Текст книги "Большая Советская Энциклопедия (ЛА)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 27 (всего у книги 53 страниц)
Лансинг (город в США)
Ла'нсинг (Lansing), город на С. США, административный центр штата Мичиган. 131,5 тыс. жителей (1970; с пригородами 378,4 тыс.). В промышленности 40 тыс. занятых (1969). Значительный центр автомобильной промышленности. Производство тракторов, двигателей, бойлеров, насосов, с.-х. орудий; свеклосахарная промышленность. Торгово-транспортный центр.
Лансинг Роберт
Ла'нсинг (Lansing) Роберт (17.10.1864, Уотертаун, штат Нью-Йорк, – 30.10.1928, Вашингтон), американский дипломат. По образованию юрист, специалист по международному праву. В 1915—20 государственный секретарь США. Считая, что победа Германии в 1-й мировой войне 1914—18 угрожала бы интересам США, выступал за непосредственное участие США в войне против Германии. С именем Л. связано Лансинга – Исии соглашение 1917. Л. участвовал в Парижской мирной конференции 1919—20.
Лансинга – Исии соглашение 1917
Ла'нсинга – Иси'и соглаше'ние 1917, американо-японское соглашение; заключено 2 ноября в форме обмена нотами между государственным секретарём США Р. Лансингом и чрезвычайным уполномоченным Японии в США К. Исии. Представляло собой временную сделку США и Японии за счёт Китая, заключённую в тот период, когда США, вступив в 1-ю мировую войну 1914—18 на стороне Антанты, оказались союзником Японии. США признали «наличие особых интересов Японии в Китае». В обмен на это Япония признала американскую доктрину «открытых дверей» (см. «Открытых дверей» доктрина). Л. – И. с. было аннулировано США в 1923.
Ланская коммуна
Ла'нская комму'на (La commune de Laonnais), городская коммуна, установленная в 12 в. во французском г. Лан (Laon) в результате упорной борьбы горожан с сеньорами города – епископами. Впервые Лан добился прав коммуны в 1109, откупившись от сеньора города – епископа Годри значительной суммой денег. Л. к. была утверждена в 1111 Людовиком VI, получившим от города большие деньги. Но в 1112 коммунальная хартия была аннулирована королём по настоянию Годри (обещавшего Людовику VI больше денег, чем дали ему горожане), что привело к восстанию горожан; епископ и многие его приближённые были убиты. Восстание было жестоко подавлено, но горожане продолжали борьбу. В 1128 Л. к. была восстановлена. В процессе централизации французского государства Л. к. была отменена королём в 1331. Борьба Лана за коммуну – яркая страница коммунального движения в Западной Европе.
Лит.: Тьери О., Городские коммуны во Франции в средние века, [пер. с франц.], СПБ. 1901, с. 55—105.
Лансон Гюстав
Лансо'н (Lanson) Гюстав (5.8.1857, Орлеан, – 15.12.1934, Париж), французский литературовед. Профессор Сорбонны (с 1900) и Высшей нормальной школы. Автор монографий «Нивель де Ла Шоссе и слёзная комедия» (1887), «Буало» (1892), «Корнель» (1898), «Вольтер» (1906) и др., написанных в традициях культурно-исторической школы в литературоведении. Главная работа Л. – «История французской литературы» (1894; русский перевод, т. 1—2, 1896—98) богата фактическим материалом, включающим характеристику эпохи, стиля и языка писателей, биографический и библиографический комментарий; в ней Л. рассматривает историю французской литературы по жанрам. Ценное дополнение к главному труду Л. – «Руководство по библиографии новой французской литературы 1500—1900» (т. 1—4, 1909—12). Критикуя с марксистских позиций книгу Л. «История французской литературы. XIX век», Г. В. Плеханов отмечал, что «написана она с несомненным знанием, умным и серьезным человеком» («Литература и эстетика», т. 2, М., 1958, с. 598).
Соч.: Essais de méthode, de critique et d'histoire littéraire, P., [1965]; в рус. пер. – Метод в истории литературы, М., 1911.
Лит.: Симон К. P., История иностранной библиографии, М., 1963; Leguay P., Universitaires d'aujourd'hui. P., 1912; Mélanges offerts a G. Lanson, P., 1922 (имеется библ.).
В. С. Лозовецкий.
Лансье
Лансье', кадриль-лансье (франц. lancier, буквально – улан), английский бальный танец. Получил распространение в Европе в середине 19 в. Исполняется четырьмя парами, расположенными крест-накрест в каре. Л. состоит из 5 фигур; музыкальный размер для 1-й, 3-й, 4-й фигур 6/8, для 2-й и 5-й – 3/4 и 4/4. Каждая фигура, кроме 5-й, начинается музыкальным вступлением (8 тактов). В некоторых странах, особенно в России, был популярен в народном быту. В русской народной танцевальной практике созданы многочисленные варианты Л. (см. Ланце).
Лант Алфред
Лант (Lunt) Алфред (р. 19.8.1893, Милуоки), американский актёр. Сценическую деятельность начал в 1913 в Бостоне. Первый большой успех – роль Кларенса («Кларенс» Таркингтона). Наиболее плодотворный период творчества Л. – работа в театре «Гилд» (1924—29), где он создал свои лучшие роли: Хиггинс («Пигмалион» Шоу), Дмитрий Карамазов («Братья Карамазовы» по Достоевскому), Петруччио («Укрощение строптивой» Шекспира), Тригорин («Чайка» Чехова). В 30-е гг. Л. и его жена Линн Фонтанн становятся признанными «звёздами» бродвейского театра (выступали преимущественно в салонных комедиях С. Бермана, Н. Коуарда). Последнее выступление Л. состоялось в 1961 в спектакле «Визит старой дамы» Дюрренматта. В 1958 нью-йоркский театр «Глоб» переименован в театр «Лант – Линн Фонтанн».
Лит.: Freedley G., The Lunts, L., 1957].
Лантан
Ланта'н (лат. Lanthanum), La, химический элемент III группы периодической системы Менделеева с атомным номером 57; см. в ст. Лантаноиды.
Лантаниды
Лантани'ды, то же, что лантаноиды.
Лантанозух
Лантанозу'х (Lanthanosuchus), род ископаемых земноводных подкласса батрахозавров. Существовал в позднепермскую эпоху. Единственный вид – L. Watsoni. Череп округлый, с ячеистой поверхностью; зубы без лабиринтовой складчатости дентина, чем Л. отличается от большинства древних земноводных, в том числе и от котлассии, к которой Л. близок. Вместе с тем он имеет некоторые черты строения, присущие древним пресмыкающимся – котилозаврам. Л. был хищником, обитал в болотах. Остатки Л. найдены на территории СССР.
Лит.: Основы палеонтологии. Земноводные, пресмыкающиеся и птицы, М., 1964.
Лантаноиды
Лантано'иды (от лантан и греч. е'idos – образ, вид), лантаниды, семейство из 14 химических элементов с атомным номером от 58 до 71, расположенных в 6-м периоде системы Менделеева вслед за лантаном (табл. 1). Л. и сходные с ними элементы скандий, иттрий и лантан образуют группу редкоземельных элементов (в литературе её обозначают сокращённо РЗЭ). Такое название объясняется тем, что все эти элементы встречаются редко и дают тугоплавкие, нерастворимые в воде окислы, по старинной терминологии, – «земли». Редкоземельные элементы входят в побочную подгруппу III группы периодической системы.
По химическим свойствам Л. весьма сходны между собой, что объясняется строением электронных оболочек их атомов: по мере увеличения заряда ядра структура двух внешних электронных оболочек не меняется, т.к. происходит заполнение электронами 3-й снаружи оболочки – глубоколежащего 4f-уровня. Максимально возможное число электронов на f-уровне равно 14, что определяет число элементов семейства Л. (см. также Актиноиды, Атом, Периодическая система элементов Д. И. Менделеева). Л. подразделяются на 2 подгруппы: цериевую, включающую церий Се, празеодим Pr, неодим Nd, прометий Pm, самарий Sm, европий Eu, и иттриевую, включающую гадолиний Gd, тербий Tb, диспрозий Dy, гольмий Но, эрбий Ег, тулий Tm, иттербий Yb, лютеций Lu. Это деление обусловлено периодичностью изменения некоторых свойств внутри семейства Л.; названия подгрупп возникли исторически.
Историческая справка. В 1788 в шведском селении Иттербю был найден минерал иттербит (позднее переименованный в гадолинит). В нём Ю. Гадолинобнаружил в 1794 новую «землю», названную иттриевой. В 1803 И. Я. Берцелиуси В. Гизингер (1766—1852) и независимо от них М. Клапрот (1743—1817) в «тяжёлом камне из Бастноса» открыли цериевую «землю» (названную по малой планете Церере). Первоначально обе эти «земли» считались окисями неизвестных прежде металлов – иттрия и церия. В 1843 шведский химик К. Г. Мосандер (1797—1858) разложил иттриевую «землю» на собственно иттриевую, эрбиевую и тербиевую (все три названия – от Иттербю). Ж. Мариньяк (1878) выделил из эрбиевой «земли» ещё иттербиевую, а шведский химик П. Т. Клеве (1879) – гольмиевую (от Holmia – латинское название Стокгольма) и тулиевую (от Thúlë – древне-греческое название стран, лежащих на Крайнем Севере). В 1886 П. Э. Лекок де Буабодран разделил гольмиевую «землю» на собственно гольмиевую и диспрозиевую (от греческого dysprósitos – труднодоступный). В 1907 французский химик Ж. Урбен (1872—1938) нашёл в иттербиевой «земле» лютециевую (от Lutetia – латинское название Парижа). То же самое повторилось и с цериевой «землёй». В 1839—41 Мосандер разложил её на лантановую (от греческого lanthánö – скрываюсь), дидимовую (от греческого dídymos – близнец) и собственно цериевую «земли». Лекок де Буабодран, исследуя дидимовую «землю», полученную из уральского минерала самарскита [названного так в 1847 Генрихом Розе (1795—1864) в честь начальника штаба Корпуса горных инженеров В. Е. Самарского-Быховца (1803—70), от которого Розе получил значительное количество этого минерала], выделил из неё в 1879 самариевую «землю», а в 1886 – гадолиниевую (по имени Гадолина); она оказалась тождественной с «землёй», которую Мариньяк открыл в 1880 в самарските. В 1885 австрийский химик К. Ауэр фон Вельсбах (1858—1929) разделил дидимовую «землю» на празеодимовую (от греческого prásios – светло-зелёный) и неодимовую (от греческого néos – новый). В 1901 французский химик Э. Демарсе (1852—1904) разделил самариевую «землю» на собственно самариевую и европиевую.
Так, к первым годам 20 в. были открыты все Л., за исключением радиоактивного элемента с атомным номером 61, который в природе не встречается. Его получили только в 1947 американские физики Дж. Маринский, Л. Гленденин и Ч. Кориелл из осколков деления урана в ядерном реакторе и назвали прометием (от имени Прометея).
Хотя открытие Л. было завершено в начале 20 в., многие из них не были ни выделены в достаточно чистом состоянии, ни подробно изучены. Эффективные методы разделения, разработанные за последние 20 лет, позволяют получать и производить в чистом виде и соединения Л., и сами металлы.
Распространение в природе. Суммарное содержание лантана и Л. в земной коре составляет 1,78×10-2% по массе, причём кларки у Л. с чётными атомными номерами больше, чем у соседних нечётных. Л. – характерные элементы земной коры; в породах мантии, в каменных метеоритах их мало. При магматических процессах Л. накапливаются в гранитоидах и особенно в щелочных породах. Известно 33 минерала церия и 9 лантана, остальные Л. входят как изоморфные примеси в кристаллическую решётку других минералов, преимущественно редкоземельных. Во многих минералах Л. изоморфно замещают Са, U, Tb и др. В биосфере Л. малоподвижны, с чем связано накопление их в россыпях. Содержание Л. в природных водах и организмах ничтожно. Их водная и биогенная миграция изучена плохо. Известны гидротермальные месторождения фосфатов, фторкарбонатов и фторидов Л., однако наибольшее промышленное значение имеют комплексные месторождения, связанные со щелочными магматическими породами (например, нефелиновые сиениты Кольского полуострова) и карбонатитами, а также месторождения осадочных фосфоритов, кора выветривания щелочных пород, прибрежно-морские и аллювиальные россыпи ксенотима и монацита.
Физические свойства. Л. – металлы серебристо-белого цвета (некоторые слегка желтоваты, например Pr и Nd). Кристаллическая структура большинства Л. – гексагональная плотноупакованная. Исключение составляют g-Ce и a-Yb (кубическая гранецентрированная), Sm (ромбоэдрическая), Eu – кубическая объёмноцентрированная. То обстоятельство, что при переходе от Се к Lu число электронов на двух внешних оболочках, как правило, не меняется, а положительный заряд ядра постепенно возрастает, вызывает более сильное притяжение электронов к ядру и приводит к так называемому лантаноидному сжатию; у нейтральных атомов Л. и ионов одинаковой валентности при увеличении атомного номера радиусы несколько уменьшаются. Температуры плавления у элементов подгруппы церия значительно ниже, чем у элементов подгруппы иттрия.
Л. высокой чистоты пластичны и легко поддаются деформации (ковке, прокатке). Мехапические свойства сильно зависят от содержания примесей, особенно кислорода, серы, азота и углерода. Значения предела прочности и модуля упругости металлов иттриевой подгруппы (за исключением Yb) выше, чем для цериевой. Все Л., за исключением La и Lu, обладают при температурах выше комнатной сильным парамагнетизмом, причиной которого является наличие у этих элементов нескомпенсированных в 4f-подоболочках спиновых и орбитальных магнитных моментов. В области низких температур большинство Л. цериевой подгруппы (Nd, Pr, Sm) находится в антиферромагнитном состоянии, а Л. иттриевой подгруппы (Tb, Dy, Но, Er и Tm) при очень низких температурах – в ферримагнитном состоянии, а при более высоких температурах переходят в т. н. геликоидальное антиферромагнитное состояние. Gd при всех температурах ниже 293 К (т. е. до точки Кюри) находится в ферромагнитном состоянии (см. Магнитная структура).
Металлы Tb, Dy, Но, Er и Tm обладают большими величинами намагниченности насыщения, огромными значениями энергии магнитной анизотропии и магнитострикции, что позволяет на основе этих металлов создавать магнитные материалы (сплавы, ферриты, халькогениды и др.) с уникальными свойствами. a-La становится сверхпроводником при 4,9 К, b-La при 5,85 К; для других Л. сверхпроводимость не обнаружена.
Химические свойства. Л. отличаются высокой химической активностью. При нагревании они реагируют с водородом, углеродом, азотом, фосфором, углеводородами, окисью и двуокисью углерода; разлагают воду, растворяются в соляной, серной и азотной кислотах; выше 180—200°С Л. быстро окисляются на воздухе. Для всех Л. характерна валентность 3. Некоторые Л. проявляют, кроме того, валентность 4 или 2.
Окислы Л. и лантана тугоплавки. Гидроокиси R (OH)3 имеют основной характер и нерастворимы в щелочах. Хлориды, сульфаты и нитраты трёхвалентных Л. растворимы в воде, и кристаллизуются большей частью в виде кристаллогидратов различного состава. Фториды, оксалаты, фосфаты, карбонаты и ферроцианиды малорастворимы в воде и разбавленных минеральных кислотах. Трёхзарядные катионы Ce, Gd, Tb, Yb, Lu бесцветны, Pm, Eu, Er имеют розовый цвет, Sm, Dy, Но – жёлтый, Pr и Tm – зелёный, Nd – фиолетово-красный.
Большинство простых солей Л. склонно к образованию двойных солей с солями щелочных металлов, аммония, магния. Л. дают комплексные соединения с многими органическими веществами. Среди них важное значение имеют комплексы, образуемые с лимонной кислотой и рядом аминополиуксусных кислот: нитрилотриуксусной, этилендиаминтетрауксусной кислотой и др. «комплексонами». Эти соединения используются в процессах разделения Л.
Табл. 1. – Атомный номер, атомная масса и некоторые другие свойства элементов семейства лантаноидов
Название | Сим вол | Атом ный но мер | Атомная масса | Электронная структура | Ва лент ность | Ион ный радиус | Энергия ионизации, эв | Магнитные моменты 3-валентных ионов в магнетонах Бора * | Содержание в земной коре, % по массе | ||||
4f | 5s | 5p | 5d | 6s | |||||||||
Лантан Церий Празеодим Неодим Прометий Самарий Европий Гадолиний Тербий Диспрозий Гольмий Эрбий Тулий Иттербий Лютеций | La Ce Pr Nd Pm Sm Eu Gd Tb Dy HLu Er Tm Yb Lu | 57 58 59 60 61 62 63 64 65 66 671 68 69 70 71 | 138,9055 140,12 140,9077 144,24 (145)** 150,4 151,96 157,25 158,9254 162,50 164,9304 167,26 168,9342 173,04 174,97 | – 2 3 4 5 6 7 7 9 10 11 12 13 14 14 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 1 – – – – – – 1 – – – – – – 1 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 3 3,4 3,4 3 3 2,3 2,3 3 3,4 3(4) 3 3 3(2) 2,3 3 | 1,061 1,034 1,013 0,955 0,979 0,964 0,950 0,938 0,923 0,908 0,894 0,881 0,869 0,858 0,848 | 36,2 37,2 37,5 37,8 38,3 38,2 38,8 38,6 39,4 39,5 40,0 40,2 40,3 40,8 41,0 | 0 2,51 3,6 3,61 – 1,54 3,62 7,84 9,76 10,59 10,50 9,53 7,2 4,6 0 | 2,9·10-3 7·10-3 9·10-4 3,7·10-3 – 8·10-4 1,3·10-4 8·10-4 4,3·10-4 5·10-4 1,7·10-4 3,3·10-4 2,7·10-5 3,3·10-5 8·10-5 |
* По измерениям парамагнитной восприимчивости. ** Массовое число наиболее долго живущего изотопа 145Pm.
Табл. 2. – Физические свойства лантана, лантаноидов, а также иттрия и скандия
Примечание. Структура, плотность и ряд других свойств приведены для модификацин, устойчивой при комнатной температуре. 1 кгс/мм2»10 Мн/м2.
Металл | Плотность (рентге новская), г/см | t пл, °С | t кип, °С | Удельное объёмное электрическое Сопротивление (при 25°С), ом·см·106 | Сечение захвата тепловых нейтронов, s | Работа выхода электрона, эв | Модуль упругости, кгс/мм2 |
a(La) g-Ce a-Pr a-Nd a-Sm Eu a-Gd a-Tb Dy Ho Er Tm a-Yb Lu a-Sc Y | 6,17 6,77 6,78 7,01 7,54 5,26 7,89 8,27 8,53 8,80 9,05 9,33 6,98 9,84 2,99 4,48 | 920 795 935 1024 1072 826 1312 1356 1407 1461 1497 1545 824 1652 1539 1509 | 3470 3470 3130 3030 1900 1440 3000 2800 2600 2600 2900 1730 1430 3330 2730 2930 | 56,8 75,3 68,0 64,3 88 81,3 140,5 – 56 87 107 79 27 79 – 69 ±3 | 8,9 0,70 11,2 44 6500 4500 44000 44 1100 64 166 118 36 108 13 1,38 | 3,33 2,84 2,7 3,3 3,2 2,54 3,07 3,09 3,09 3,09 3,12 3,12 2,59 3,14 3,23 3,07 | 3915 3058 3595 3860 3480 – 5730 5864 6433 6850 7474 – 1815 – – 6700 |
Получение. Основными источниками получения РЗЭ цериевой группы служат минералы монацит (фосфат РЗЭ и тория), бастнезит (фторкарбонат РЗЭ) и лопарит (сложный титанониобат натрия, кальция и РЗЭ); гл. источники РЗЭ группы иттрия – эвксенит, фергюсонит, ксенотим (иттропаризит) и гадолинит. Для извлечения РЗЭ монацитовые и бастнезитовые концентраты разлагают концентрированной серной кислотой при нагревании до 200°С с последующим выщелачиванием массы водой. Из сернокислых растворов первоначально выделяют торий, а затем осаждают РЗЭ в виде оксалатов, двойных сульфатов или др. соединений. Для разложения монацитовых концентратов используют также обработку растворами щёлочи, растворяя образующуюся при этом смесь гидроокисей в соляной или азотной кислоте. Бастнезитовые концентраты обжигают при 400—800°С с целью частичного или полного разложения минерала, сопровождающегося выделением CO2. Продукт обжига обрабатывают азотной кислотой. Из раствора осаждают РЗЭв виде фторидов или двойных сульфатов или извлекают экстракцией трибутилфосфатом. Сложное сырьё типа лопарита хлорируют в присутствии угля при 700—800° С. Летучие хлориды титана, ниобия и тантала удаляются с газами. В печи остаётся сплав хлоридов РЗЭ. Хлориды растворяют в воде, выделяя затем оксалаты РЗЭ. Эвксенит также рекомендуется перерабатывать методом хлорирования.
Методы разделения Л. основаны на небольших различиях в свойствах их соединений. Ранее для этой цели использовали дробную кристаллизацию солей (например, двойных нитратов и др.), дробное осаждение (гидроокисей, сульфатов, оксалатов и др.). В настоящее время основными являются экстракционные методы разделения, в которых используется различие коэффициентов распределения между водным раствором и органическим растворителем. Эти методы в сочетании с ионообменной хроматографией обеспечивают получение всех Л. высокой степени чистоты. В схемах разделения, кроме того, используют способность некоторых Л. к окислению до четырёхвалентного состояния (применяется для отделения Ce) или восстановлению до двухвалентного (Sm, Eu, Yb).
Для получения металлов применяют металлотермию или электролиз. Металлотермический метод основан на восстановлении безводных хлоридов или фторидов чистым кальцием. Процесс ведут в стальных бомбах, футерованных окисью кальция, или в тиглях из тантала в атмосфере чистого аргона. Этим способом могут быть получены все Л., кроме Sm, Eu и Yb. Последние можно восстановить из их окислов лантаном с последующей дистилляцией образующихся металлов.
Все Л. можно получить электролизом их соединений в солевых расплавах. Металлы подгруппы Ce выделяют электролизом безводных хлоридов в расплавах KCl + CaCl2 или KCl + NaCI. В случае металлов иттриевой подгруппы (более тугоплавких) электролиз ведут с жидким катодом из кадмия или цинка, которые затем отгоняют в вакууме. Электролитические металлы менее чисты, чем металлотермические.
Области применения. Л. (в виде металлов, сплавов и химических соединений) применяют в различных отраслях техники. Присадки Л. (главным образом Ce или его сплава с La) улучшают структуру, механические свойства, коррозионную устойчивость и жаропрочность стали, чугуна, магниевых, алюминиевых и др. сплавов. Добавки окислов различных Л. сообщают стеклу особые физические свойства и окраску. Двуокись церия CeO2 используют для полировки оптического стекла. Окислы Л. применяют для окраски фарфора, глазурей и эмалей. Церий или сплав Л. цериевой группы («мишметалл») входит в состав нераспыляющихся поглотителей газов (геттеров) в электровакуумных приборах. Бориды некоторых Л. идут на изготовление катодов мощных электронных приборов. В СВЧ электронике и вычислительной технике используют редкоземельные ферриты-гранаты и ортоферриты, а в радиоэлектронике и микроэлектронике – редкоземельные сплавы (типа SmCo5), из которых изготовляют постоянные магниты рекордной энергии (см. Магнит постоянный). Л. входят в состав кристаллов для лазеров (добавки соединений Л. в кристаллы CaF2 и др. солей); в атомной технике используют Л. с высоким сечением захвата тепловых нейтронов (Gd, Sm, Eu) для защиты от излучений и управления работой реакторов. В химической и лёгкой промышленности соединения Л. служат для изготовления лаков и красок, светящихся составов (люминофоров), катализаторов, фотореагентов. Важное применение нашли некоторые радиоактивные изотопы Л. Так, изотоп прометия (147Pm) применяют для изготовления микробатарей; изотоп тулия (170Tm) – в портативных рентгеновских установках медицинского назначения. В сельском хозяйстве соединения Л. применяют в качестве инсектицидов и микроудобрений. Этим перечнем далеко не исчерпываются области использования Л.
Лит.: Серебренников В. В., Химия редкоземельных элементов, т. 1—2, Томск, 1959—61; Зеликман А. Н., Металлургия редкоземельных металлов тория и урана, М., 1961; Спеддинг Ф.-Х., Даан А.-Х. [сост.], Редкоземельные металлы, пер. с англ., М., 1965; Трифонов Д. Н., Проблема редких земель, М., 1962; Сплавы редкоземельных металлов, М., 1962; Белов К. П., Редкоземельные магнитные материалы. Сб. памяти академика Л. В. Кипренского, М., 1972.
А. Н. Зеликман,