355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ДИ) » Текст книги (страница 2)
Большая Советская Энциклопедия (ДИ)
  • Текст добавлен: 9 октября 2016, 13:00

Текст книги "Большая Советская Энциклопедия (ДИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 2 (всего у книги 50 страниц)

Диагностика питания растений

Диагно'стика пита'ния расте'ний, определение степени обеспеченности растений питательными веществами в период их вегетации. Д. п. р. позволяет установить недостаток того или иного питательного элемента в растении и своевременно проводить подкормку. Наиболее распространены два метода Д. п. р. – визуальный и химический. Известны также приёмы диагностики, основанные на введении питательных веществ в вегетативные части растений (по типу некорневого питания).

  Визуальная диагностика – определение недостаточности минерального питания растений по цвету, форме и величине листьев и пятен отмерших тканей и др. внешним признакам. При недостатке азота (азотное голодание) листья приобретают бледно-зелёную окраску, переходящую у некоторых растений в оранжевую и красную, или начинают отмирать ткани листа от верхушки к основанию (кукуруза). Признаком фосфорного голодания служит тёмно-зелёная с голубоватым оттенком, фиолетовая (кукуруза, сорго, томат) или пурпурная (капуста) окраска листьев; по краям нижних листьев появляются пятна бурого или чёрного цвета. Калийное голодание вызывает морщинистость листовых пластинок, укороченность междоузлий, потерю тургора, тёмно-зелёную с голубоватым или бронзовым (картофель, томаты) оттенком окраску листьев, пожелтение, побурение и отмирание тканей по краям их. При недостатке магния листья бледнеют, что связано с уменьшением в них хлорофилла, между жилками образуются пятна различных оттенков, наблюдается ломкость листьев. Недостаток железа приводит к хлорозу верхних молодых листьев, отмиранию тканей по краям их, засыханию побегов; бора – к слабому цветению и плодообразованию, отмиранию верхушечных почек, хлорозу листьев; меди – к хлорозу молодых листьев, потере тургора, замедлению процесса образования семян; марганца – к узорчатости листьев и появлению на них мелких пятен из отмирающих тканей; цинка – к пожелтению, пятнистости, розетчатости и асимметричности листьев, укороченности междоузлий; молибдена – к пожелтению листьев, а у бобовых растений – к слабому развитию на корнях клубеньков. Метод визуальной диагностики прост, не требует специального оборудования, но не совсем точен, т.к. иногда внешние признаки голодания от недостатка разных элементов имеют сходство. Кроме того, вредители, болезни и неблагоприятные условия погоды могут вызвать изменения внешнего вида растений, похожие на симптомы голодания. В таких случаях нужно подтвердить диагноз химическим анализом.

  Химическая диагностика – определение недостаточности питания растений по результатам химического анализа листа, сока, среза или вытяжки из черешков, жилок и стеблей. На основе результатов химического анализа на отдельные элементы устанавливают содержание элементов в растении и определяют их недостаток. Более простой способ химической диагностики состоит в капельном анализе сока из черешков или жилок листа с помощью полевой лаборатории Магницкого, а также в проведении анализов непосредственно на срезах растений прибором Церлинг ОП-2. Полученное при этом окрашивание сока или срезов сравнивают с эталонами.

  Нарушение нормального питания растений и обмена веществ в них вызывает не только недостаток, но и избыток отдельных элементов. Чтобы полнее выявить условия питания растений и более эффективно применять удобрения, очень важно располагать данными диагностики в отдельные фазы развития растения и результатами почвы анализа.

  Лит.: Магницкий К. П., Полевой контроль питания растений, М., 1958; его же, Диагностика питания растений по их внешнему виду, в кн.: Агрохимические методы исследования почв, 3 изд., М., 1960; Церлинг В. В., Растение рассказывает о почве, М., 1963; Магницкий К. П., Контроль питания полевых и овощных культур, М., 1964; Церлинг В. В., Диагностика питания растений по их химическому анализу, в кн.: Агрохимические методы исследования почв, 4 изд., М., 1965.

  К. П. Магницкий.

Диагностика плазмы

Диагно'стика пла'змы, общее название для различных методов измерения физических параметров плазмы (например, зондовые измерения, спектроскопические методы, радиочастотное зондирование и т.д.). Подробнее см. Плазма.

Диагностические средства

Диагности'ческие сре'дства, химические вещества, применяемые для обнаружения, уточнения и определения локализации патологического процесса. Основными Д. с. являются рентгеноконтрастные препараты, радиоактивные изотопы и краски. Рентгеноконтрастные препараты – вещества, обладающие свойством слабее или сильнее поглощать и задерживать рентгеновское излучение, чем ткани организма; введение этих веществ в полые органы позволяет при рентгенологическом исследовании получить представление о конфигурации исследуемого органа, его объёме, характере его внутренней поверхности и наличии патологических изменений. В качестве рентгеноконтрастных Д. с. применяют газообразные (воздух, кислород, закись азота, двуокись углерода), поглощающие рентгеновы лучи слабее тканей тела, и жидкие вещества – иодсодержащие препараты в виде водных (кардиотраст, трииотраст, сергозин и др.) и масляных (пропилийодон) растворов и взвесей или внутрь в виде порошков или взвесей (билигност и др.). Для рентгеновского исследования желудочно-кишечного тракта применяют взвесь в воде сульфата бария. Рентгеноконтрастные Д. с. вводят непосредственно в орган, подлежащий исследованию (пищевод, желудок, кишечник, бронхи, матка, сердце), внутрь или внутривенно при исследовании печени, желчных путей, почек и др., внутриартериально при контрастировании сосудов (ангиография) и сердца и т.д.

  Применение для диагностики радиоактивных веществ (изотопов или меченых соединений) основано на принципе регистрации излучений (главным образом гамма-излучений), испускаемых ими при введении в организм. Изотопы по химическим свойствам не отличаются от нерадиоактивных веществ; они играют в жизнедеятельности организма ту же роль. По интенсивности включения изотопов в органы и ткани можно судить о функциональной способности соответствующего органа. Для диагностики пригодны радиоактивные изотопы, обладающие j- или жёстким b-излучением, имеющие короткий период полураспада и не дающие долгоживущих дочерних продуктов. Широкое применение получили радиоактивные изотопы натрия, фосфора, йода, золота, железа, меди, калия, мышьяка и др. Помимо радиоактивных веществ, находящихся в ионном состоянии, применяют также сложные органические и неорганические соединения, меченные радиоактивными изотопами (например, дийодфлюоресцеин, сывороточный альбумин, розбенгаль и др.) (см. Радиоизотопная диагностика).

  К диагностическим красителям относятся индигокармин, флюоресцеин и некоторые др. Индигокармин, например, применяют для выяснения функционального состояния почек. Препарат вводят внутривенно и затем при цистоскопии визуально определяют скорость и количество краски, выделяющейся из мочеточников.

  Д. с. применяют: в дозах, безвредных для организма; изотонические по отношению к жидкостям организма и хорошо с ними смешивающиеся, избирательно накапливающиеся в соответствующих органах, легко и полностью выводящиеся из организма в неизменном виде.

  Лит.: Каган Е. М., Методика и техника рентгенологического исследования желудочно-кишечного тракта, М., 1957; Зедгенидзе Г. А., Зубовский Г. А., Клиническая радиоизотопная диагностика, М., 1968; Закусов В. В., Фармакология, 2 изд., М., 1966.

  Р. И. Квасной.

Диагональ (математич.)

Диагона'ль (лат. diagonalis, от греч. diagоnios – идущий от угла к углу), 1) Д. многоугольника – отрезок прямой, соединяющий две его вершины, не лежащие на одной стороне. Если число вершин многоугольника n, то число Д. равно n (n – 3)/2. 2) Д. многогранника – отрезок прямой, соединяющий две его вершины, не принадлежащие одной грани.

Диагональ (ткань)

Диагона'ль, плотная ткань из хлопчатобумажной или шерстяной кручёной пряжи. Для Д. характерны резко выраженные рубчики на поверхности, расположенные под углом больше 45° к кромке ткани; они получаются в результате соответствующего подбора соотношений плотности и толщины основы и утка, а также применения специального переплетения нитей. Д. служит для пошива воинского обмундирования (из шерстяной основы и хлопчатобумажного утка), пальто, курток и прочего.

Диагональная гидротурбина

Диагона'льная гидротурби'на, разновидность поворотно-лопастной гидротурбины. Отличительной особенностью Д. г. является то, что оси лопастей расположены под острым углом к оси вращения гидротурбины (рис. 1), втулка рабочего колеса не стесняет поток, что позволяет увеличивать число лопастей и применять эти турбины на более высокие напоры.

  В 1932 американский инженер Д. А. Бигс получил патент на Д. г. Большой вклад в разработку и внедрение Д. г. внесён английским инженером Т. Дериасом и советским учёным В. С. Квятковским.

  На рис. 2 показаны сравнительные характеристики Д. г. и радиально-осевой гидротурбины, где h/hmax – отношение кпд в эксплуатационных режимах к максимальному; N/Noпт – отношение мощности в эксплуатационных режимах к оптимальной. Вследствие лучшего обтекания лопастей рабочего колеса и отсасывающей трубы на режимах, заметно отличающихся по нагрузке и напору от расчётных величин, режим потока в Д. г. более спокойный, с меньшими пульсациями, характеристика кпд более пологая и среднеэксплуатационное кпд h – выше. Кавитационные свойства Д. г. несколько хуже, чем у радиально-осевых (см. Кавитация в гидротурбине). Таким образом, Д. г. могут устанавливаться на гидроэлектрических станциях (ГЭС) с напорами до 200 м, вытесняя в этом диапазоне радиально-осевые гидротурбины. Особенно экономичны Д. г. на ГЭС с большими колебаниями напора и мощности.

  Рабочие колёса Д. г. широко используются также при изготовлении обратимых гидромашин (насосотурбин) для гидроаккумулирующих электростанций (ГАЭС).

  В СССР изготовлена опытная Д. г. мощностью 77 Мвт при напоре 61 м, установленная в 1965 на Бухтарминской ГЭС; разрабатывается (1971) Д. г. мощностью 220 Мвт на напор около 90 м для установки на Зейской ГЭС. За рубежом Д. г. изготавливают главным образом японские фирмы «Хитати», «Тосиба», в Великобритании – фирма «Инглиш электрик».

  Лит.: Квятковский В. С., Диагональные гидротурбины, М., 1971.

  М. Ф. Красильников.

Рис. 1. Рабочее колесо диагональной гидротурбины.

Рис. 2. Сравнительные характеристики диагональных и радиально-осевых гидротурбин: 1 – диагональная гидротурбина; 2 – радиально-осевая гидротурбина.

Диагональная матрица

Диагона'льная ма'трица, квадратная матрица порядка n, у которой все элементы, расположенные вне главной диагонали, равны нулю.

Диаграмма (в ботанике)

Диагра'мма в ботанике, графическое изображение формы, числа, расположения частей цветка или облиственного побега при проекции их на горизонтальную плоскость. Д. цветка составляют на основании одного или нескольких поперечных разрезов цветочного бутона. Условными знаками в Д. цветка показывают либо только те части, которые видны на разрезе – эмпирическая Д. цветка, либо также недоразвитые и исчезнувшие части – теоретическая Д. цветка, которая строится на основании изучения многих эмпирических Д. Д. побега отражает схему поперечного разреза через вегетативную почку.

Диаграммы: 1 – цветок семейства крестоцветных; 2 – цветок семейства мотыльковых; 3 – накрест-супротивное расположение листьев; 4 – спиральное расположение листьев на стебле с углом расхождения в 120°; 5 – построение диаграммы цветка.

Диаграмма растворимости

Диагра'мма раствори'мости, графическое изображение зависимости между растворимостью компонента (или компонентов) физико-химической системы и её факторами равновесия (составом, температурой, давлением). См. Растворимости диаграмма.

Диаграмма состав – свойство

Диагра'мма соста'в – сво'йство, графическое изображение зависимости между составом физико-химической системы и численными значениями её физических или механических свойств (электропроводности, твёрдости, вязкости, показателя преломления и др.). Д. с. – с., построенная при постоянной температуре, называется изотермой свойства, при переменной температуре – политермой свойства, при постоянном давлении – изобарой свойства, при переменном давлении – полибарой свойства. См. Двойные системы, Жидкие смеси.

Диаграмма состояния

Диагра'мма состоя'ния, диаграмма равновесия, фазовая диаграмма, графическое изображение соотношений между параметрами состояния физико-химической системы (температурой, давлением и др.) и её составом. В простейшем случае, когда система состоит только из одного компонента, Д. с. представляет собой трёхмерную пространственную фигуру, построенную в трёх прямоугольных координатных осях, по которым откладывают температуру (Т), давление (p) и мольный объём (v). Пользование объёмной Д. с. неудобно вследствие её громоздкости; поэтому на практике применяют проекцию Д. с. на одну из координатных плоскостей, обычно на плоскость p Т.

  В качестве простейшего примера на рис. изображена (без соблюдения масштаба) Д. с. двуокиси углерода CO2. Любая точка Д. с. (фигуративная точка) изображает состояние CO2 при температуре и давлении, отвечающих этой точке. Точка О (тройная точка) отвечает равновесию трёх фаз – твёрдой, жидкой и газообразной CO2. В точке О пересекаются три кривые: ОА (кривая возгонки), отвечающая равновесиям твёрдой и газообразной CO2; OK (кривая испарения), отвечающая равновесиям жидкой и газообразной CO2; ОВ (кривая плавления) – твёрдой и жидкой CO2. Эти кривые делят плоскость диаграммы на три поля – области существования трёх фаз: твёрдой S, жидкой L и газообразной G. Точка К отвечает критической температуре CO2 (31,0°С), при которой исчезает различие между свойствами жидкости и газа. Согласно терминологии фаз правила, точке О отвечает нонвариантное равновесие, точкам на кривых ОА, ОВ и ОК – моновариантное равновесие, а точкам на полях S, L и G – дивариантное равновесие. В случае полиморфизма Д. с. усложняется (число тройных точек равно числу полиморфных превращений). О Д. с. систем, число компонентов которых больше 1, см. в статье Двойные системы.

  Экспериментальное построение Д. с. осуществляется различными методами физико-химического анализа, термических и рентгенографических анализов, оптической и электронной микроскопии, дилатометрии, измерения электросопротивления, твёрдости и др. свойств. Правильность построения Д. с. проверяется на основании правила фаз, принципа соответствия и принципа непрерывности. Д. с. широко применяют на практике в металловедении, металлургии, химии и др.; например, Д. с. железо – углерод имеет важное значение для термической обработки стали.

  Лит.: Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М.—Л., 1947; Аносов В. Я., Краткое введение в физико-химический анализ, М., 1959; Древинг В. П., Калашников Я. А., Правило фаз с изложением основ термодинамики, 2 изд., М., 1964.

  С. А. Погодин.

Диаграмма состояния двуокиси углерода CO2.

Диаграмма химическая

Диагра'мма хими'ческая, физико-химическая диаграмма, графическое изображение зависимости между численными значениями физических или механических свойств физико-химической системы и её факторами равновесия (составом, температурой, давлением). Примером простейших Д. х. являются диаграммы состояния и диаграммы состав – свойство двойных систем. Число и взаимное расположение геометрических образов Д. х. – точек, линий, поверхностей, объёмов – позволяет делать выводы о химической природе, составе и границах существования фаз, образуемых компонентами системы, не выделяя и не анализируя этих фаз (см. Физико-химический анализ).

  Лит.: Курнаков Н. С., Избр. труды, т. 1, М., 1960; см. также лит. при ст. Диаграмма состояния.

Диаграмма (чертёж)

Диагра'мма (от греч. diágramma – изображение, рисунок, чертёж), графическое изображение, наглядно показывающее линейными отрезками или геометрическими фигурами соотношение между разными величинами. См. Графические методы.

Диадема

Диаде'ма (греч. diádеma), головная повязка, венец. 1) Головная повязка древнегреческих жрецов. 2) Головной убор (лобная повязка из ткани или металлический обруч с украшениями) – символ царской власти в древности и в средние века. 3) Женское головное украшение, имеющее форму небольшой открытой короны.

Диадохи

Диадо'хи (от греч. diádochos – преемник, наследник), полководцы Александра Македонского, боровшиеся после его смерти (323 до н. э.) за верховную власть. Среди Д. выделялись Пердикка, Антипатр, Кратер, Евмен, Полисперхонт, Кассандр, Антигон l Одноглазый (см. в ст. Антигониды), Деметрий l Полиоркет, Лисимах, Селевк l Никатор (см. в ст. Селевкиды), Птолемей Лаг (см. в ст. Птолемеи). Следствием борьбы Д. был распад империи Александра и образование ряда эллинистических государств, возглавляемых отдельными Д.

Диаз Нарсис Виржиль

Диа'з, Ди'ас де ла Пе'нья (Diaz de La Pena) Нарсис Виржиль (20.8.1808, Бордо, – 18.11.1876, Ментона), французский живописец. Испанец по национальности. Вначале писал картины с романтическими сюжетами; с середины 1840-х гг., примкнув к барбизонской школе, создавал пейзажи (малого формата), отличающиеся энергичной манерой письма, романтическими эффектами цвета и освещения. Интерес Д. к необычным, порой драматическим моментам в природе («Приближение грозы», 1871, Музей изобразительных искусств им. А. С. Пушкина, Москва; см. илл.) с конца 1840-х гг. соседствует со стремлением к вдумчивой жизненно-конкретной передаче более спокойных её состояний («Пейзаж», 1864, Эрмитаж, Ленинград).

  Лит.: Diaz de La Реа..., P., 1914.

Н. Диаз. «Приближение грозы». 1871. Музей изобразительных искусств им. А. С. Пушкина. Москва.

Н. В. Диаз. «Осень в Фонтенбло». 1872. Музей изобразительных искусств имени А. С. Пушкина. Москва.

Диазоаминолы

Диазоамино'лы, препараты для крашения тканей в различные цвета, смеси диазоаминосоединений с азотолами. Д. вводят в состав печатной краски, наносимой на ткань; при обработке ткани паром диазоаминосоединение расщепляется на амин-стабилизатор и диазония соль, образующую с азотолом на ткани нерастворимый азокраситель. Стабилизатор смывается водой.

  Лит. см. при ст. Диазоли.

Диазоаминосоединения

Диазоаминосоедине'ния, триазены, органические соединения общей формулы

где чаще всего R – ароматический радикал, R' – алифатический или ароматический радикал (один из R' может быть атомом водорода). Д. обычно получают взаимодействием диазония солей с первичными или вторичными ароматическими или алифатическими аминами, служащими стабилизаторами. Д. бесцветные или жёлтые, преимущественно кристаллические вещества, неустойчивы при повышенной температуре; пыле-воздушные смеси многих Д. взрывчаты. Применяют Д. для окраски тканей (см. Диазоаминолы), а также при изготовлении пенопластов (использование основано на способности Д. выделять при разложении азот).

  Лит.: Цоллингер Г., Химия азокрасителей, пер. с нем., Л., 1960; Починок В. Я., Триазены, Киев, 1968.

Диазокопирование

Диазокопи'рование, диазотипное светокопирование, один из наиболее распространённых способов размножения технической документации на основе диазотипии. Д. – экономичный, доступный способ размножения технической документации, чертежей, графиков, текстовых материалов с неограниченным форматом оригинала. При Д. светокопии изготовляются на специальных светочувствительных бумагах (диазобумагах типа ССН-2, СК-5, МП и др.), отличающихся высокой разрешающей способностью, контрастностью и окраской (различных градаций чёрного и коричневого цветов). При экспонировании на диазобумаге образуется скрытое изображение оригинала: диазосоединение разрушается, сохраняясь лишь в местах, на которые свет не попал, т. е. в местах, соответствующих элементам изображения. Для выявления светокопии диазобумагу со скрытым изображением проявляют в щелочной среде (при «сухом» способе в парах аммиака, при «мокром» – в растворе щёлочи).

  Д. может производиться с любых оригиналов; для этого необходимо предварительно сделать копию на светопрозрачной основе (тушевой кальке, фотокальке, рефлексной бумаге, прозрачной бумаге, прозрачных пластиках и др.). Дубликаты оригинала часто изготовляются на диазокальке с целлюлозной или хлопковой основами. Д. осуществляется чаще всего контактным способом на светокопировальных аппаратах, агрегированных для одновременного экспонирования (создания скрытого изображения) и проявления светокопии. Светокопировальные аппараты оснащены мощными регулируемыми источниками света (обычно ртутными лампами) и электроприводом с плавной регулировкой скорости подачи светочувствительного материала. Это позволяет производить Д. с диазоматериалами различной светочувствительности при большом разнообразии оригиналов. Для механизации обрезки светокопий при работе с рулонными диазобумагами выпускаются специальные устройства, которые могут входить в комплект светокопировального аппарата. Всё более широкое распространение получает проекционное Д., позволяющее печатать на диазобумагах увеличенные копии с микрофотокопий (микрофильмов).

  Г. Г. Шаповал.


    Ваша оценка произведения:

Популярные книги за неделю