Текст книги "Большая Советская Энциклопедия (ФЕ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 32 (всего у книги 36 страниц)
Ферро (остров)
Фе'рро, Иерро (Ferro, Hierro), остров в Атлантическом океане, в группе Канарских островов. Территория Испании. Площадь 275 км2. Население 5,5 тыс. чел. (1970). Высота до 1501 м. Горячие источники. Климат тропический сухой. Растительность с преобладанием эндемичных видов (канарская сосна, дикая финиковая пальма). Земледелие, виноградарство; разводят коз, овец, крупный рогатый скот. Главный город – Вальверде. До 1884 через Ф. (около 18° з. д.) проводили меридиан, который в ряде стран был принят за начальный.
Ферро Сципион
Фе'рро, Даль Ферро (Dal Ferro) Сципион (1465, Болонья, – 1526, близ Болоньи), итальянский математик. С 1496 профессор Болонского университета. С именем Ф. связано открытие правила решения в радикалах кубических уравнений вида: x3 + px = q.
Лит.: Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969.
Ферро..., ферр...
Ферро..., ферр... (от лат. ferrum – железо), в химических, технических и др. терминах составная часть, означающая отношение к железу , см., например, Феррит , Ферросплавы .
Ферробор
Ферробо'р,ферросплав , содержащий 10–25% В, по 2–5% Si и Al (остальное Fe); получают в руднотермических печах алюминотермическим способом (см. Алюминотермия ) из боратовой руды или борного ангидрида. Ф. и др. сплавы Fe с В (ферроборал, грейнал) используются для легирования, раскисления и модифицирования стали.
Феррованадий
Феррована'дий,ферросплав , содержащий 35–45% V, 1–3% Si, 0,5–1,5% Al (остальное Fe и примеси); выплавляют в электропечах силикотермическим способом (см. Силикотермия ) из пятиокиси ванадия (85–95% VaOs), получаемой химико-металлургической переработкой железованадиевого концентрата. Ф. применяют главным образом для легирования стали. Наряду с Ф. выпускаются силикованадий, выплавляемый в электропечах, а также металлический ванадий и богатый Ф. (до 80% V), получаемые внепечным алюминотермическим способом (см. Алюминотермия ).
Ферровольфрам
Ферровольфра'м,ферросплав , содержащий 68–72% или 78–86% W, до 7% Mo (остальное Fe и примеси); выплавляют в руднотермических печах комбинированным силикотермическим (см. Силикотермия ) и углевосстановительным (см. Карботермия ) процессом из вольфрамитового и шеелитового концентратов. Готовый Ф. вычерпывают стальными ложками специальной машиной; более богатый Ф. плавят «на блок», который после остывания разбивают. Ф. применяется главным образом при производстве инструментальных сталей (например, быстрорежущей) и жаропрочных сплавов.
Феррография
Феррогра'фия, то же, что магнитография .
Феррод
Ферро'д [англ. ferrod, от fer (rit) – феррит и rod – стержень], бесконтактный электромагнитный телефонный коммутационный прибор, действие которого основано на использовании магнитного насыщения ферромагнетика (т. е. по принципу действия подобный трансформатору с подмагничиванием). Служит для реализации логических функций в управляющих устройствах квазиэлектронных автоматических телефонных станций (например, для индикации состояния абонентской линии). Основные элементы Ф. (см. рис. ): сердечник, выполненный в виде бруска или стержня из феррита с прямоугольной петлей гистерезиса и низкой коэрцитивной силой , две последовательно соединённые обмотки управления (ОУ); обмотка возбуждения (0В); обмотка считывания (ОС). На ОВ по цепи запроса подаются двуполярные импульсы тока (обычно амплитудой 0,5 a и длительностью 3–5 мксек ). Если ток в ОУ отсутствует, то под действием импульсов возбуждения сердечник перемагничивается и в ОС индуцируются импульсы напряжения (амплитудой около 0,2 в ), поступающие в оперативное запоминающее устройство автоматической телефонной станции. Если по ОУ протекает постоянный ток, достаточный для намагничивания сердечника до насыщения (обычно от нескольких ма до нескольких десятков ма ), то импульсы в ОС не индуцируются.
М. Ф. Дутов
Схема феррода: ФС – ферритовый стержень; ОУ – обмотка управления (знаками + и – обозначены клеммы, к которым подключается источник постоянного тока); ОВ – обмотка возбуждения; ОС – обмотка считывания; К – эквивалентная цепь с контактом, состояние которого (замкнут либо разомкнут) условно отражает состояние, например, абонентской линии ( занята либо свободна); Iв – двуполярные импульсы тока возбуждения.
Ферродинамический прибор
Ферродинами'ческий прибо'р измерительный, см. в ст. Электродинамический прибор измерительный.
Феррозонд
Феррозо'нд, феррозондовый магнитометр, прибор для измерения и индикации магнитных полей (в основном постоянных или медленно меняющихся) и их градиентов. Действие Ф. основано на изменении магнитного состояния ферромагнетика под воздействием двух магнитных полей разных частот. В простейшем варианте Ф. состоит из стержневого ферромагнитного сердечника и находящихся на нём двух катушек: катушки возбуждения, питаемой переменным током, и измерительной (сигнальной) катушки. В отсутствие измеряемого магнитного поля сердечник под действием переменного магнитного поля, создаваемого током в катушке возбуждения, перемагничивается по симметричному циклу. Изменение магнитного потока, вызванное перемагничиванием сердечника по симметричной кривой, индуцирует в сигнальной катушке эдс, изменяющуюся по гармоническому закону. Если одновременно на сердечник действует измеряемое постоянное или слабо меняющееся магнитное поле, то кривая перемагничивания изменяет свои размеры и форму и становится несимметричной. При этом изменяется величина и гармонический состав эдс индукции в сигнальной катушке. В частности, появляются чётные гармонические составляющие эдс, величина которых пропорциональна напряжённости измеряемого поля и которые отсутствуют при симметричном цикле перемагничивания.
Как правило, Ф. состоит из двух сердечников с обмотками, которые соединены так, что нечётные гармонические составляющие практически компенсируются. Тем самым упрощается измерительная аппаратура и повышается чувствительность Ф. Наиболее распространённые феррозондовые установки имеют следующие основные узлы: генератор переменного тока, питающий обмотку возбуждения, фильтр для нечётных гармонических составляющих эдс, подключенный на выходе измерительной катушки, усилитель чётных гармоник и выходной измерительный прибор. Ф. обладают очень высокой чувствительностью к магнитному полю (до 10-4 –10-5а/м ).
Ф. применяют для измерения земного магнитного поля и его вариаций (в частности, при поисках полезных ископаемых, создающих локальные аномалии геомагнитного поля); для измерения магнитных полей Луны, планет, межпланетного пространства; для обнаружения ферромагнитных предметов и частиц в неферромагнитной среде (в частности, в хирургии); в системах контроля за качеством выпускаемой продукции (магнитная дефектоскопия и др.).
Лит.: Афанасьев Ю. В., Феррозонды, Л., 1969; Афанасьев Ю. В., Студенцов Н. В., Щелкин А. П., Магнитометрические преобразователи, приборы, установки, Л., 1972; Кифер И. И., Испытания ферромагнитных материалов, 3 изд., М., 1969; Чечурина Е. Н., Приборы для измерения магнитных величин, М., 1969.
И. И. Кифер.
Феррозондовая дефектоскопия
Феррозо'ндовая дефектоскопи'я, метод магнитной дефектоскопии , при котором измерение искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов, осуществляется феррозондами . Ф. д. применяется для обнаружения внутренних дефектов (на глубине до 10, иногда 20 мм ) обычно в изделиях правильной формы.
Ферромагнетизм
Ферромагнети'зм, одно из магнитных состояний кристаллических, как правило, веществ, характеризуемое параллельной ориентацией магнитных моментов атомных носителей магнетизма. Параллельная ориентация магнитных моментов (рис. 1 ) устанавливается при температурах Т ниже критической Q (см. Кюри точка ) и обусловлена положительным значением энергии межэлектронного обменного взаимодействия (см. Магнетизм ). Ферромагнитная упорядоченность магнитных моментов в кристаллах (атомная магнитная структура – коллинеарная или неколлинеарная) непосредственно наблюдается и исследуется методами магнитной нейтронографии . Вещества, в которых установился ферромагнитный порядок атомных магнитных моментов, называют ферромагнетиками . Магнитная восприимчивость (ферромагнетиков положительна (c > 0) и достигает значений 104 –105гс/э, их намагниченность J (или индукция В = Н + 4pJ ) растет с увеличением напряжённости магнитного поля Н нелинейно (рис. 2 ) и в полях 1–100 э достигает предельного значения Js – магнитного насыщения. Значение J зависит также от «магнитной предыстории» образца, это делает зависимость J от Н неоднозначной (наблюдается магнитный гистерезис ).
Проявления Ф. в монокристаллах и поликристаллах могут существенно различаться. В ферромагнитных монокристаллах наблюдается магнитная анизотропия (рис. 3 ) – различие магнитных свойств по разным кристаллографическим направлениям. В поликристаллах с хаотическим распределением ориентаций кристаллических зёрен анизотропия в среднем по образцу отсутствует, но при неоднородном распределении ориентаций она может наблюдаться (магнитная текстура).
Магнитные и другие физические свойства ферромагнетиков обладают специфической зависимостью от температуры Т. Намагниченность насыщения Js имеет наибольшее значение при Т = 0 К и монотонно уменьшается до нуля при Т = Q (рис. 4 ).
Выше Q ферромагнетик переходит в парамагнитное состояние (см. Парамагнетизм ), а в некоторых случаях (редкоземельные металлы) – в антиферромагнитное. При Н = 0 этот переход, как правило, является фазовым переходом 2-го рода. Температурный ход магнитной проницаемости m (или восприимчивости c) ферромагнетиков имеет явно выраженный максимум вблизи Q. При Т > Q восприимчивость (обычно следует Кюри – Вейса закону . При намагничивании ферромагнетиков изменяются их размеры и форма (см. Магнитострикция ). Поэтому кривые намагничивания и петли гистерезиса зависят от внешних напряжений. Наблюдаются также аномалии в величине и температурной зависимости упругих постоянных, коэффициентов линейного и объёмного расширения. При адиабатическом намагничивании и размагничивании ферромагнетики изменяют свою температуру (см. Магнитное охлаждение ). Специфические особенности немагнитных свойств ферромагнетиков наиболее ярко проявляются вблизи Т = Q.
Поскольку самопроизвольная намагниченность ферромагнетиков сохраняется до Т = Q, а в типичных ферромагнетиках температура (может достигать ~ 103 К, то k Q » 10-13эрг (k – Больцмана постоянная ). Это означает, что энергия взаимодействия, которая ответственна за существование ферромагнитного порядка атомных магнитных моментов в кристалле, тоже должна быть порядка 10-13эрг на каждую пару соседних магнитно-активных атомов. Такое значение энергии может быть обусловлено только электрическим взаимодействием между электронами, ибо энергия магнитного взаимодействия электронов двух соседних атомов ферромагнетика не превышает, как правило, 10-16эрг, и поэтому может обеспечить температуру Кюри лишь ~ 1 К (такие ферромагнетики с т. н. дипольным магнитным взаимодействием тоже существуют). В общем случае магнитные взаимодействия в ферромагнетиках определяют их магнитную анизотропию. Классическая физика не могла объяснить каким образом электрическое взаимодействие может привести к Ф. Только квантовая механика позволила понять тесную внутреннюю связь между результирующим магнитным моментом системы электронов и их электростатическим взаимодействием, которое принято называть обменным взаимодействием.
Необходимым условием Ф. является наличие постоянных (независящих от Н ) магнитных (спиновых или орбитальных, или обоих вместе) моментов электронных оболочек атомов ферромагнетиков. Это выполняется в кристаллах, построенных из атомов переходных элементов (атомов с недостроенными внутренними электронными слоями). Различают 4 основных случая:
1) металлические кристаллы (чистые металлы, сплавы и интерметаллические соединения) на основе переходных элементов с недостроенными d -cлоями (в первую очередь 3d -cлоем у элементов группы железа); 2) металлические кристаллы на основе переходных элементов с недостроенными f- cлоями (редкоземельные элементы с недостроенным 4f -cлоем); 3) неметаллические кристаллические соединения при наличии хотя бы одного компонента из переходных d- или f- элементов; 4) сильно разбавленные растворы атомов переходных d- или f -металлов в диамагнитной металлической матрице. Появление в этих четырёх случаях атомного магнитного порядка обусловлено обменным взаимодействием.
В неметаллических веществах (случай 3) это взаимодействие чаще всего носит косвенный характер, при котором магнитный порядок электронов недостроенных d- или f- cлоев в ближайших соседних парамагнитных ионах устанавливается при активном участии электронов внешних замкнутых слоев магнитно-нейтральных ионов (например, O2- , S2- , Se2- и т.п.), расположенных обычно между магнитно-активными ионами (см. Ферримагнетизм ). Как правило, здесь возникает антиферромагнитный порядок, который приводит либо к компенсированному антиферромагнетизму, если в каждой элементарной ячейке кристалла суммарный магнитный момент всех ионов равен нулю, либо к ферримагнетизму – если этот суммарный момент не равен нулю. Возможны случаи, когда взаимодействие в неметаллических кристаллах носит ферромагнитный характер (все атомные магнитные моменты параллельны), например EuO, Eu2 SiO4 , CrBr3 и др.
Общим для кристаллов типа 1, 2, 4 является наличие в них системы коллективизированных электронов проводимости. Хотя в этих системах и существуют подмагничивающие обменные взаимодействия, но, как правило, магнитного порядка нет, а имеет место парамагнетизм паулевского типа, если он сам не подавлен более сильным диамагнетизмом ионной решётки. Если всё же магнитный порядок возникает, то в случаях 1, 2 и 4 он различен по своему происхождению. Во втором случае магнитно-активные 4f '-cлои имеют очень малый радиус по сравнению с параметром кристаллической решётки. Поэтому здесь невозможна прямая обменная связь даже у ближайших соседних ионов. Такая ситуация характерна и для четвёртого случая. В обоих этих случаях обменная связь носит косвенный характер, осуществляют её электроны проводимости. В четвёртом типе ферромагнетиков (в отличие от случаев 1, 2, 3) магнитный порядок не обязательно связан с кристаллическим атомным порядком. Часто эти ферромагнетики представляют собой в магнитном отношении аморфные системы с неупорядоченно распределёнными по кристаллической решётке ионами, обладающими атомными магнитными моментами (т. н. спиновые стекла).
Наконец, в кристаллах 1-го типа электроны, принимающие участие в создании атомного магнитного порядка, состоят из бывших 3d- и 4s -электронов изолированных атомов. В отличие от 4f '-cлоёв редкоземельных ионов, имеющих очень малый радиус, более близкие к периферии 3d -электроны атомов группы Fe испытывают практически полную коллективизацию и совместно с 4s -электронами образуют общую систему электронов проводимости. Однако в отличие от нормальных (непереходных) металлов, эта система в d -металлах обладает гораздо большей плотностью энергетических уровней, что благоприятствует действию обменных сил и приводит к появлению намагниченного состояния в Fe, Со, Ni и в их многочисленных сплавах.
Конкретные теоретические расчёты различных свойств ферромагнетиков проводятся как в квазиклассическом феноменологическом приближении, так и с помощью более строгих квантовомеханических атомных моделей. В первом случае обменное взаимодействие, приводящее к Ф., учитывается введением эффективного молекулярного поля (Б. Л. Розинг , 1897; П. Вейс , 1907), энергия U которого квадратично зависит от J:
U = -NA (Js lJs0 )2
где N – число магнитно-активных атомов в образце, А – постоянная молекулярного поля (А > 0), Js0 – намагниченность насыщения при абсолютном нуле температуры. Уточнение этой трактовки Ф. дала квантовая механика, раскрыв электрическую обменную природу постоянной А (Я. И. Френкель , В. Гейзенберг , 1928). В частности, при низких температурах (Т < Q) удалось провести более точный квантовый расчёт (Ф. Блох , 1930), показавший, что уменьшение самопроизвольной намагниченности Js0 ферромагнетика с ростом температуры можно в первом приближении описывать как возникновение элементарных магнитных возбуждений – квазичастиц , носящих название спиновых волн или ферромагнонов. Каждый ферромагнон даёт уменьшение Js0 на величину магнитного момента одного узла решётки. Число ферромагнонов растет с нагреванием ферромагнетика пропорционально T3/2 , поэтому температурная зависимость Js имеет вид:
Js = Js0 (1 – aT3/2 ),
где коэффициент (имеет порядок 10-6К-3/2 и зависит от параметра обменного взаимодействия.
В отсутствие внешнего магнитного поля (Н = 0) термодинамически устойчивому состоянию макроскопического ферромагнитного образца отвечает размагниченное состояние, ибо в противном случае на поверхности образца, как правило, возникают магнитные полюсы, создающие т. н. размагничивающее поле H , с которым связана большая положительная энергия. В то же время обменное взаимодействие стремится создать магнитный порядок с J ¹ 0. В результате борьбы этих противоположных тенденций происходит разбиение ферромагнитного образца на домены – области однородной намагниченности. Теория Ф. качественно определяет размеры и форму доменов, которые зависят от конкуренции различных взаимодействий в кристалле ферромагнетика (Л. Д. Ландау и Е. М. Лифшиц , 1935). Равновесная структура доменов при J = 0 отвечает замкнутости магнитных потоков внутри образца. Между доменами существуют переходные слои конечной толщины, в которых Js непрерывно меняет своё направление. На образование этих слоев затрачивается положительная энергия, но она меньше энергии поля H , которая возникла бы в отсутствие доменов. При некоторых критически малых размерах ферромагнитных образцов образование в них нескольких доменов может стать энергетически невыгодным, и тогда такие мелкие ферромагнитные частицы оказываются при Т < Q однородно намагниченными (т. н. однодоменные частицы).
Кривые намагничивания и петли гистерезиса в ферромагнетиках определяются изменениями объёма доменов с различными ориентациями Js в них за счёт смещения границ доменов, а также вращения векторов Js доменов (см. Намагничивание ). Магнитную восприимчивость ферромагнетиков можно приближённо представить в виде суммы: c = cсмещ + cвращ. анализ кривых намагничивания J (H ) показывает, что в слабых полях cсмещ > cвращ , а В сильных (после крутого подъёма кривой) cвращ > cсмещ . Особый характер имеют процессы намагничивания и распределение намагниченности в магнитных тонких плёнках . Из-за чувствительности доменной структуры и процессов намагничивания к строению кристаллов общая количественная теория кривых намагничивания ферромагнетиков пока находится в незавершённом состоянии. Обычно для определения зависимости J (Н ) пользуются качественными физическими представлениями, лишь в случае идеальных монокристаллов в области, где cвращ > cсмещ ., возможен строгий количественный расчёт (Н. С. Акулов, 1928).
Теория кривых намагничивания и петель гистерезиса важна для разработки новых и улучшения существующих магнитных материалов .
Связь Ф. с многими немагнитными свойствами вещества позволяет по данным измерений магнитных свойств получить информацию о различных тонких специфических особенностях электронной структуры кристаллов. Поэтому Ф. интенсивно исследуют на электронном и ядерном уровнях, применяя электронный ферромагнитный резонанс , ядерный магнитный резонанс , Мёссбауэра эффект , рассеяние на ферромагнитных кристаллах различного типа корпускулярных излучений (с учётом влияния магнитных моментов взаимодействующих частиц) и т.д. В 70-е гг. 20 в. возникли интересные контакты Ф. с физикой элементарных частиц и астрофизикой. Здесь следует упомянуть об изучении в ферромагнетиках явлений аннигиляции позитронов, образования мюония и позитрония (см. Позитрон ), рассеяния мюонов, а в астрофизике – о проблеме магнетизма нейтронных звёзд (пульсаров ).
Лит.: Акулов Н. С., Ферромагнетизм, М. – Л., 1939; Бозорт Р., Ферромагнетизм, пер. с англ., М., 1956; Вонсовский С. В., Шур Я. С., Ферромагнетизм, М. – Л., 1948; Дорфман Я. Г., Магнитные свойства и строение вещества, М., 1955; Туров Е. А., Физические свойства магнитоупорядоченных кристаллов, М., 1963; Теория ферромагнетизма металлов и сплавов. Сб., пер. с англ., М., 1963; Ахиезер А. И., Барьяхтар В. Г., Пелетминский С. В., Спиновые волны, М., 1967: Туров Е. А., Петров М. П., Ядерный магнитный резонанс в ферро– и антиферромагнетиках, М., 1969; Сверхтонкие взаимодействия в твердых телах, пер. с англ., М., 1970; Вонсовский С. В., Магнетизм. М., 1971; Becker R., Doring W., Ferromagnetismus, B., 1939; Kneller E., Ferromagnetismus, B., 1962; Magnetism, v. 1–4, N. Y. – L., 1963–66; Amorphous magnetism, L. – N. Y., 1973; Goodenough J. B., Magnetism and the Chemical Bond, N. Y. – L., 1963.
С. В. Вонсовский.
Рис. 2. Кривая безгистерезисного намагничивания (0 Вm ) и петля гистерезиса поликристаллического железа. Значению индукции Вm соответствует намагниченность насыщения Js .
Рис. 1. Ферромагнитная (коллинеарная) атомная стуктура гранецентрированной кубической решётки ниже точки Кюри Q; стрелками обозначены направления атомных магнитных моментов; Js – вектор суммарной намагниченности.
Рис. 3. Зависимость намагниченности J от напряжённости магнитного поля Н для трёх главных кристаллографических осей монокристалла железа (тип решётки – объёмно-центрированная кубическая, [100] – ось лёгкого намагничивания).
Рис. 4. Схематическое изображение температурной зависимости намагниченности насыщения Js ферромагнетика, Q – точка Кюри.