Текст книги "Пустыня как она есть"
Автор книги: Агаджан Бабаев
Жанр:
Геология и география
сообщить о нарушении
Текущая страница: 10 (всего у книги 14 страниц)
Хочется заметить, что и в таком на первый взгляд простом деле, как полив растений, тоже нужна большая наука, нужны тщательные исследования. Экономия воды, рациональная доставка ее к корневой системе растения – дело исключительной важности. Думается, что если найти оптимальные решения, свести потери к минимуму, то результаты будут эквивалентны постройке еще одного Каракумского канала. А то и двух. Однако, чтобы получить истинную экономию, надо найти по-настоящему оптимальное решение.
В качестве иллюстрации несколько слов о детальных исследованиях в одном из пустынных районов такого бесспорно прогрессивного метода полива, как дождевание.
В них тщательно учитывалось количество влаги, поступившей в дождевальный аппарат, и количество влаги, в итоге попавшей в почву, оценивались потери воды за счет ее испарения «на лету», за счет сноса и перехвата песком во время ветра. Одновременно велись наблюдения за растениями, показавшие, в частности, что хлопчатник при поливе дождеванием цветет на 2–3 дня раньше, а созревает на 18–20 дней раньше, чем при использовании традиционного полива с помощью небольших арыков. И урожай хлопка при дождевании получается на несколько центнеров с гектара больше. Бесспорно достоинство дождевания и в том, что оно позволяет подавать воду растению небольшими дозами, вплоть до так называемых освежающих поливов. Дождевание особо ценно для рыхлых песчаных почв, в которых вода за первый час полива проникает на глубину 15–30 сантиметров.
Казалось бы, все прекрасно и дождевание должно стать основным, а может быть, и единственным методом полива. Однако столь же тщательные исследования показали, что такой дорогой на первый взгляд метод, как полив с помощью переносных капроновых трубопроводов, которые подводят воду прямо к корням каждого растения, в итоге оказывается в два раза выгоднее дождевания.
Водопровод идет в пустыню.Водопровод – сооружение дорогое, его и построить непросто, и материала дефицитного нужно немало. Но когда речь идет о доставке воды в безводные районы, никакие затраты не кажутся чрезмерными. Вспоминается, что было время, когда рабочим серного завода, расположенного в Центральных Каракумах, воду доставляли самолетами. А в Красноводск возили ее танкерами из Баку. Кстати, Красноводск и Небит-Даг сейчас получают часть воды по трубам из большой пресноводной Ясханской линзы. А кроме того, строится водопровод протяженностью в 118 километров, который доставит городам воду Каракумского канала.
Есть трубопроводы, доставляющие воду на пустынные пастбища. Обычно они представляют собой целую разветвленную систему труб, которая позволяет доставить воду не «в точку», а на большую территорию, по которой перемещаются стада.
Водопровод в районе поселка Ак-Су Ашхабадской области уходит на 70 километров в глубь пастбищ, а общая протяженность разветвившейся водопроводной сети более 200 километров. А в совхозе «Ербент» от Каракумского канала строится водопровод для водопойных пунктов на пастбищах, три участка которого, следующие друг за другом, продвинутся в пустыню почти на 220 километров. Разветвленная сеть водопровода общей протяженностью 2852 километра накроет пустынные пастбища огромной «елочкой», принесет живительную влагу на сотни водопойных пунктов. Нужно, правда, сказать, что самая впечатляющая цифра этой системы – общая протяженность водопроводных труб – пока под вопросом. Туркменские физики, тщательно проанализировав геометрию водопровода-гиганта, предложили такую его конфигурацию, которая позволит обводнить примерно ту же площадь сетью труб в два раза меньшей протяженности. И израсходовать при этом на 20 процентов меньше денег.
Осторожно – олени!Так случилось, что из диких животных только олень попал на дорожный знак. Желтый треугольник, обведенный красной каймой, с изображением прыгающего оленя напоминает водителю, что нужно быть внимательным. Нужно смотреть в оба, дабы дикое животное, обитающее в ближайших лесах, не стало жертвой технического прогресса.
Но автомобиль угрожает не только быстроногому оленю. Многие другие животные, в том числе и обитающие в пустынях, не приученные к правилам дорожного движения, могут попасть под колеса. В Туркменистане 65 тысяч километров автомобильных дорог, и недавно зоологи обследовали половину из них, стремясь выяснить, насколько опасен автомобиль для небогатого животного мира пустыни. Оказалось, что 43 вида позвоночных животных могут стать жертвами транспорта. Чаще всего пресмыкающиеся, птицы, крупные млекопитающие, такие, скажем, как лиса или шакал. Всего на дорогах ежегодно гибнет 25 тысяч животных. Правда, некоторые приспособились: шум мотора удерживает их от выхода на дорогу, животные становятся более активными в ночное время, когда интенсивность движения уменьшается. Расчеты ученых помогают эффективнее решать вопросы по охране животных пустыни.
Тренируйтесь в горах.Люди, попадающие в жаркий климат пустынь, довольно долгое время чувствуют себя хуже, чем местные жители, что объясняется вполне определенными физиологическими и биохимическими сдвигами. Исследования большой группы людей, прибывших в пустыню из зоны умеренного климата, показали, что у них в крови долгое время была повышена концентрация натрия и калия. Лишь через два месяца показатели приблизились к тем, которые характерны для местных жителей. Любопытно, что у людей второй группы, до приезда в пустыню примерно полтора месяца живших в горных районах, адаптация к жаркому климату произошла намного быстрее и подтвердилась сравнительно быстрым снижением концентрации натрия и калия в крови.
Сердце держится до последнего.Физиологи и биохимики самым тщательным образом исследуют механизмы приспособления человека и животных к трудным климатическим условиям пустыни и те конкретные изменения, которые происходят в организме под действием высоких температур. Получено немало интересных данных, которые не только рассказывают о поведении организма в условиях перегрева, но и проливают свет на некоторые еще не до конца понятные физиологические и биохимические механизмы.
Установлено, что в почке перераспределение воды между различными фракциями, происходящее под воздействием тепла, зависит от возраста подопытного животного. Что гормоны надпочечников играют важную роль в приспособлении животного к высокой температуре, причем после достаточной тепловой тренировки удаление надпочечников не ухудшает приспособительных характеристик организма. Что высокая температура тормозит окисление и синтез холестерина у молодых и активизирует эти процессы у старых подопытных животных. А длительное пребывание в условиях перегрева сопровождается ухудшением белкового состава тканей у животных всех возрастов.
В числе биохимических сдвигов, сопровождающих длительный перегрев, увеличение содержания магния в мышцах. Это признак того, что высокая температура угнетает, тормозит обменные процессы в тканях. У молодых животных процесс выражен значительно сильнее, чем у старых. Интересно, что у подопытных животных всех возрастных групп концентрация магния в сердечной мышце при перегреве практически не меняется, видимо, это означает, что организм до последнего старается поддерживать нормальное состояние одного из главнейших своих органов. Исследования необходимы для разработки практических рекомендаций, как ускорить и облегчить процесс адаптации к условиям пустыни.
Рыбак учится у огородника.На берегах оросительных каналов и особенно на берегах водохранилищ нередко можно увидеть человека с удочкой в руках: где есть вода, там есть и рыба. В искусственных водоемах постепенно развивается растительность, то есть появляется корм для растительноядных рыб. Кормовую базу можно улучшать, культивируя в водоемах некоторые наиболее продуктивные растения и разнообразную беспозвоночную «мелочь», которую хорошо поедают рыбы.
Один из таких кормовых объектов – микроскопические ракообразные мизиды. Они, питаясь бактериями и водорослями, ко всему еще играют важную роль в процессах очистки воды. Специалисты, занимающиеся разведением рыб в каналах и водохранилищах, не только в деталях изучают, но и направляют многочисленные и взаимосвязанные биологические процессы в водоемах. И точными цифрами оценивают результаты своей работы. Несколько лет назад, говорят они, продуктивность водоемов Туркменистана была довольно низкой: лишь 5–10 килограммов рыбы на гектар водной поверхности. Сейчас показатель увеличился примерно в два раза, а в пределе, считают специалисты, можно будет с каждого гектара водной поверхности добывать в среднем 100 килограммов рыбы. И это в общем-то без каких-либо заметных затрат.
«Байкал» начинается в Каракумах.Есть растения, которые в пищу непосредственно не идут, ни муку, ни крупу, ни сахар, ни масло из них не делают. Но обойтись без них пищевая промышленность не может. Вот лакрица, или, как ее называют, солодка голая. Корни солодки содержат сладковатые вещества, которые придают неповторимый вкус и особую пенистость таким напиткам, как наш «Байкал» или американские кока-кола и пепси-кола.
Но этим далеко не исчерпаны профессии солодки – она незаменима в производстве лучших сортов бумаги, сигарет, косметики, ее используют как лекарственное средство и даже применяют в производстве цветных металлов. Об удивительных достоинствах солодки знали с древнейших времен, и ценилась она всегда очень дорого. Потому что растет солодка далеко не везде, ее природа дарит человеку не так много. Солодке нужно много тепла и, видимо, еще какие-то особые климатические и почвенные условия, которые существуют в очень ограниченных районах планеты. Во всяком случае, многие страны терпели неудачу, пытаясь выращивать солодку, чтобы продавать ее на мировом рынке, где спрос на лакричный корень всегда превышает предложения.
У нас дикая природная солодка растет в поймах Амударьи, Мургаба и других рек. Несколько лет назад были предприняты попытки искусственно выращивать растение опять-таки на территориях, примыкающих к Амударье и затапливаемых во время разливов. Эксперимент оказался удачным, и с культурных плантаций стали собирать во много раз больше ценного растительного сырья, чем давали дикие заросли. При этом выяснилось, что солодка прекрасно чувствует себя на песчаных почвах и, в свою очередь, сама оказывает на них благотворное действие. Разветвленная корневая система скрепляет пески, способствует накоплению в них важных питательных веществ. И через два-три года, когда корень вырастает и его собирают, выдергивая из песка и отправляя для дальнейшей переработки, песчаная почва готова принять многие культурные растения, для которых она еще недавно была совершенно непригодной.
Когда все было проверено на нескольких опытных участках и на огромных плантациях, энтузиасты и смельчаки решились на следующий шаг – солодку стали высаживать в песках, далеких от воды и лишь довольно скромно орошаемых из каналов. Солодка и здесь приживается, дает богатый корень, способствует формированию плодородной почвы даже там, где никакие другие растения не могли бы прижиться. Ныне солодка наверняка может быть допущена к участию в очень строгом конкурсе на право называться пионером освоения песков. Тем более что теперь научились использовать не только корень солодки, но и верхнюю, наземную часть растения применять на корм скоту.
Соленый ветер пустыни.Ученые, изучающие пустыню, исследующие разные аспекты ее освоения, всегда держали ветер в поле своего внимания. Ветер двигает пески, переносит нагретые массы воздуха, способствует похищению из почвы скудных запасов влаги. А теперь ветер все в больших масштабах ведет еще одну малоприятную работу – переносит соль. Значение процесса возросло не потому, что ветер стал сильнее, а потому, что больше стало в пустыне объектов, с которых может происходить вынос соли. Один из главных новых солевых источников – мелеющие берега Аральского моря. Уже сейчас водная поверхность Арала уменьшилась процентов на 10–15, и появились многие гектары покрытых солью песчаных почв, которые недавно были дном моря. Вот и приходится изучать воздушные потоки, которые подхватывают соль, разносят ее и засоляют вполне хорошие пастбища или пашни. И думать о преградах, которые можно было бы поставить на пути соленого ветра пустыни.
Под пленкой – вода.Самый опасный враг открытых водохранилищ и открытых водоводов, в том числе и акведуков, – испарение воды. Процесс испарения в жаркой пустыне идет настолько активно, что, если летним днем поставить на открытом месте ведро воды, то к вечеру уровень воды в нем заметно понизится.
Бороться с испарением, с этим похитителем воды, можно только одним способом: вместо открытых хранилищ и водоемов строить закрытые. Но давайте подумаем, какую роль играет верхняя часть закрытого прямоугольного водовода? Крышка большого металлического бака или перекрытие бетонного бассейна? Все эти детали никакой механической нагрузки не несут и всего лишь защищают воду от пыли, препятствуют ее испарению. Так стоит ли делать верхние покрытия и перекрытия из такого же материала, как сам бак или водовод? Конечно, нет никакого смысла расходовать тонны металла или железобетона для того, чтобы просто укрыть воду от пыли и уберечь от испарений. Для этого достаточно тонкой пленки, например, полимерной.
Правда, первая попавшаяся пленка для таких перекрытий не подойдет – она должна хорошо переносить жару, не плавиться и не рассыпаться под действием солнечных лучей. Опыт показывает, что создание подобной полимерной пленки задача вполне разрешимая и скромный дар химии, бесспорно, будет применяться везде, где нужно уберечь воду от испарения. О том, что это даст, можно судить по такой цифре – в системах орошения чуть ли не 20 процентов воды, если не больше, теряется из-за интенсивного испарения.
Попутно несколько слов об акведуках. У них богатая история, она начинается во времена, которым еще не был знаком железобетон. Уже древнейшие мелиораторы Ближнего Востока строили самотечные водоводы для орошения засушливых земель. И там, где на пути воды попадались непреодолимые неровности рельефа – горы или глубокие впадины – строители прорывали туннели или создавали акведуки – арочные мосты, по которым проходил водоводный желоб.
Первый большой акведук, о котором сохранились достоверные сведения, был построен в Риме за 300 лет до нашей эры, его протяженность была значительной и по нашим меркам: он протянулся на 20 километров. В те далекие времена вода приходила в Рим по 14 водопроводам, один из них имел протяженность около 100 километров, из них 11 километров приходилось на акведуки.
Современные акведуки в последнее время часто можно увидеть в газетах и журналах на фотографиях, иллюстрирующих работы по обводнению пустынь. По песчаным просторам на многие километры тянутся железобетонные желоба, приподнятые над песком на пластинчатых железобетонных стойках. Масштабы строительства удобного и сравнительно экономичного водовода настолько велики, что акведук постепенно становится типичным элементом пустынного пейзажа.
Нынешние акведуки большой протяженности – детище строительной индустрии, освоившей поточное производство железобетонных конструкций. И конечно, результаты работы ученых, занимающихся проблемами уменьшения испарения воды в пустынях.
Зеленый город Шевченко.Многие знают о прекрасном городе, выросшем в пустыне. Город можно смело назвать детищем труда и науки. В числе его главных достопримечательностей не только всемирно известная мощная атомная электростанция, крупный опреснитель морской воды, но и тщательно продуманная система водоснабжения. В городе три водопроводные линии – по одной идет высококачественная пресная питьевая вода, по второй – несколько солоноватая для ванных комнат и полива зеленых насаждений, по третьей – обычная морская вода, используемая для разных технических нужд, в частности для канализации.
В городе проживает более 120 тысяч человек, на каждого из них приходится воды ничуть не меньше, чем на жителя таких городов, как Москва или Киев. В достатке получают воду и зеленые насаждения, а напоить их дело не такое уж простое: взрослое дерево выпивает 5–10 литров воды в час. О том, насколько удается обеспечить водой флору в пустынном городе Шевченко, говорит хотя бы тот факт, что на каждого жителя здесь приходится 45 квадратных метров площади, занятой зелеными насаждениями. Это почти в полтора раза больше, чем в Москве, в два раза больше, чем в славящейся своими парками Вене, примерно в пять раз больше, чем в Нью-Йорке и Лондоне, и в 8 раз больше, чем в Париже.
Вода из «мороженого».Пастухи туркмены издавна старались зимой получать воду, расплавляя лед, намерзший на источниках солоноватой воды, и, таким образом, экономить пресную воду. Из соленой воды лед получается более пресным, чем сама исходная вода, а иногда и абсолютно пресным. Льдины, которые образуются в море, тоже получаются менее солеными, чем морская вода, а с течением времени могут оказаться совсем без признаков соли.
Объяснить эти давно известные явления оказалось возможным лишь после того, как были поняты некоторые тонкие механизмы кристаллизации, в частности, кристаллизации солевых растворов. Идея получения пресной воды путем замораживания соленой легла в основу многих очень интересных методов и установок. С некоторыми только ведутся эксперименты, другие уже работают и иногда имеют многолетнюю историю.
Еще в тридцатых годах молодой тогда научный сотрудник Института географии Академик наук СССР, впоследствии доктор географических наук, профессор Самуил Юльевич Геллер, много путешествовавший по пустыням Средней Азии, предложил и изготовил чрезвычайно простой опреснитель воды. В нем использовался все тот же принцип замораживания соленой воды, с которым ученый познакомился во время своих путешествий. Основой опреснителя была большая бетонированная площадка с гофрированной поверхностью и невысокими бортами. Площадка располагалась с некоторым наклоном, и в нижней части к ней примыкал большой бетонный резервуар. В зимнее время к концу дня площадку заливали соленой водой, которая за ночь вся промерзала. Днем, когда пригревало солнышко, лед начинал протаивать. При этом сначала с бетонированной площадки стекала соленая вода и на ребрах гофрированной поверхности оставалась практически пресная льдина. При этом необходимо проследить за стекающей водой для того, чтобы после вытекания соленой не пропала бы пресная.
Подобные опреснители, отличающиеся завидной простотой, в то время получили некоторое распространение, они работали в ряде населенных пунктов, уменьшая потребности в привозной пресной воде.
Ясно, что такие опреснительные установки могут работать в течение сравнительно короткого времени года, когда ночью температура воздуха опускается ниже нуля и соленая вода промерзает (она, кстати, замерзает при температуре минус один-два градуса), а днем температура достаточно высока, чтобы лед протаивал. Не говоря о том, что подобное сочетание ночных морозов и дневной жары бывает далеко не во всех районах, нуждающихся в пресной воде. Нельзя считать радикальным решением и другую похожую технологию, когда лед в течение всего холодного периода намораживают в большие глыбы, их закрывают теплоизоляцией, а в более жаркий период постепенно расплавляют.
И все же получение пресной воды из «соленого мороженого», из замерзших, превратившихся в лед минерализованных вод, имеет так много достоинств, что процесс лег в основу новых промышленных методов, иногда довольно сложных и всегда остроумных и эффективных. Во всяком случае, по затратам энергии на литр полученной пресной воды они оказываются выгодней, чем классическое выпаривание, дистилляция, применяемые столь широко. Рентабельность связана с тем, что довести воду до замерзания проще, чем до кипения, и требуется на это меньше калорий: от комнатной температуры в 20 градусов до замерзания, до нуля, значительно ближе, чем до 100 градусов, до кипения. К тому же получение льда не влечет за собой столь неприятный процесс, как образование накипи, удаление которой доставляет массу хлопот на всех дистилляционных опреснителях. Коротко говоря, опреснители, использующие замораживание соленых вод, возможно, станут одним из самых распространенных типов, если удастся создать достаточно простые и надежные их конструкции.
Один из новых методов, на основе которого уже построены опытные установки, связан с процессом замораживания соленой воды путем ее испарения в вакууме. Известно, что если понизить давление над поверхностью воды, то она кипит при более низких температурах. При достаточно низком давлении, то есть в относительном вакууме, вода кипит при нуле градусов, то есть при температуре замерзания. И за счет затрат энергии на образование паров оставшаяся часть воды превращается в лед. Практически, испаряя в этих условиях литр воды, можно около семи литров превратить в лед.
Другой метод – прямое замораживание соленой воды вторичным хладагентом. Один из вариантов реализации метода выглядит так: через воду пропускают жидкий бутан, который, как известно, кипит при очень низкой температуре. Кипящий бутан охлаждает воду и замораживает ее. Из получившегося водяного льда получают пресную воду, а сжатые компрессором пары бутана при повышенном давлении конденсируются, вновь превращаются в жидкость, которая опять может быть использована для получения льда. Процесс организован очень экономно, так, чтобы при любых преобразованиях по возможности использовать имеющуюся энергию. Пары бутана, конденсируясь, отбирают холод у льдинок воды и расплавляют их.
И наконец, еще один метод – газогидратный процесс замораживания. Некоторые углеводороды при вполне определенном давлении и температуре образуют так называемые кристаллогидраты: одна молекула данного вещества присоединяет к себе от семи до восемнадцати молекул воды. Ну а дальше, как говорится, дело техники – нужно лишь отделить и промыть кристаллогидраты, разложить их на газ и воду, газ возвратить в цикл, а воду направить потребителю.
Три последних процесса даже при ультракоротком и сверхупрощенном их описании, бесспорно, производят впечатление чего-то очень сложного и громоздкого. Разве сравнишь их с милым и простым испарением воды или намораживанием льда за счет ночного холода? Однако нужно сказать, что все три процесса тщательно изучаются специалистами, на их основе строятся и уже эксплуатируются опытные установки. Можно не сомневаться, что самые новые эффективные и совершенные системы опреснения воды со временем тоже найдут широкое практическое применение, какими бы сложными ни оказались используемые в них физические процессы. Ибо для многих районов земного шара опреснение соленых вод продолжает оставаться проблемой номер один.
Орошаемые земли и автомобиль.Такыры – весьма распространенный элемент пустынного ландшафта. Одна из главных особенностей больших глинистых участков – это их, как говорят специалисты, равнинность. Такыры – образования совершенно плоские, лишь иногда немного наклоненные. При этом вода с такыров никуда не уходит. И в то же время она почти не проходит сквозь глинистые почвы, которые очень плохо поглощают влагу, и после дождя вода просачивается лишь на глубину в несколько сантиметров. Поверхность такыра покрывается густой липкой грязью, которая, правда, быстро высыхает, оставляя растрескавшуюся глиняную корочку. Такыры издавна используются для сбора появляющихся после дождя или снега пресных вод. При этом такыры выполняют, по сути дела, роль огромных воронок.
Но возможно и иное использование такыров – непосредственно для земледелия. На Небитдагской агролесомелиоративной станции Института пустынь были проведены серьезные исследования, направленные на то, чтобы превратить такыры в плодородные земли. На такырах создавали рощи саксаула, виноградники, пастбища, бахчи с великолепными арбузами и дынями. И все это на участках с очень небольшим количеством осадков и без какого-либо искусственного орошения. Результаты получались просто-таки великолепные и по надежности выращивания растений, и по урожайности. На такыровидных почвах собирали до 20 центнеров столовых арбузов и до 16 центнеров дынь с гектара. Виноградники, разбитые на этих почвах, уже через три года давали с гектара более 5 центнеров винограда. С учетом всех затрат его себестоимость составила 10–15 копеек за килограмм. Прекрасно вырастали на такырах фисташковые деревья и шелковица. А в посадках черного саксаула через три-четыре года получали с гектара до 12 центнеров биомассы, идущей на корм скоту, и еще больше древесины, которую можно использовать для отопления. Кроме того, в пространстве между деревьями вырастает много разнообразной травы, которая тоже дает 10–15 центнеров кормовой массы.
Каким же образом вырастают все эти зеленые богатства на пустынных такырах, на которых в естественном состоянии вообще ничего не растет? Что превращает эти мертвые образования пустыни в плодородные плантации? Конечно, все это делает вода, которая благодаря изобретательности человека не испаряется бесполезно, а достается растениям. Практически обводнение такыров осуществляется очень простыми мероприятиями – созданием сети водосборных траншей и борозд. Ими прочерчивают такыр в двух взаимноперпендикулярных направлениях, образуя некоторое подобие арифметической тетради с многометровыми клетками, – рекомендованное расстояние между соседними бороздами в зависимости от конкретных условий лежит в пределах от 6 до 28 метров. Рекомендованная ширина борозд около метра, глубина от 30 до 50 сантиметров.
Если такыр покатый, то борозды делают только поперек стока и поле уже напоминает тетрадь не в клеточку, а в линейку. И вот что еще интересно – во многих случаях такая гидрографическая сеть такыра может быть создана не с помощью канавокопателей или иных специальных машин, а с помощью обычного грузового автомобиля. Тяжело нагруженная машина выезжает на такыр и продавливает своими колесами неглубокие борозды. Машина движется по параллельным «маршрутам», отстоящим один от другого примерно на пять метров. Прочертив все поле бороздами одного направления, автомобиль таким же способом создает перпендикулярные борозды.
Ученые Небитдагской агролесомелиоративной станции провели огромную работу, тщательно исследовали все особенности обводнения такыров. Результаты своих исследований они изложили не только в такой традиционной форме, как научная статья, но еще и в форме менее академической, но чрезвычайно украшающей любое научное исследование. Была составлена «Инструкция по растениеводческому освоению такыров и такыровидных почв на базе местного поверхностного стока». В этой инструкции давались совершенно конкретные рекомендации по выращиванию тех или иных растений и обводнению тех или иных такыровидных образований.
Когда думаешь о достижениях современной науки, исследующей пустыни, об огромном размахе нынешних научных работ и о том большом вкладе, который они вносят в развитие сельского хозяйства, промышленности, ирригации, прежде всего вспоминаешь о людях, заложивших фундамент этой науки. Из многих славных имен бескорыстных рыцарей прогресса, отдавших свои силы и знания освоению пустынных территорий, мне хотелось бы здесь назвать нескольких исследователей, хорошо известных географам всего мира. Это люди, с которыми меня много лет назад свела счастливая судьба и которых я с гордостью называю своими учителями. Более того, мне посчастливилось не только учиться у них, но и немало вместе с ними работать, писать с ними научные статьи и книги, быть участником экспедиций, которые возглавляли эти ученые, участвовать в больших комплексных исследованиях, которыми они руководили.
Михаил Платонович Петров прошел в науке большой путь, отдав пустыне более чем полвека своей сознательной жизни. В 1928 году он, выпускник географического факультета Ленинградского университета, был направлен в Туркменскую ССР и назначен директором Репетекской песчано-пустынной станции. Это было первое в республике научное учреждение, призванное изучать пустыню. С этого момента началась активная и разносторонняя научная деятельность Михаила Платоновича по исследованию пустынь Средней Азии и Казахстана. Ее отражением стали не только более 400 научных трудов, но и множество важных практических дел.
Он был прежде всего крупнейшим специалистом в области физической географии, хотя часто обращался к смежным областям – климатологии, геоморфологии, геоботанике пустынь, проблемам водных и земельных ресурсов. Он очень любил полевые исследования. Несмотря на чрезвычайную занятость, на большую административную работу и общественную деятельность, Михаил Платонович всегда находил время на то, чтобы выезжать в экспедиции. И все его основные труды написаны на основе собственных экспедиционных исследований или, во всяком случае, с широким использованием материалов, привезенных из экспедиций. В разное время им были опубликованы капитальные монографии, снискавшие ученому мировое признание, такие, как «Подвижные пески СССР и борьба с ними», «Пустыни земного шара», двухтомник «Пустыни Центральной Азии» и другие работы. Многие из публикаций были затем изданы за рубежом и стали классикой мировой географической литературы о пустынях.
Михаил Платонович Петров был учителем в самом высоком смысле этого слова. Он не только щедро отдавал ученикам свои знания, но и личным примером воспитывал бескорыстную преданность науке, скромность, принципиальность и честность, столь необходимые в трудном деле добывания научной истины. Он был на редкость сдержанным, спокойным человеком, всегда приветливым и доброжелательным. Я знал его более 30 лет и не могу вспомнить ни одного случая, когда бы Михаил Платонович повысил голос, формулируя задание или разбирая неудачи и ошибки, без которых редко обходится какое-либо большое и новое дело. Незаурядный талант М. Петрова, его высокая культура, удивительное трудолюбие, простота и обаяние снискали ему глубокое уважение. Он был действительным членом Академии наук Туркменской ССР, вице-президентом академии. В память о том, что ученый сделал для республики, его именем названа одна из улиц Ашхабада.
Член-корреспондент Академии наук СССР и Туркменской ССР, доктор географических наук Владимир Николаевич Кунин тоже приехал к нам в республику, закончив географический факультет Ленинградского университета в 1928 году. Участвуя в течение первых двух лет своей работы в знаменитой Каракумской экспедиции Академии наук СССР, Владимир Николаевич главным образом занимался водными проблемами – гидрологией и обводнением пустыни. В дальнейшем его глубоко аргументированные научные труды легли в основу многих конкретных программ освоения пустынных территорий. Его монографии, такие, как «Очерки природы Каракумов», «Местные воды пустынь и вопросы их использования», «Линзы пресных вод пустыни» – глубокие научные исследования, которые внесли большой вклад в практику водоснабжения и обводнения пустынь. Широкая эрудиция, незаурядные организаторские способности, трудолюбие и доброжелательность Владимира Николаевича, пожалуй, главные штрихи к портрету ученого. Много лет он работал в Москве, был директором Института водных проблем Академии наук СССР. И одновременно с этим представлял нашу страну в комиссиях Организации Объединенных Наций, занимавшихся разработкой предложений по международному сотрудничеству в деле охраны окружающей среды. Под руководством В. Кунина и при его непосредственном участии в нашей стране велись широкие исследования по проблеме территориального перераспределения пресных вод, в том числе по проблеме переброски части стока сибирских и северных рек в пустыни Средней Азии и Казахстана. Владимир Николаевич был также талантливым популяризатором науки, он часто рассказывал в широкой аудитории и в массовых журналах и газетах об изучении и обводнении пустынь. Его книга «Каракумские записки» – прекрасный образец популярного рассказа о той роли, которую сыграли ученые в освоении пустынь.