Текст книги "Большая Советская Энциклопедия (ФЕ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 28 (всего у книги 36 страниц)
Практическое значение ферментов. Ферментативные процессы являются основой многих производств: хлебопечения, виноделия, пивоварения, сыроделия, производства спирта, чая, уксуса. С начала 20 в. по предложению япон. учёного Д. Такамине в спиртовой и др. отраслях промышленности началось применение ферментных препаратов, получаемых из плесневых грибов или бактерий. В ряде стран этот способ широко используется для осахаривания с помощью амилаз крахмалистого сырья с целью получения кристаллической глюкозы или его сбраживания на спирт. Концентрированные амилолитические препараты Ф. из плесневых грибов при добавке в тесто приводят к улучшению качества хлеба и ускорению технологического процесса. Препараты протеолитических Ф., получаемых из микроорганизмов, употребляются в кожевенной промышленности для удаления волос и мягчения сырья, а в сыродельной промышленности – для замены дефицитного сычужного фермента (реннина ). Препараты микробных пектолитических Ф. широко используют при производстве соков (выход плодового сока повышается на 10–20%). Всё большее применение очищенные ферментные препараты находят в медицине. В научных исследованиях и в клинической практике высокоочищенные ферментные препараты служат в качестве специфических средств биохимического анализа (см. Ферментативные методы анализа ). Весьма перспективно применение т. н. иммобилизованных Ф., которые связываются каким-либо носителем, образующим с данным Ф. нерастворимый комплекс. При подборе соответствующего носителя можно получить иммобилизованный Ф. с высокой активностью, устойчивый по отношению к денатурирующим агентам. Колонка, заполненная иммобилизованным Ф., может быть многократно использована для проведения соответствующей реакции. Иммобилизованные Ф. находят всё более широкое применение в аналитической практике и биохимической технологии.
Лит.: Ферменты, М., 1964; Диксон М., Уэбб Э., Ферменты, пер. с англ., М., 1966; Номенклатура ферментов, пер. с англ., М., 1966; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; Структура и функция ферментов, в. 1–2, М., 1972–73; Фениксова Р. В., Биохимические основы получения и применения ферментных препаратов, в кн.: Техническая биохимия, М., 1973; Кретович В. Л., Введение в энзимологию, 2 изд., М,, 1974; Аллостерические ферменты, М., 1975; Ферменты медицинского назначения, Л., 1975; Ферментные препараты в пищевой промышленности, М., 1975; Advances in enzymology and related areas of molecular biology, v. 1–43, N. Y., 1941–75; Methods in enzymology, v. 1–36, N. Y., 1955–75.
В. Л. Кретович.
Рис. к ст. Ферменты.
Рис. к ст. Ферменты.
Первичная структура (последовательность аминокислотных остатков) фермента рибонуклеазы из поджелудочной железы быка. Чёрным обозначены 4 дисульфидных мостика, скрепляющих полипептидную цепь фермента.
Рис. к ст. Ферменты.
Фермер
Фе'рмер в капиталистических странах, предприниматель в сельском хозяйстве, владелец с.-х. предприятия (см. Фермерское хозяйство ).
Фермерское хозяйство
Фе'рмерское хозя'йство в капиталистических странах, частное товарное с.-х. предприятие предпринимательского типа, ведущееся на собственной или арендованной земле. Как правило, связано с хуторским характером поселения. Цель ведения Ф. х. – получение денежного дохода в форме прибыли. Возникло с развитием капитализма, с вовлечением сельского хозяйства в систему рыночных отношений. Отмечая историческую прогрессивность Ф. х. как формы капиталистического хозяйствования на земле, В. И. Ленин подчёркивал, что «основой капиталистического земледелия становится свободный фермер на свободной, т. е. очищенной от всего средневекового хлама, земле» (Полное собрание соч., 5 изд., т. 17, с. 150), что фермер – это предприниматель в земледелии (см. там же). Различия в генезисе, степени развитости, социально-экономическом содержании Ф. х. в разных странах определяются особенностями и уровнем развития капиталистических производственных отношений в сельском хозяйстве, а также характером и степенью использования труда (семейного и наёмного), условиями землепользования, уровнем индустриализации с.-х. производства, объёмом капиталовложений, степенью производственной специализации, товарности, интенсивностью межотраслевых и межхозяйственных связей.
Наиболее раннее и полное развитие Ф. х. получило в странах, для которых был характерен т. н. американский путь развития капитализма в сельском хозяйстве (США, Канада, Австралия, Новая Зеландия), где оно возникло в результате колонизации как свободных, так и захваченных у туземного населения земель. В большинстве западноевропейских стран становление Ф. х. происходило в условиях прусского пути развития капитализма в сельском хозяйстве (см. Аграрный вопрос ), в ходе длительной эволюции помещичьих хозяйств в крупные капиталистические предприятия, а крестьянства либо в наёмных рабочих, либо в сельскую буржуазию (фермеров). Исключение составляла Великобритания, где в связи с полной ликвидацией крестьянской земельной собственности в результате огораживаний (17 в.) Ф. х. (главным образом на арендованной земле) раньше, чем в др. странах Зап. Европы, стало господствующей формой с.-х. производства. В 20–30-х гг. 20 в. сельское хозяйство США, Канады, Новой Зеландии, Великобритании, а в 50–60-х гг. и западноевропейских развитых капиталистических стран перешло к машинной стадии производства, в результате чего фермеры стали основными производителями товарной с.-х. продукции в этих странах. Оно целиком основано на товарно-денежных отношениях и подчинено действию законов капиталистической конкуренции . Развитие сельского хозяйства на индустриальной основе привело к резкому увеличению фондовооружённости и капиталоемкости Ф. х., экономическая жизнестойкость которых стала определяться нормой накопления капитала. Чтобы выдержать конкурентную борьбу, фермеры должны постоянно расширять выпуск товарной продукции путём совершенствования хозяйственной деятельности, роста механизации, интенсификации, специализации производства на базе непрерывного увеличения капиталовложений, а также за счёт концентрации земли в одном хозяйстве. Так, в США в 1974 средний размер одной фермы составлял 180 га (в 1940 – 70 га, в 1910 – 55 га ); в Великобритании в 1973 – около 50 га (в 1960 – 32 га ), во Франции – 23 га (в 1956 – 14 га ), в Дании и Швеции – 22 га (в 1951 – 15 га и в 1956 – 13 га соответственно), в ФРГ – 13 га , в Нидерландах – 14 га (в 1950 – 8 и 10 га соответственно). Рост концентрации производства усиливает процесс расслоения фермерства, вызывая массовое разорение и ликвидацию мелких и рост экономической мощи крупных Ф. х. Так, в США в 1950 фермы со стоимостью товарной продукции в 10 тыс. долл., составлявшие 32,6% всех ферм, давали 75,4% товарной продукции сельского хозяйства; в 1974 те же фермы (48,9% общего числа хозяйств) производили 95,1% продукции, в том числе крупнокапиталистические (со стоимостью годового производства свыше 40 тыс. долл., 16,6% всех ферм) – 71,1% товарной продукции (в 1950 таких ферм было 2,8% и их удельный вес в производстве составлял 26,7%). В 6 странах Зап. Европы – основателях Европейского экономического сообщества – в конце 60-х гг. 13,4% суммарного числа с.-х. предприятий (с годовой поставкой товарной продукции на сумму свыше 7,5 тыс. расчётных единиц ЕЭС) обеспечивали свыше 50% поставок продукции сельского хозяйства. В Великобритании в 1970 10% Ф. х. производили 50% товарной продукции.
В доиндустриальный период развития сельского хозяйства основная масса Ф. х. велась на базе использования труда наёмных рабочих. С переходом сельского хозяйства к машинной стадии в издержках производства падает доля живого и растет удельный вес овеществленного труда, роль постоянного капитала значительно возрастает. Рост органического строения капитала сопровождается уменьшением доли наёмных рабочих, которая в 60–70-х гг. 20 в. в общем числе занятых в сельском хозяйстве почти всех развитых капиталистических стран была ниже, чем владельцев сельскохозяйственных предприятий и семейных рабочих [см. «Устойчивости семейных хозяйств (ферм)» теория ]. В начале 70-х гг. в США наёмные рабочие обеспечивали немногим более 25% всех трудовых затрат в производстве с.-х. продукции, в 6 странах – основателях ЕЭС – 23,2%, в Швеции – 12,6%, в Дании – 11,9% и т.д. По мере роста концентрации с.-х. производства наёмный труд всё в большей степени сосредоточивается в крупных капиталистических хозяйствах. Фактическое использование наёмного труда в Ф. х. характеризуется более высокими показателями, т.к. часть трудовых затрат в них осуществляется наёмными рабочими др. отраслей через оказание различного рода производств, услуг специализированными несельскохозяйственными фирмами. Многие Ф. х. (и в первую очередь крупные специализированные) втянуты в систему экономических межотраслевых связей, организуемых крупными промышленными компаниями и кооперативами на основе вертикальной интеграции . Развитие этих связей ведёт к потере экономической самостоятельности Ф. х., которые превращаются в составную часть крупных капиталистических аграрно-промышленных объединений . См. также ст. Крестьянство .
Лит.: Ленин В. И., Экономическое содержание народничества и критика его в книге г. Струве, Полн. собр. соч., 5 изд., т. 1; его же, К характеристике экономического романтизма, там же, т. 2; его же, Развитие капитализма в России, там же, т. 3; его же, Марксистские взгляды на аграрный вопрос в Европе и России, там же, т. 7; его же, Аграрная программа социал-демократии в первой русской революции 1905–1907 годов, там же, т. 16; его же, Аграрный вопрос в России к концу XIX века, там же, т. 17; его же, Новые данные о законах развития капитализма в земледелии, там же, т. 27; Развитые капиталистические страны: проблемы сельского хозяйства, М., 1969; Надель С. Н., Социальная структура современной капиталистической деревни, М., 1970; Мартынов В. А., Сельское хозяйство США и его проблемы. (Научно-техническая революция и аграрные отношения), М., 1971; Сельское хозяйство капиталистических и развивающихся стран, М., 1973; Последствия индустриализации сельского хозяйства в странах Западной Европы, М., 1975.
В. Д. Мартынов.
Ферми (древн. город)
Фе'рми, Терми, древний город на о. Лесбос эпохи энеолита и ранней бронзы (начала 3-го тыс. до н. э. – около 1200 до н. э.). Раскапывался в 1929–33 английским учёным У. Лэмбом. 5 последовательных напластований показывают непрерывный рост Ф. от небольшого городка с двухкомнатными домами и меднолитейным производством к крупному городу с оборонит, стенами, мощёными улицами, бронзолитейным делом (около 25 в. до н. э.). Во 2-м тыс. до н. э. – один из очагов крито-микенской культуры , в 14–13 вв. до н. э. – центр почитания Геры .
Лит.: Lamb W., Excavations at Thermi in Lesbos, Camb., 1936.
Ферми (единица длины)
Фе'рми, внесистемная единица длины, равная 10-13см. Названа в честь Э. Ферми . Применяется в ядерной физике.
Ферми поверхность
Фе'рми пове'рхность, изоэнергетическая поверхность в пространстве квазиимпульсов р , отделяющая область запятых электронных состоянии металла от области, в которой при Т = 0 К электронов нет. За большинство свойств металлов ответственны электроны, расположенные на Ф. п. и в узкой области пространства квазиимпульсов вблизи неё. Это связано с высокой концентрацией электронов проводимости в металле, плотно заполняющих уровни в зоне проводимости (см. Вырожденный газ , Твёрдое тело ). Каждый металл характеризуется своей Ф. п., причём формы поверхностей разнообразны (рис. ). Для «газа свободных электронов» Ф. п. – сфера. Объём, ограниченный Ф. п. WF (приходящейся на 1 элементарную ячейку в пространстве квазиимпульсов), определяется концентрацией n электронов проводимости в металле: 2WF/ (2p)3 = n. Средние размеры Ф. п. для хороших металлов ~ /a , где – Планка постоянная , а – постоянная решётки, обычно n » 1/a3 . У большинства металлов, кроме большой Ф. п., обнаружены малые полости, объём которых значительно меньше, чем (2p)3n /2. Эти полости определяют многие квантовые свойства металлов в магнитном поле (например, де Хааза – ван Альфена эффект ). У полуметаллов объём Ф. п. мал по сравнению с размерами элементарной ячейки в пространстве квазиимпульсов. Если занятые электронами состояния находятся внутри Ф. п., то она называется электронной, если же внутри Ф. п. электронные состояния свободны, то такая поверхность называется дырочной. Возможно одновременное существование обеих Ф. п. Например, у Bi Ф. п. состоит из 3 электронных и 1 дырочного эллипсоидов. В Ф. п. находит отражение симметрия кристаллов . В частности, они периодичны с периодом 2pb, где b – произвольный вектор обратной решётки. Все Ф. п. обладают центром симметрии. Встречаются Ф. п. сложной топологии (с самопересечениями), которые одновременно являются и электронными, и дырочными. Если Ф. п. непрерывно проходит через всё пространство квазиимпульсов, она называется открытой. Если Ф. п. распадается на полости, каждая из которых помещается в одной элементарной ячейке пространства квазиимпульсов, она называется замкнутой, например у Li, Au, Си, Ag – открытые Ф. п., у К, Na, Rb, Cs, In, Bi, Sb, Al – замкнутые. Иногда Ф. п. состоит из открытых и замкнутых полостей. Скорости электронов, расположенных на Ф. п.: uF » 108см/сек, вектор (направлен по нормали к Ф. п.
Геометрические характеристики Ф. п. (форма, кривизна, площади сечений и т.п.) связаны с физескими свойствами металлов, что позволяет строить Ф. п. по экспериментальным данным. Например, магнетосопротивление металла зависит от того, открытая Ф. п. или замкнутая, а знак константы Холла (см. Холла эффект ) от того, электронная она или дырочная. Период осцилляций магнитного момента (в эффекте де Хааза – ван Альфена) определяется экстремальной (по проекции квазиимпульса на магнитное поле) площадью сечения Ф. п. Поверхностный импеданс металла в условиях аномального скин-эффекта зависит от средней кривизны Ф. п. Период (по магнитному полю) осцилляций коэффициета поглощения ультразвука металлом обратно пропорционален экстремальному диаметру Ф. п. Частота циклотронного резонанса определяет эффективную массу электрона, знание которой позволяет найти скорость электронов на Ф. п. Для большинства одноатомных металлов и многих интерметаллических соединений Ф. п. уже изучены. Теоретическое построение Ф. п. основано на модельных представлениях о движении валентных электронов в силовом поле ионов.
Лит.: Каганов М. И., Филатов А. П., Поверхность Ферми, М., 1969.
М. И. Каганов.
Различный типы ферми поверхностей.
Ферми энергия
Фе'рми эне'ргия, ферми-уровень, значение энергии, ниже которой все энергетические состояния частиц вырожденного газа , подчиняющихся статистике ферми – Дирака (фермионов ), при абсолютном нуле температуры заняты (см. Статистическая физика ). Существование Ф. э. – следствие Паули принципа , согласно которому в состоянии с определённым импульсом p не может находиться более (2s + 1) частиц (s – спин частицы). Ф. э. совпадает со значениями химического потенциала газа фермионов при Т = 0 К. Ф. э. EF можно выразить через число n частиц газа в единице объёма: , где m – масса частицы. Величина pF = называется ферми импульсом, или граничным импульсом. При Т = 0 К все состояния с импульсами р < pF заняты частицами, а с р > pF – свободны. Иными словами, при Т = 0 К фермионы занимают в импульсном пространстве состояния внутри сферы p2 = 2mEF с радиусом pF (ферми-сферы). При нагревании некоторые частицы переходят из состояния с р < pF в состояние с р > pF . Внутри ферми-сферы появляются свободные места, называемые дырками. Величина vF = pF /m =, называется ферми-скоростью (или граничной скоростью), определяет верхнюю границу скоростей фермионов при Т = 0 К.
Вырожденный газ электронов проводимости в твёрдом теле при Т = 0 К заполняет в импульсном пространстве поверхности более сложной формы (см. Ферми поверхность ).
Лит.: Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5).
М. И. Каганов.
Ферми Энрико
Фе'рми (Fermi) Энрико (29.9.1901, Рим, – 28.11.1954, Чикаго), итальянский физик, внёсший большой вклад в развитие современной теоретической и экспериментальной физики. После окончания в 1922 Пизанского университета учился в Германии и Нидерландах. В 1926–38 профессор Римского университета; Ф. оказал большое влияние на формирование итал. школы современной физики. В 1938 он эмигрировал из фашистской Италии. В 1939–45 профессор Колумбийского университета, руководил исследовательскими работами США в области использования ядерной энергии. С 1946 профессор Чикагского университета.
Ф. принимал деятельное участие в создании основ квантовой физики. В 1925 он разработал статистику частиц, подчиняющихся Паули принципу (см. Ферми – Дирака статистика ). В 1934 создал количественную теорию b-распада, основанную на предположении В. Паули о том, что b-частицы испускаются одновременно с нейтрино. В 1934–38 Ф. с сотрудниками изучал свойства нейтронов и практически заложил основы нейтронной физики; впервые наблюдал искусственную радиоактивность, вызванную бомбардировкой нейтронами ряда элементов (в т. ч. урана), открыл явление замедления нейтронов и создал теорию этого явления (Нобелевская премия, 1938). В декабре 1942 Ф. впервые удалось осуществить ядерную цепную реакцию в построенном им первом в мире ядерном реакторе , где в качестве замедлителя нейтронов использовался графит, в качестве горючего – уран.
Последние годы жизни занимался физикой высоких энергий. Впервые начал экспериментальные исследования взаимодействий заряженных p-мезонов разных энергий с водородом и получил ряд фундаментальных результатов. Ф. принадлежат также теоретические работы в области физики высоких энергий (статистическая теория множественного образования мезонов в соударении двух нуклонов, теория происхождения космических лучей и др.).
Соч.: Zur Quantelung des idealen einatomigen Gases, «Zeitschrift für Physik», 1926, Bd 36, Н. 11/12; Artificial radioactivity produced by neutron bombardment, «Procedings of the RoyalSociety», s. A, 1934, v. 146, № 857; то же, там же, 1935, v. 149, № 868 (совместно с др.); On the absorption and the diffusion of slow neutrons, «Physical Review», s. 2, 1936, v. 50, № 10 (совместно с E. Amaldi); Tentative diunaTeoria dei raggi «b», «Nuovo Cimento», 1934, v. 11, № 1; в рус. пер. – Ядерная физика, М., 1951; Лекции по атомной физике, М., 1952; Элементарные частицы, 2 изд., М., 1953; Молекулы и кристаллы, М., 1947; Элементарная теория котлов с цепными ядерными реакциями, «Успехи физических наук», 1947, т. 32, в. 1, с. 54–65; Лекции о p-мезонах и нуклонах, М., 1956; Научные труды, т. 1–2, М., 1971–1972; Термодинамика, 2 изд., Хар., 1973.
Лит.: Понтекорво Б., Энрико Ферми, «Успехи физических наук», 1955, т. 57, в. 3; Ферми Л., Атомы у нас дома, пер. с англ., М., 1958.
Б. М. Понтекорво.
Э. Ферми.
Ферми-газ
Фе'рми-газ, газ Ферми, газ из частиц с полуцелым спином , подчиняющийся Ферми – Дирака статистике . Ф.-г. из невзаимодействующих частиц называется идеальным Ф.-г. К Ф.-г. относятся электроны в металлах и полупроводниках, электроны в атомах с большими атомными номерами, нуклоны в тяжёлых атомных ядрах, газы квазичастиц с полуцелым спином. При температуре Т = 0 К идеальный Ф.-г. находится в основном состоянии и его частицы заполняют все квантовые состояния с энергией вплоть до некоторой максимальной, зависящей от плотности газа и называется энергией Ферми (EF ), а состояния с энергией Е > EF – свободны (полное квантовое вырождение Ф.-г.). При T ¹ 0 К среднее число заполнения квантового состояния идеального Ф.-г. описывается функцией распределения ферми. Для неидеального Ф.-г. также существует граничная энергия Ферми, хотя его частицы не находятся в определенных квантовых состояниях. В неидеальном Ф.-г. электронов в металле при очень низких температурах вследствие притяжения электронов с равными но противоположно направленными импульсами и спинами возможно образование коррелированных пар электронов (Купера эффект ) и переход металла в сверхпроводящее состояние, Ф.-г. электронов в тяжёлых атомах описывается моделью Томаса – Ферми (см. Самосогласованное поле ).
Д. Н. Зубарев.