесь ещё раз в смысл происшедшего. Что общего, казалось бы, между поглощением света углекислым газом и теплом, затрачиваемым на нагрев этого газа? Да ничего, решительно ничего.

И вот между этими двумя явлениями перекидывается мост – прозрачно ясная идея беспорядочно движущихся молекул, далее, поведение молекул уподобляется поведению шарика рулетки, вступает в строй математический аппарат теории вероятностей, и два события оказываются связанными железной цепью. Характер одного из них определяет особенности второго.

Вот это и есть настоящая физика, в этом главное, что принесла с собой наука. Она сделала мир единым, а не хаосом разрозненных, не имеющих между собой ничего общего явлений.

Взрыв страстей в городе Любеке

Как это ни кажется сейчас странным, защищать атомы и молекулы в конце XIX века было не простой задачей.

Под влиянием натурфилософов типа Эрнеста Маха из науки тщательно изгонялись всякого рода предположения, которые не могли быть проверены опытом. Прямых доказательств существования атомов в то время не было, поэтому атомные воззрения подравнивались к метафизике и рассматривались большинством естествоиспытателей-европейцев как разновидность веры в загробную жизнь и общение с духами. Напротив, большим уважением пользовались взгляды так называемых энергетиков, которые предлагали в основу физики положить понятие энергии и изгнать из науки всякого рода соображения о строении вещества.

Вполне понятно, что работы Людвига Больцмана, строившего статистическую физику с помощью простых и ясных представлений о мире частиц, взаимодействующих по законам механики, встречались этой группой учёных в штыки. Больцман не только оборонялся, но и переходил зачастую в атаку, нападая на энергетиков на их территории.

На страницах печати шли ожесточённые споры. Противники иногда встречались и публично.

Одну из таких дискуссий по поводу энергетики, происходившую в австрийском городе Любеке в 1895 году, известный физик Арнольд Зоммерфельд вспоминал такими словами: «Реферат об энергетике был прочитан доктором Хельмом. Его поддерживал Вильгельм Оствальд. За ними обоими стояла натурфилософия Эрнеста Маха, отсутствовавшего на этом заседании. Борьба между Оствальдом и Больцманом походила как внешне, так и внутренне на сражение тореро с быком. Но, несмотря на все искусство владения шпагой, тореро на этот раз был побеждён быком. Аргументы Больцмана были неотразимыми. Мы, молодые теоретики, были все завоёваны Больцманом».

Стенограммы заседания не сохранилось, и, я думаю, историки науки не рассердятся на меня, если я, пользуясь опубликованными статьями спорящих сторон, по своему усмотрению распоряжусь некоторыми деталями обстановки и поведением действующих лиц.

Итак, город Любек. Ранний вечер. Оживлённо разговаривая, к широким дверям большой аудитории направляются профессора, доценты, студенты. Дискуссия интересует всех. Аудитория заполняется не только физиками, но и химиками, математиками, биологами… Обсуждаются проблемы, интересные для любого естествоиспытателя.

Реферат Хельма – все это превосходно понимают – лишь скучная затравка. Самое интересное начнётся позже. В первых рядах Больцман и Оствальд – оба великолепные, остроумные полемисты. Их борьба, без сомнения, будет захватывающей.

Хельм заканчивает свой реферат:

– Итак, дамы и господа, я думаю, сумел наглядно показать вам, что энергетика, применённая к любой области знания, никогда не будет разрушена дальнейшим развитием науки. Энергетика стабильна ничуть не меньше, чем геометрия.

Всё, что может случиться с законами, касающимися энергии, это то, что эти законы могут быть расширены и уточнены. Здание, образованное этими законами, может быть украшено, но оно никогда не будет разрушено и реконструировано. Что же касается механических гипотез, то их судьба иная. Они без конца разрушаются и реконструируются. Достаточно вспомнить бесчисленные гипотезы и теории, которые были созданы для объяснения явления света.

Реально и содержательно лишь одно понятие – понятие энергии. Разрешите мне закончить моё выступление словами глубокоуважаемого профессора Вильгельма Оствальда. «Если бы поэт пожаловался, что он не находит больших идей, которые охватывают мир в едином объятии, то я посоветовал бы ему обратиться к понятию энергии, наиболее грандиозному из всех, которые волновали умы нашего века. Если бы поэт сумел воспеть энергию должным образом, то он создал бы эпическую поэму, которую можно было бы рассматривать как поэму человечества».

Последовали вежливые аплодисменты, и председательствующий предложил желающим поделиться со слушателями своими взглядами. Больцман сразу ринулся в атаку:

– Я с огромным интересом прослушал доклад многоуважаемого господина доктора. Я не могу не согласиться с ним, что законы, устанавливающие связь между непосредственно измеряемыми величинами, незыблемы и будущее развитие науки может лишь расширить их, но не изменить. Так же как господин Хельм, я ставлю весьма высоко все теоремы, касающиеся энергии, и уверен, что понятие энергии приносит науке большую пользу. Правда, я не стал бы восхвалять энергию в стихах, приберегая мой мизерный поэтический талант для лирических излияний. Но тем не менее я желаю господам Оствальду и Хельму найти нового Гёте, который бы вдохновился этой темой.

Короче говоря, позитивная программа господина Хельма не вызывает у меня возражений. Но мне трудно согласиться с докладчиком там, где он призывает нас отказаться от тех методов, без которых, по-моему, наука не может жить и развиваться. Я имею в виду атомную теорию, которая делает столь наглядными картины химических явлений, кристаллизации, тепловых явлений.

Оствальд. Атомы – наивная выдумка древнегреческих мудрецов. Почему мы выражаем уверенность, что все атомные и молекулярные гипотезы должны быть изгнаны? Почему мы убеждены, что через пятьдесят лет сведения об атомах и молекулах можно будет найти лишь в пыли библиотек? По простой причине – эти гипотезы не содержат ничего дополнительного по отношению к факту, который они призваны объяснить. Тело горячее – значит, атомы движутся быстрее. А почему атомы движутся быстрее? Вместо того чтобы облегчить задачу объяснения природы, я её только осложняю, увеличивая число положений, которые надо истолковать.

Больцман. Если бы дело обстояло так, как вы говорите, то вы были бы правы. Но ведь атомная гипотеза охватывает самый различный круг явлений. Как можно не чувствовать, что, используя представление об атомах и молекулах, мы подводим общее основание под все естествознание? Факты, которые казались разрозненными, начинают складываться в единое целое.

Оствальд. Такое единство превосходно достигается составлением феноменологических уравнений.

Голос из публики. Господа, среди слушателей есть малограмотные люди. Пожалуйста, объясните, что значит феноменологическое уравнение.

Оствальд (снисходительно, с улыбкой). Пожалуйста. Это уравнение, которое связывает лишь непосредственно измеряемые величины. Например, уравнение Ньютона: сила равна произведению массы на ускорение. Все три величины могут быть непосредственно измерены. «Я гипотез не измышляю!» – сказал великий Ньютон. Энергетика следует этому завету: никаких гипотез, никаких наглядных картин!

Больцман. Чистейшая фикция. Когда мы размышляем о явлениях, мы всегда пользуемся теми или иными картинами. Мысленно нельзя себе представить только господа бога. Вы говорите, что надо ограничиться дифференциальными уравнениями, записанными для непосредственно измеряемых величин. Но возьмите такие уравнения, как уравнения теплопроводности, или вязкости, или теории упругости. В этих уравнениях обязательно фигурируют величины, отнесённые к малым областям. Тело мысленно разбивается на материальные точки. Все равно вам не удаётся избавиться от моделей явления.

Оствальд. Это не модели. Это просто вспомогательные представления, право на которые мы получаем по той причине, что записанные уравнения оправдываются на опыте. Что же касается атомных гипотез, то вы, господин Больцман, не указали нам пока что способ увидеть атомы.

Больцман. Не сомневаюсь, что это случится достаточно скоро!

Оствальд. Ну что же, мы согласны подождать. Но пока что на месте господина Больцмана я не прибегал бы на лекциях ко всяким игрушкам, изображающим атомы и молекулы. Насколько мне известно, когда господин профессор читает лекции по теории упругости, то он пользуется атомами, сделанными из папье-маше, к этим «атомам» прикреплены дюжины крючков, которыми атомы сцеплены. Учебная аудитория всё-таки не детская комната.

Смех части аудитории.

Больцман. Да, я за наглядность. Большую часть своего жизненного опыта человек набирает глазами. Стремление наглядно представить себе физические явления законно, и там, где можно, надо прибегать к зримым моделям. Работа с такими моделями наталкивает на новые идеи, приводит нас к необходимости поставить те или иные новые эксперименты, позволяет прочувствовать совершенство или недостатки той или иной гипотезы. Господин Оствальд ошибается, если думает, что я ставлю знак равенства между моделями, изготовленными из бумаги и дерева, и атомным миром. Сторонники атомной гипотезы прекрасно понимают условность модели. Всякая модель призвана показать лишь какую-то группу явлений. Разумеется, атомы не то же самое, что деревянные шарики, но в каких-то отношениях атомы ведут себя как шарики. Разъяснение поведения атомов при помощи моделей – это совсем не детская забава!

Переругиваться таким образом в течение 10—15 лет – это совсем не весело. Слышать насмешки над собой и обвинения в ретроградстве, когда знаешь, что ты открываешь новые пути в науке, – это совсем не легко. Чтобы спокойно работать при всём при этом, надо иметь хорошую нервную систему. А у Людвига Больцмана она была скверная.


    Ваша оценка произведения:

Популярные книги за неделю