![](/files/books/160/no-cover.jpg)
Текст книги "Основы физиологии высшей нервной деятельности"
Автор книги: Александр Коган
сообщить о нарушении
Текущая страница: 17 (всего у книги 30 страниц)
Освещение красным светом при яркости 10−14 кд/м2 в течение 2 ч вызывало укорочение латентных периодов условных рефлексов на все раздражители выработанного стереотипа. В отдельных случаях отмечали нарушения дифференцировок. Освещение ультрафиолетовым светом при яркости флуоресценции 0,8×10−14 кд/м2 в течение того же времени вызывало некоторое удлинение латентного периода условных рефлексов, а через 1–1,5 ч наступали частые нарушения дифференцировок.
Понижение барометрического давления, соответствующее «подъему» на высоту 4000 м, до некоторой степени уравнивает влияние красного и ультрафиолетового света. На это указывают почти одинаковые величины латентных периодов условных рефлексов, сходные картины изменений электроэнцефалограммы, электрокардиограммы и записи дыхания. Видимо, в данном случае проявилось действие весьма умеренного кислородного голодания, усиливающего процессы возбуждения корковых клеток.
Исходя из полученных результатов, некоторые авторы считают возможным рекомендовать освещение кабин самолетов, автомобилей и специальных производственных помещений красным светом. Наступающее при этом усиление возбудительных процессов создает условия, способствующие более четкому выполнению необходимых операций, более быстрому и точному чтению показаний приборов. Однако при этом не учитывают возможность неблагоприятного действия длительного усиления возбудительных процессов.
Итак, повседневное действие световых раздражений достаточной интенсивности поддерживает возбудимость корковых клеток на определенном уровне. Длинноволновая часть видимого спектра (красный свет) имеет тенденцию усиливать возбудительный процесс, что может вести к относительному отставанию торможения, коротковолновая (фиолетовый свет) – несколько снижать уровень возбудительного процесса при одновременном ослаблении тормозного.
Невротические «срывы» процессов высшей нервной деятельности
Не только непосредственное химическое или физическое повреждение клеток больших полушарий может приводить к болезненным нарушениям высшей нервной деятельности. К такому же результату могут привести и различные виды их перенапряжения в процессе выполнения своих функций.
Повседневная жизнь дает многочисленные примеры того, что тяжелые переживания, несчастья и потрясения нередко вызывают нервные расстройства. Такие стойкие расстройства, возникающие в результате нервного перенапряжения и истощения, давно уже были известны в медицине под названием неврозов. Однако их физиологическая природа получила свое разъяснение лишь после того, как деятельность мозга была расшифрована в понятиях процессов высшей нервной деятельности. В лабораториях И.П. Павлова невротические расстройства были получены в экспериментах на животных и особенно подробно изучались М.К. Петровой (1924–1946).
Как установлено в экспериментах на животных и наблюдениях за больными людьми, причина невроза всегда заключается в перенапряжении той или иной функции нервных клеток больших полушарий. Соответственно, определены три основных приема вызова экспериментальных неврозов у животных: 1) перенапряжение возбудительного процесса, 2) перенапряжение тормозного процесса и 3) перенапряжение подвижности нервных процессов.
Перенапряжение может испытать либо каждая из этих функций в отдельности, либо сразу несколько. Это и есть причина природных неврозов, которые, например, могут возникать при нерациональном использовании животных («нервный срыв» перетренированных скаковых лошадей) или у людей, испытавших тяжелые жизненные трудности (случаи травматического невроза). Невротический срыв может проявляться в виде различных нарушений высшей нервной деятельности. Наиболее общая их характеристика состоит в неадекватности реакций на обычные раздражители. Это может быть неоправданно буйное поведение или глубокое угнетение при предъявлении сигналов, ранее вызывавших умеренную реакцию. Нередко возникают так называемые гипнотические фазы (рис. 68), когда величина реакции вначале теряет зависимость от физиологической силы раздражителя (уравнительная фаза), а затем оказывается с ней в обратных отношениях (парадоксальная фаза).
![](p_103_1.png)
Рис. 68. Гипнотические фазы изменения условных рефлексов на сигналы разной физиологической силы. А – нормальные силовые отношения; Б – уравнительная фаза; В – парадоксальная фаза (по В.В. Рикману):
1 —метроном (120 ударов/мин), 2 —вспыхивание лампы, 3 – метроном (60 ударов/мин), 4 – сильный тон, 5 – слабый тон, 6 – звонок
Указанные выше три основных вида перенапряжений клеток коры мозга имеют каждая свои особенности возникновения. Перенапряжение возбудительного процесса возникает тогда, когда чрезмерно сильный раздражитель вызывает в нервных клетках возбудительный процесс чрезмерной интенсивности.
Ярким примером невроза, вызванного такими «сверхсильными» раздражителями, может служить срыв условно-рефлекторной деятельности у некоторых лабораторных собак Института экспериментальной медицины во время наводнения в Ленинграде (1924). В ближайшие дни после наводнения у собак исчезли все положительные условные рефлексы. Лишь постепенно их условно-рефлекторная деятельность стала восстанавливаться и в той или иной степени вернулась к прежнему состоянию. Казалось, что все последствия «нервного потрясения» были ликвидированы. Однако за внешним благополучием у некоторых собак скрывалось заболевание неврозом. Это выявилось прежде всего в том, что при применении несколько более сильного, чем обычно, раздражителя в реакциях собаки начинали проявляться разнообразные извращения. С особой силой болезненное состояние больших полушарий проявлялось тогда, когда действовали раздражители, чем-либо связанные с пережитым потрясением. Об этом выразительно свидетельствует следующее наблюдение. Одна из собак, пострадавших во время наводнения, через два месяца полностью восстановила все ранее выработанные условные рефлексы и не обнаруживала к этому времени никаких признаков патологии. Все применяемые раздражители, даже значительной силы, вызывали нормальные реакции. Однако стоило пустить в комнату, где находилась собака, из-под двери струйку воды, как снова исчезали все с таким трудом восстановленные положительные условные рефлексы.
Чтобы вызвать перенапряжение и срыв возбудительного процесса при опытах с экспериментальными неврозами у собак, применяют следующие приемы: 1) использование «сверхсильных» раздражений – таких, как ослепительные вспышки, оглушительные взрывы и т.п.; 2) попытки сделать из «сверхсильного» раздражителя условный. Так, например, у ряда подопытных собак развивались неврозы при попытках сделать боль условным пищевым раздражителем или выработать условный рефлекс на оглушительные звуки трещотки.
В жизни человека условиями для срыва возбудительного процесса могут явиться какие-либо чрезвычайные события, требующие большого напряжения, особые трудности и катастрофы. Такие заболевания клиника объединяет в группу травматических неврозов, которые уточняются по своему происхождению, например так называемые неврозы военного времени и т.д.
Название «сверхсильный» раздражитель подразумевает не какую-то определенную его физическую силу, а лишь то обстоятельство, что эта сила превышает возможности нервных клеток реагировать на нее соответствующим максимальным возбуждением. Естественно, что если клетки коры будут ослаблены утомлением, болезнью или другими причинами, то для них уровень этого максимального возбуждения окажется очень низким. Тогда даже обычный раздражитель умеренной силы может оказаться «сверхсильным». Поэтому, например, кастрация способствует развитию неврозов, так как выключение половых гормонов ведет к ослаблению корковых клеток. Неврозы часто проявляются после болезней.
Описан случай, когда женщина перенесла тяжелые потрясения – разрыв с мужем, смерть ребенка и потерю всего имущества, но стойко держалась до инфекционного заболевания, после которого у нее остро развился тяжелейший невроз, связанный с казалось бы уже пережитыми событиями.
Поэтому систематическое переутомление, напряженная работа без отдыха в трудных условиях может вызвать так называемый невроз истощения. При этом условные рефлексы начинают периодически угнетаться и восстанавливаться (рис. 69). Такие колебания их величин могут происходить даже на протяжении одного опыта.
![](p_103_2.png)
Рис. 69. Циклические изменения величины слюноотделительных условных рефлексов (по А.О. Долину и С.А. Долиной)
Перенапряжение тормозного процесса возникает, когда отрицательные раздражители заставляют нервные клетки развивать тормозный процесс чрезмерной для них интенсивности или длительности. Это может происходить по разным причинам.
1. При дифференцировании слишком близких раздражителей.
Например, в опытах по определению тонкости зрительного анализа собаке предъявляли в качестве положительного и дифференцировочного раздражителей световые фигуры круга и все более круглого эллипса. Собака быстро дифференцировала от круга эллипс, у которого продольная и поперечная оси относились как 2:1. По мере того как эллипс приближался по форме к кругу, выработка дифференцировки становилась все трудней. Предел был достигнут на почти не отличимом от круга эллипсе с отношением осей 9:8. В результате настойчивых попыток закрепить такое сверхтонкое дифференцирование у собаки развился невроз. Разрушались все ранее выработанные дифференцировки, т.е. произошел срыв тормозного процесса.
Срыв наступил из-за того, что напряжение тормозного процесса, концентрирующего возбуждение на все более ограниченном числе клеток зрительного анализатора, достигло невыносимой для этих клеток интенсивности.
2. При затягивании действия отрицательных раздражителей. В этом случае тормозный процесс перенапрягается не за счет чрезмерной его интенсивности, а за счет чрезмерной длительности.
Например, срочное продление действия дифференцировочного раздражителя вместо обычных 30 с до 3–5 мин может привести к срыву дифференцировок, Подобное напряжение тормозных процессов, очевидно, лежит в основе того нервного состояния, которое овладевает человеком, сталкивающимся с постоянными запретами.
3. При длительной отсрочке подкрепления. В этом случае напрягается экстренно вырабатываемое торможение запаздывания. Поэтому так тягостно всякое ожидание. И когда оно достигает нетерпимой степени, человек бессознательно пытается ослабить это опасное напряжение тормозного процесса, рассеивания его двигательным возбуждением. Еще сильнее действует отсрочка подкрепления на неопределенное время. Поэтому обманутые надежды и горькие разочарования нередко бывают толчком к развитию невроза.
Перенапряжение подвижности нервных процессов может произойти, когда клетки больших полушарий вынуждены слишком быстро переходить из возбужденного состояния в тормозное и наоборот. Перестройка функционального состояния нервных клеток требует определенного времени. Попытки насильственного ускорения такой перестройки могут вести к серьезным нарушениям функции, что и проявляется в срыве подвижности. Такой срыв может произойти в следующих случаях.
1. При экстренной обратной переделке сигнального значения условных раздражителей. При подкреплении из опыта в опыт ранее неподкрепляемого сигнала и не подкреплении ранее подкрепляемого постепенно создается очаг возбуждения там, где было торможение, и наоборот. Если же этот процесс форсируют, может произойти срыв.
2. При «сшибке» возбудительного и тормозного процессов путем вызова одного из них до того, как закончится другой. Такой прием широко используют для получения экспериментальных неврозов. Положительные и отрицательные условные раздражители подаются сразу один за другим без перерыва. Тогда каждое очередное возбуждение попадает на клетки, сохраняющие следы бывшего торможения, и наоборот. Немало невротиков «обязаны» своим заболеванием «сшибкам», с которыми они не сумели справиться.
3. Срыв подвижности может произойти при ломке прочно выработанного стереотипа раздражителей. В условиях ослабления клеток больших полушарий у подопытных собак оказалось возможным вызвать невротические расстройства уже одним резким изменением привычного для них стереотипа раздражителей. Неспособные к столь быстрой перестройке своего функционального состояния клетки коры теряли нормальную подвижность – развивался невроз.
Врачи часто отмечают, что заболевание неврозом бывает связано с тем, что человек, проживший всю жизнь в одних условиях, неожиданно попадает в другие, требующие изменения всех сложившихся склонностей и привычек. Ломка жизненного стереотипа, особенно на склоне лет, представляет собой трудное испытание для нервной системы человека.
Своеобразным условием резкого ухудшения функционального состояния высших отделов мозга является лишение сна. Таким способом можно вызвать срыв нервных процессов и надолго сохраняющуюся картину невротического поведения (рис. 70). Насильственное лишение сна становится пыткой, приводящей к психическим расстройствам. Известны заболевания людей из-за бессоницы.
![](p_104_1.png)
Рис. 70. Невротические нарушения условно-рефлекторной деятельности, вызванные лишением сна у собаки (по М.У. Уколовой):
I – накануне лишения сна, II – после суточного лишения сна, III – после двухсуточного лишения сна, IV – 1-й день после неограниченного сна, V – 2-й день естественного режима сна, VI—VIII – 10-й и 50-й дни естественного режима сна соответственно, IX – после 2-месячного перерыва в опытах, X – через месяц условно-рефлекторной деятельности после отдыха; 1 – слюноотделение за первые 10 с, 2 – то же, за вторые 10 с, 3 – суммарное слюноотделение за 20 с
Систематические исследования экспериментальных неврозов расширили понимание условий возникновения и закономерностей их протекания (М.М. Хананашвили, 1974, 1978). Большое значение для профилактической и лечебной медицины имеет выделенная и изученная форма информационных неврозов. Их возникновение было наглядно показано при перегрузке оперативной памяти у собак. Экспериментальные неврозы вызывали у собак также нерегулярностью подкрепления сигнала, обстановочными раздражителями, в частности сильным освещением; они возникали при эмоциональном стрессе (у обезьян и овец).
Описаны структурные и функциональные перестройки нервных и глиальных клеток в сенсомоторной коре, развившиеся при экспериментальном неврозе. Эмоциональный стресс в результате иммобилизации крыс вызывал у них изменения импульсации нейронов промежуточного мозга и гипоталамуса. У кроликов экспериментальный невроз сопровождался изменениями во фронтальной коре и вентромедиальном гипоталамусе. Получены сведения о значении холинэргических структур в развитии экспериментальных неврозов. Так, блокада холинорецепторов перед «сшибкой» условных рефлексов предотвращала невроз. У невротизированных кроликов нейроны сенсомоторной коры снижают чувствительность к микроаппликациям ацетилхолина. У крыс при невротизации изменяется состояние ганглиозидов мозга и возрастает активность цитохромоксидазы сначала в коре, а потом в гипоталамусе и гиппокампе.
Возможность возникновения картины проявления невротических изменений высшей нервной деятельности у человека и животных зависит от многих обстоятельств. Из них первостепенное значение имеет тип нервной системы.
Наиболее легко возникают неврозы у животных крайних типов: слабого (тормозимого) и безудержного (возбудимого). При слабом типе нервной системы легко получить срыв недостаточного возбудительного процесса, при безудержном типе быстрее достигается перенапряжение отстающего тормозного. Ранее существовало мнение, что невротические срывы возможны лишь при наличии таких типологических особенностей. Однако дальнейшие исследования показали, что неврозы могут развиваться также в случаях живого и спокойного типов. Все дело в приемах, вызывающих неврозы.
В общих чертах связь невротических расстройств с типологическими особенностями обнаруживается и в клинике человеческих неврозов. Именно меланхолики и холерики, при прочих равных условиях, оказываются более подверженными неврозам, чем флегматики и сангвиники. При этом у меланхоликов чаще страдает возбудительный процесс, а у холериков – тормозный. Однако течение неврозов у человека отличается от неврозов животных ввиду специфических особенностей его высшей нервной деятельности. Эти специфические особенности состоят в наличии чисто человеческой системы словесных условных рефлексов, лежащих в основе нашего сознания.
Если невротический срыв произошел у человека, первая и вторая сигнальная системы которого взаимно уравновешены, то они обе поражаются в равной степени; развивается неврастения – общая нервная слабость. Неврастеник жалуется на легкую раздражимость и быструю утомляемость, на беспричинные страхи и подавленное настроение, на общую вялость и тяжесть в голове, сон его не освежает, утром он просыпается разбитый и не сразу может приступить к работе. Больной полностью отдает себе отчет в неосновательности страхов и плохого настроения, но ничего с собой поделать не может.
Если невротический срыв произошел у человека, словесные рефлексы которого получили чрезмерный перевес над остальными, то именно они подвергаются преимущественному поражению; развивается психастения – извращаются понятия и представления о событиях окружающего мира.
Психастеник оторван от реальной действительности и постоянно витает в мире грез. Неприспособленный к практической жизни, он терпит неудачи и разочарования, совершает много промахов. Вместо энергичных действий он погружается в обдумывание своих предполагаемых поступков, строит широкие планы, но не доводит их до осуществления. Это болезненный бесплодный мечтатель.
Если невротический срыв произошел у человека, словесные рефлексы которого не подчинили себе в должной мере рефлексы на конкретные раздражители, то преимущественно поражаются последние; развивается истерия – извращаются непосредственные восприятия и реакции на конкретные раздражители. Истерический припадок может сопровождаться расстройствами чувствительности и ложными параличами. В тяжелых случаях дело доходит до временной потери речи, глухоты и слепоты. Истерики крайне впечатлительны и эмоциональны, действуют под влиянием аффекта, легко переходят от одного настроения к другому, от горя к радости, от смеха к слезам. Вместе с тем в отличие от психастеников они не отрываются от жизненной действительности и умеют добиваться своего.
Одна из важнейших задач педагогики заключается в том, чтобы, учитывая типологические особенности учащихся, строить воспитательные мероприятия и преподавание с индивидуальным подходом к каждому из них. Особое внимание должно быть уделено тому, чтобы избегать возникновения нервных перенапряжений, которые могли бы создать угрозу нервного срыва. Например, имея дело с флегматиком, опасно сразу требовать от него такой же подвижности, как от других, а при наличии признаков слабых нервных процессов следует быть осторожным в отношении нагрузок трудными заданиями. Тренируя подвижность флегматика, сдерживая холерика и укрепляя характер меланхолика, воспитатель осуществляет профилактику неврозов.
Часть II
ЧАСТНАЯ ФИЗИОЛОГИЯ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ
Глава 10
ПРИМИТИВНЫЕ ФОРМЫ ВРЕМЕННЫХ СВЯЗЕЙ
Приспособительная изменчивость поведения свойственна всем живым существам. Уже простейшие могут образовывать своеобразные временные внутриклеточные связи. С появлением у кишечнополостных нервной системы (органа раздражимости многоклеточных организмов) эту функцию вначале берут на себя временные связи диффузной нервной системы. Затем нервная система централизуется, и, начиная с низших червей, индивидуальные приспособительные реакции животных осуществляются с помощью временных рефлекторных связей. Их развитие и дает начало истории условного рефлекса как исходного механизма формирования все более сложных форм высшей нервной деятельности.
Временные связи простейших
Как справедливо замечено, «в термине „простейшие“ больше иронии, чем правды». Действительно, микроскопическая амеба своей протоплазмой осуществляет сложнейшие функции раздражимости, передвижения, пищеварения и т.п., для обеспечения которых у высших животных работают целые органы и системы. Среди этих функций обращает на себя внимание отчетливо выраженная у некоторых из простейших способность к образованию внутриклеточных временных связей.
Амеба. Медленными тягучими движениями перемещается амеба, переливаясь протоплазмой тела в выпячивающиеся ложноножки. Однако, несмотря на крайнюю простоту своей моторики, она способна к приспособительной изменчивости поведения.
Возможность выработки новых форм реакций у амеб изучали в опытах с повторным действием сильного светового раздражения. Если на пути ползущей амебы поставить узкий луч от мощного источника света, то, как только ее ложноножка попадает под яркое освещение, амеба останавливается. Затем она начинает выпускать ложноножки, более или менее отклоняющиеся от прежнего направления, вновь втягивая их каждый раз, как только они входят в соприкосновение со световым лучом. Наконец, после ряда «проб» амеба резко изменяет направление своего движения и, выпустив ложноножку назад, уходит от световой преграды. Оказалось, что многократное повторение таких опытов на одной и той же особи приводит к значительному уменьшению числа «пробных» вытягиваний ложноножек до ухода назад. Например, в одном из опытов при первых трех испытаниях амебы совершали «пробные» вытягивания ложноножек 20 раз, при вторых испытаниях – 7, а при шестых – только 4 раза.
Стилонихия. На стеблях и листьях водных растений на дне пресноводных водоемов обитает брюхоресничная инфузория стилонихия. Органами передвижения ей служат склеенные между собой реснички – цирры. На них стилонихия поднимает свое тело, и переступая циррами, как ножками, ходит и даже подпрыгивает в поисках добычи.
Оказывается, у стилонихий легко вырабатывается временная связь между освещением и неблагоприятными условиями передвижения. Для этого следует пустить стилонихию в сосуд с наполовину шероховатым, а наполовину гладким дном и осветить шероховатую половину, а гладкую затемнить. Через некоторое время свет перестает быть для стилонихий безразличным и приобретает сигнальное значение. Свет становится сигналом «плохой дороги». Теперь он вызывает реакцию ухода в другое место. Это легко обнаружить, пересадив стилонихий в другой сосуд с наполовину освещенным, но на всем протяжении одинаково гладким дном. Как только стилонихия, находящаяся на темной половине, доходит до границы со светлой, она немедленно поворачивает обратно.
Физиологический механизм этих связей, видимо, состоит в повышении или понижении раздражимости, возможно, суммационной природы. Однако эти связи чрезвычайно слабые и рыхлые. Они разрушаются немедленно после того, как перестали действовать создавшие их раздражители. Достаточно нескольких минут, чтобы раздражимость начала возвращаться к исходной величине, и приобретенный новый способ реагирования был уже частично утрачен.
Туфельки. Почти в каждой капле стоячей воды можно увидеть под микроскопом быстро плавающие в разных направлениях или остановившиеся у комочка водорослей равноресничные инфузории из рода туфелек. Наиболее крупная из них – хвостатая туфелька, ведет себя очень активно, находится почти все время в движении и является удобным объектом для изучения приспособительной изменчивости поведения.
Туфелька обычно заглатывает все встречающиеся ей мелкие частицы. Однако она может выработать различение съедобных частиц от несъедобных. Это видно из следующего опыта.
В воду культуры туфелек вносят взвесь тонко растертого порошка алюминия, и время от времени берут туфелек из этой культуры для просмотра пищеварительных вакуолей. Вначале туфельки заглатывают алюминиевые частички. Со временем заглотанных частичек становится все меньше, и примерно через 20 ч туфельки перестают заглатывать алюминий, хотя органические частицы, например белка, по-прежнему энергично поедаются ими.
Приобретенные формы поведения сохраняются лишь до первого деления инфузорий. При перестройке клеточных структур во время акта размножения временные связи бесследно разрушаются. Дочерние туфельки должны заново приобретать свой жизненный опыт.
Подвижные инфузории легко вырабатывают временные связи на ориентиры своего обычного пути следования. Так, плавая в треугольном сосуде, вдоль его стенок, и многократно поворачивая в конце каждой грани на 120°, туфелька «привыкает» к такому повороту. Теперь ее можно выпустить в круглый сосуд и тем не менее она будет выписывать в нем треугольники. В то же время туфелька, выдержанная в четырехугольном сосуде, будет и в круглом сосуде при каждом столкновении со стенкой поворачивать на 90° и ее путь будет иметь форму квадрата (рис. 71).
![](p_107_1.png)
Рис. 71. Путь туфельки после содержания в четырехугольном (А) и треугольном (Б) сосудах (по Брамштедту)
Временные связи простейших помогают им осваивать новые способы передвижения.
Если туфельку пустить в тонкий запаянный на конце капилляр, просвет которого меньше длины ее тела, она не сможет повернуться и будет вынуждена плыть все время вперед. Достигнув конца капилляра, туфелька окажется в тупике. Отступая и вновь устремляясь вперед, изгибаясь то в одну, то в другую сторону, она будет долго биться, пока, наконец, не найдет способа повернуться и выйти из узкого места. В первый раз для этого потребуется много времени, потом все меньше и меньше. После 15–20 таких «упражнений» туфелька, дойдя до конца капилляра, привычным движением сразу разворачивается и плывет обратно.
Новый прием передвижения в узких ходах осваивается туфелькой за несколько минут. Это естественный приспособительный механизм. Образование временных связей подобного рода несомненно происходит в природных условиях, позволяя инфузориям приспосабливаться к разнообразным условиям добывания пищи, например в узких складках и щелях гниющих растений.
У инфузорий удалось также выработать положительную реакцию на свет после того, как он многократно сочетался с тепловым воздействием. Однако в аналогичных опытах с сочетанием света и электрического раздражения показано, что здесь, возможно, играет существенную роль не свет, а место сосуда (капилляр), в котором производилось электрическое раздражение. Оказалось, что инфузории, дойдя до этого места, поворачивали, даже если свет не включался. Высказано предположение, что речь идет о реакции инфузории на какие-то вещества, выделявшиеся ею в ответ на действие электрического тока и накопившиеся в том месте, где инфузорию подвергали раздражению. Однако в аналогичных опытах, поставленных в широкой камере, туфельки также вырабатывали подобную реакцию, хотя трудно допустить, что они создавали зону выделений на столь большом протяжении. Вместе с тем даже в отсутствие света туфелька, достигнув этой условной линии, поворачивалась и уходила обратно. Возможно, выработка такой реакции, как и описанной выше реакции движения по определенному пути, имеет в своей основе сигналы от аппарата передвижения.
Если «засасывать» туфельку в капилляр, конец которого погрузить в сосуд с питательной средой, то с каждым разом она выплывает из капилляра все скорее. Однако эти опыты получили также иное объяснение, чем образование временных связей. После 10 сочетаний подпороговой вибрации (400–500 Гц) с ударом электрического тока, останавливающего движения туфелек, вибрация сама стала останавливать их движения. Дифференцировка к вибрациям 300 и 30 Гц вырабатывалась за несколько применений.
Сувойки. Весьма интересна возможность выработки своеобразных временных связей у колониальных форм круглоресничных инфузорий. Сочетая освещение красным или синим светом с прикосновением к сувойкам, получали после 140–160 сочетаний сокращение всех особей колонии на одно только применение света. Пересадка таких сувоек на другую колонию сообщает последней свойства защитной реакции на свет, сохраняющиеся и после удаления трансплантата. Не исключена возможность, что временные связи здесь имеют еще неисследованную гуморальную природу.
Временные нервные связи кишечнополостных, иглокожих, червей и моллюсков
Возникнув как орган раздражимости многоклеточных животных, нервная система берет на себя руководство всеми адаптивными реакциями организма. В частности, образование временных связей становится ее специальной функцией.
Кишечнополостные. Нервная система кишечнополостных имеет сетевидное строение. Прикрепленные гидры и полипы, ограниченные в своей моторике и рецепции, обладают сравнительно малыми возможностями для образования временных связей в своей диффузной нервной системе. Такие связи вырабатываются главным образом между сигналами, которые получают щупальца, и поисковыми движениями захватывающих органов. Это можно наблюдать в следующем опыте (рис. 72).
![](p_108_1.png)
Рис. 72. Выработка временных нервных связей, изменяющих направление поисковых движений щупалец пресноводной гидры (по А.А. Зубкову, Г.Г. Поликарпову), А – вытягивание щупалец в течение первых 67 мин после прикрепления на расстоянии 5 мм от края водоема; Б – то же, в течение следующих 93 мин после отдаления границы между водой и «сушей» до 20 мм; В – то же, спустя 120 мин после удаления границы:
цифры отражают длину и продолжительность вытягивания в условных единицах, пунктиром отмечены отклонения от первоначального направления вытягивания
Если в часовое стекло налить воду и поместить туда пресноводную коричневую гидру, постоянную обитательницу почти каждого водоема, то, оправившись от сотрясений и прикрепившись подошвой ко дну, гидра вскоре выпустит щупальца и начнет свои поисковые движения, простирая щупальца во все стороны. Наклоняя часовое стекло, можно добиться, чтобы гидра оказалась почти на границе воды с воздухом и имела возможность вытягивать свои щупальца за добычей только в одну сторону. После того как она пробудет в таком положении 2–3 ч, можно вернуть стекло в прежнее положение, и, хотя гидру вновь окружает со всех сторон вода, поисковые движения она будет совершать только в одну сторону, а именно в ту, куда она вытягивала свои щупальца, находясь в условиях ограничения движений. С возвращением прежних условий такая приобретенная реакция постепенно утрачивается.
У гидр оказалось возможным также выработать после 100–300 сочетаний реакцию втягивания щупалец на легкое вибрационное раздражение, которое ранее не вызывало такого защитного движения. Для этого колебания воды язычком электромагнитного вибратора сочетали с сильным механическим раздражением тела гидры пузырьками воздуха из подведенной к месту ее прикрепления трубки. Однако достаточно было сделать небольшой перерыв в опытах и выработанная реакция исчезала. Эти и другие примеры показывают свойства суммационных реакций, которые требуют непрерывного возобновления и, с трудом образуясь, быстро разрушаются.