355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ЦИ) » Текст книги (страница 12)
Большая Советская Энциклопедия (ЦИ)
  • Текст добавлен: 7 октября 2016, 19:20

Текст книги "Большая Советская Энциклопедия (ЦИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 12 (всего у книги 20 страниц)

Циркель Фердинанд

Ци'ркель (Zirkel) Фердинанд (20.5.1838, Бонн, – 11.6.1912, там же), немецкий геолог и петрограф. Окончил Боннский университет (доктор философии, 1861). С 1863 профессор Львовского университета, в 1870—1909 профессор минералогии в Лейпциге. Изучал магматические горные породы в Исландии, Шотландии, Италии, Франции, Северной Америке, Индии, на Цейлоне. Первым применил кристаллооптический метод для микроскопического изучения горных пород и их диагностики. Ц. – автор учебника по петрографии (1893—94), выдержавшего несколько изданий и способствовавшего дальнейшему развитию петрографии.

  Соч.: Untersuchung über die mikroskopische Zusammensetzung und Struktur der Basaitgesteine, Bonn, 1870.

Циркон

Цирко'н (нем. Zirkon; первоисточник: перс. заргун – золотистый), минерал из класса островных силикатов, Zr [SiO4 ] По содержанию примесей выделяют следующие разновидности Ц.: альвит – с Hf и Th, оямалит – с TR и Р, хагаталит – с TR, Nb, наэгит – с TR, Th, Ta и др. Метамиктные (см. Метамиктные минералы ) дипирамидальные Ц., содержащие Th, U, H2 O (Th > U), называются малаконами призматические (Th < U) – циртолитами. Прозрачный Ц. медово-жёлтого красно-бурого, розового цвета называется гиацинтом; метаколлоидный, колломорфный – аршиновитом. Кристаллизуется в тетрагональной системе, образуя столбчатые или короткопризматические, реже дипирамидальные кристаллы. Часты закономерные срастания с ксенотимом YPO4 . Цвет коричневато-желтый до коричневого, сероватый, красный, розовый; иногда бесцветен. Прозрачный до просвечивающего. Спайность обычно отсутствует. Твердость по минералогической шкале 7—8; плотность 4680—4710 кг/м3 (у метамиктных разностей твердость и плотность ниже).

  Ц. – характерный акцессорный минерал гранитов, нефелиновых сиенитов и их эффузивных аналогов, а также различных метаморфических и терригенно-осадочных пород, крупные его выделения встречаются в гранитных и щелочных пегматитах. В промышленных количествах концентрируется иногда совместно с пирохлором в зонах альбитизации щелочных пород При выветривании пород переходит в россыпи. Большие запасы Ц. заключены в прибрежно-морских россыпях Тихоокеанского побережья США (Флорида) на о. Шри-Ланка, в Восточной Австралии Ц. – основной источник получения Zr и Hf двуокиси циркония. Чисто цирконовые пески применяются в формовочном литье, а также в качестве сырья для получения огнеупоров, специальной керамики. Гиацинт и прозрачные жёлтые и зелёные Ц. используются в ювелирном деле (драгоценные камни II класса).

  Л. И. Гинзбург

Циркониевые сплавы

Цирко'ниевые спла'вы, сплавы на основе циркония . До начала 50-х гг. 20 в. Ц. с. изучались мало и практически не применялись, а полученная в то время информация об их свойствах во многих случаях была недостоверной, вследствие использования для исследований недостаточно чистого циркония и несовершенных методов приготовления сплавов. Положение резко изменилось, когда в начале 50-х гг. удалось получить цирконий, очищенный от примеси гафния, и было обнаружено, что такой металл имеет малое поперечное сечение поглощения тепловых.

Механическое свойства циркониевых сплавов


Сплав Полуфабрикат (состояние) При 20 °С При 300 °С
предел прочности sВОтноси– тельное удлине– ние d % предел прочности sВОтноси– тельное удлине– ние d %
Мн/м2кгс/мм2 'Мн/м2кгс/мм2 '
Циркалой-2 Листы (отожжённые) 480 48 22 200 20 35
Zr2,5Nb То же 450 45 25 300 30 23
Циркалой-2 Трубы (холоднокатаные) 690 69 22 400 40 19
Zr2,5Nb То же 790 79 27 560 56 23

нейтронов. Это позволило рассматривать цирконий (при наличии других благоприятных свойств) как весьма перспективный материал для конструкций энергетических ядерных реакторов на тепловых нейтронах. Однако, как показали первые исследования, использовать для этой цели нелегированный цирконий не представлялось возможным в первую очередь из-за нестабильной коррозионной стойкости его в нагретой воде. Это обстоятельство стимулировало начало интенсивных исследований Ц. с., в результате чего были разработаны промышленные сплавы, нашедшие широкое применение в ядерной энергетике. Ц. с. используются для элементов конструкции активной зоны ядерных реакторов на тепловых нейтронах – оболочки тепловыделяющих элементов (твэлов), каналы, кассеты, дистанционные решётки и др. Наибольшее применение Ц. с. получили в реакторах с пароводяным теплоносителем. Ц. с. наряду с малым поперечным сечением поглощения тепловых нейтронов обладают высокой и стабильной коррозионной стойкостью в воде и паре высоких параметров и в других агрессивных средах, хорошей пластичностью и удовлетворительными прочностными характеристиками. К легирующим элементам Ц. с. предъявляется комплекс требований: одни из них должны значительно ослаблять (подавлять) вредное влияние азота на коррозионную стойкость циркония (при допустимом содержании азота в сплавах менее 0,01%), другие – ощутимо не увеличивать поперечное сечение поглощения тепловых нейтронов, не снижать радиационную стойкость, повышать прочностные характеристики и при этом существенно не уменьшать пластичность (сплавы должны быть пригодны для изготовления из них особо тонкостенных труб и листов, обладать хорошей свариваемостью). Поэтому выбор легирующих добавок ограничен сравнительно небольшим числом элементов при невысоком содержании их в сплавах. Для легирования используются Nb, Sn, Fe, Cr, Ni, Cu и Mo, которые вводятся в количествах от долей процента до 2—3% (в сумме).

  Из большого числа исследованных Ц. с. практическое применение нашли лишь немногие. За рубежом наибольшее распространение получил американский сплав циркалой-2 (1,5% Sn, 0,1% Fe, 0,1% Cr, 0,05% Ni и не более 0,01% N). Используется также сплав циркалой-4 (отличается от циркалоя-2 пониженным содержанием никеля – 0,007%). Сплав циркалой-2 специально разрабатывался и был сначала использован для оболочек твэлов реактора первой американской атомной подводной лодки «Наутилус», затем нашёл применение во многих энергетических реакторах атомных станций для твэлов и каналов, работающих в воде и пароводяных смесях с температурой 250—300 °C. В СССР разработаны и применяются оригинальные сплавы, не содержащие олова, – Zr1Nb и Zr2, 5Nb (соответственно с 1 и 2,5% Nb). Сплав Zr1Nb впервые был применен для твэлов реактора атомного ледокола «Ленин», а сплав Zr2, 5Nb – для кассет реактора Ново-Воронежской АЭС. В середине 70-х гг. сплавы Zr1Nb и Zr2, 5Nb используются для оболочек твэлов, кассет и каналов реакторов большинства атомных электростанций СССР и социалистических стран. Кроме того, сплав Zr2, 5Nb применен в ряде реакторов в Канаде. По коррозионной стойкости сплав Zr2, 5Nb сопоставим со сплавами типа циркалой, однако он имеет меньшую склонность к наводороживанию, не подвержен снижению сопротивления коррозии под облучением и обладает большей прочностью, в частности более высоким сопротивлением ползучести. Несмотря на высокую температуру плавления циркония (1852 °C), его известные сплавы не отличаются высокой жаропрочностью и практически пригодны для работы в пароводяных средах при температурах не выше 400 °C. При более высоких температурах наряду со снижением прочности Ц. с. происходит сильное окисление их с растворением кислорода, приводящее к потере пластичности и наводороживанию, которое вызывает охрупчивание в результате образования гидридов. Механические свойства Ц. с. типа циркалой и цирконий-ниобиевых сплавов по уровню прочности и пластичности (при кратковременных испытаниях) одного порядка (см. табл.) и зависят, как и для других металлических материалов, от структурного состояния, обусловленного термической и деформационной обработкой.

  Ц. с. выплавляют в дуговых вакуумных печах с расходуемым электродом и электроннолучевых печах. Используется цирконий т. н. ядерной чистоты (значительно очищенный от гафния и др. примесей с большим поперечным сечением поглощения тепловых нейтронов). Полуфабрикаты из Ц. с. изготовляются на обычном оборудовании, применяемом для многих цветных металлов. Отжиг проводится в вакуумных печах. Если в ядерной энергетике Ц. с. получили широкое распространение, то в др. областях техники они практически не нашли применения; в частности, как конструкционный и коррозионностойкий материал они уступают более прочным, лёгким и дешёвым титановым сплавам.

  Лит.: Металлургия циркония, пер. с англ., М., 1959; Труды второй Международной конференции по мирному использованию атомной энергии, Женева, 1958. Доклады советских ученых, т. 3, М., 1959, с. 486; Ривкин Е. Ю., Родченков Б. С., Филатов В. И., Прочность сплавов циркония, М., 1974; Дуглас Д., Металловедение циркония, пер. с англ., М., 1975 (лит.).

  А. А. Киселев.

Цирконий

Цирко'ний (лат. Zirconium), Zr, химический элемент IV группы периодической системы Менделеева; атомный номер 40, атомная масса 91,22; серебристо-белый металл с характерным блеском. Известно пять природных изотопов Ц.: 90 Zr (51,46%), 91 Zr (11,23%), 92 Zr (17,11%) 94 Zr (17,4%), 96 Zr (2,8%). Из искусственных радиоактивных изотопов важнейший 95 Zr (T1/2 = 65 сут ); используется в качестве изотопного индикатора .

  Историческая справка. В 1789 немецкий химик М. Г. Клапрот в результате анализа минерала циркона выделил двуокись Ц. Порошкообразный Ц. впервые был получен в 1824 И. Берцелиусом , а пластичный – в 1925 нидерландскими учёными А. ван Аркелом и И. де Буром при термической диссоциации иодидов Ц.

  Распространение в природе. Среднее содержание Ц. в земной коре (кларк) 1,7×10-2 % по массе, в гранитах, песчаниках и глинах несколько больше (2×10-2 %), чем в основных породах (1,3×10-2% ). Максимальная концентрации Ц. – в щелочных породах (5×10-2 %). Ц. слабо участвует в водной и биогенной миграции. В морской воде содержится 0,00005 мг/л Ц. Известно 27 минералов Ц.; промышленное значение имеют бадделеит ZrO2 , циркон. Основные типы месторождений Ц.: щелочные породы с малаконом и цитролитом; магнетит-форстерит-апатитовые породы и карбонатиты с бадделеитом; прибрежно-морские и элювиально-делювиальные россыпи.

  Физические и химические свойства. Ц. существует в двух кристаллических модификациях: a-формы с гексагональной плотноупакованной решёткой (а = 3,228 ; с = 5,120 ) и b-формы с кубической объёмноцентрированной решёткой (а = 3,61 ). Переход a ® b происходит при 862 °C. Плотность a-Ц. (20 °C) 6,45 г/см3 ;tпл 1825 ± 10 °C; tкип 3580—3700 °C; удельная теплоёмкость (25—100 °С) 0,291 кдж/ (кг ×К ) [0,0693 кал/ (г ×°С )], коэффициент теплопроводности (50 °С) 20,96 вт/ (м ×К ) [0,050 кал/ (см ×сек ×°С)]; температурный коэффициент линейного расширения (20—400 °С) 6,9×10-6 ; удельное электрическое сопротивление Ц. высокой степени чистоты (20°С) 44,1 мком ×см. температура перехода в состояние сверхпроводимости 0,7 К. Ц. парамагнитен; удельная магнитная восприимчивость увеличивается при нагревании и при —73 °С равна 1,28×10-6 , а при 327 °С – 1,41×10-6 . Сечение захвата тепловых нейтронов (0,18 ± 0,004)×10-28м2 , примесь гафния увеличивает это значение. Чистый Ц. пластичен, легко поддаётся холодной и горячей обработке (прокатке, ковке, штамповке). Наличие растворённых в металле малых количеств кислорода, азота, водорода и углерода (или соединений этих элементов с Ц.) вызывает хрупкость Ц. Модуль упругости (20 °С) 97 Гн/м2 (9700 кгс /мм2 ); предел прочности при растяжении 253 Мн/м2 (25,3 кгс/мм2 ); твёрдость по Бринеллю 640—670 Мн/м2 (64—67 кгс/мм2 ); на твёрдость очень сильное влияние оказывает содержание кислорода: при концентрации более 0,2% Ц. не поддаётся холодной обработке давлением.

  Внешняя электронная конфигурация атома Zr 4d2 5s2 . Для Ц. характерна степень окисления +4. Более низкие степени окисления +2 и +3 известны для Ц. только в его соединениях с хлором, бромом и йодом. Компактный Ц. медленно начинает окисляться в пределах 200—400 °С, покрываясь плёнкой циркония двуокиси ZrO2 ; выше 800 °С энергично взаимодействует с кислородом воздуха. Порошкообразный металл пирофорен – может воспламеняться на воздухе при обычной температуре. Ц. активно поглощает водород уже при 300 °С, образуя твёрдый раствор и гидриды ZrH и ZrH2 ; при 1200—1300 °С в вакууме гидриды диссоциируют и весь водород может быть удалён из металла. С азотом Ц. образует при 700—800 °С нитрид ZrN. Ц. взаимодействует с углеродом при температуре выше 900 °С с образованием карбида ZrC. Карбид и нитрид Ц. – твёрдые тугоплавкие соединения; карбид Ц. – полупродукт для получения ZrCl4 . Ц. вступает в реакцию с фтором при обычной температуре, а с хлором, бромом и иодом при температуре выше 200 °С, образуя высшие галогениды ZrX4 (где Х – галоген). Ц. устойчив в воде и водяных парах до 300 °С, не реагирует с соляной и серной (до 50%) кислотами, а также с растворами щелочей (Ц. – единственный металл, стойкий в щелочах, содержащих аммиак). С азотной кислотой и царской водкой взаимодействует при температуре выше 100 °С. Растворяется в плавиковой и горячей концентрированной (выше 50%) серной кислотах. Из кислых растворов могут быть выделены соли соответствующих кислот разного состава, зависящего от концентрации кислоты. Так, из концентрированных сернокислых растворов Ц. осаждается кристаллогидрат Zr (SO4 )2 ×4H2 O; из разбавленных растворов – основные сульфаты общей формулы xZrO2 ×ySO3 ×zH2 O (где х : y > 1). Сульфаты Ц. при 800—900 °С полностью разлагаются с образованием двуокиси Ц. Из азотнокислых растворов кристаллизуется Zr (NO3 )4 ×5H2 O или ZrO (NO3 )2 ×xH2 O (где х =  2—6), из солянокислых растворов – ZrOCl2 ×8H2 O, который обезвоживается при 180—200 °С.

  Получение. В СССР основным промышленным источником получения Ц. является минерал циркон ZrSiO4 . Циркониевые руды обогащаются гравитационными методами с очисткой концентратов магнитной и электростатической сепарацией. Металл получают из его соединений, для производства которых концентрат вначале разлагают. Для этого применяют: 1) хлорирование в присутствии угля при 900—1000 °С (иногда с предварительной карбидизацией при 1700—1800 °С для удаления основной части кремния в виде легколетучего SiO); при этом получается ZrCl4 , который возгоняется и улавливается; 2) сплавление с едким натром при 500—600 °С или с содой при 1100 °С: ZrSiO4 + 2Na2 CO3 = Na2 ZrO3 + Na2 SiO3 + 2CO2 ; 3) спекание с. известью или карбонатом кальция (с добавкой CaCl2 ) при 1100—1200 °С: ZrSiO4 + 3CaO = CaZrO3 + Ca2 SiO4 ; 4) сплавление с фторосиликатом калия при 900 °С: ZrSiO4 + K2 SiF6 = K2 ZrF6 + 2SiO2 . Из спёка или плава, полученного в случаях щелочного вскрытия (2,3), вначале удаляют соединения кремния выщелачиванием водой или разбавленной соляной к той, а затем остаток разлагают соляной или серной; при этом образуются соответственно оксихлорид и сульфаты. Фтороцирконатный спек (4) обрабатывают подкисленной водой при нагревании; при этом в раствор переходит фтороцирконат калия, 75—90% которого выделяется при охлаждении раствора.

  Для выделения соединений Ц. из кислых растворов применяют следующие способы: 1) кристаллизацию оксихлорида Ц. ZrOCl2 ×8H2 O при выпаривании солянокислых растворов; 2) гидролитическое осаждение основных сульфатов Ц. xZrO2 ×ySO3 (zH2 O из сернокислых или солянокислых растворов; 3) кристаллизацию сульфата Ц. Zr (SO4 )2 при добавлении концентрированной серной кислоты или при выпаривании сернокислых растворов. В результате прокаливания сульфатов и хлоридов получают ZrO2 .

  Соединения Ц., полученные из рудного сырья, всегда содержат примесь гафния. Ц. отделяют от этой примеси фракционной кристаллизацией K2 ZrF6 , экстракцией из кислых растворов органическими растворителями (например, трибутилфосфатом), ионообменными методами, избирательным восстановлением тетрахлоридов (ZrCl4 и HfCl4 ).

  Ц. в виде порошка или губки получают металлотермическим восстановлением ZrCl4 , K2 ZrF6 и ZrO2 . Хлорид восстанавливают магнием или натрием, фтороцирконат калия – натрием, а двуокись Ц. – кальцием или его гидридом. Электролитический порошкообразный Ц. получают из расплава смеси солей галогенидов Ц. и хлоридов щелочных металлов. Компактный ковкий Ц. получают плавлением в вакуумных дуговых печах спрессованных губки или порошка, обычно служащих расходуемым электродом. Ц. высокой степени чистоты производят электроннолучевой плавкой слитков, полученных в дуговых печах, или прутков после иодидного рафинирования.

  Применение. Сплавы на основе Ц., очищенного от гафния, применяют преимущественно в качестве конструкционных материалов в ядерных реакторах, что обусловлено малым сечением захвата тепловых нейтронов (см. Циркониевые сплавы ). Ц. входит в состав ряда сплавов (на основе магния, титана, никеля, молибдена, ниобия и др. металлов), используемых как конструкционные материалы, например, для ракет и др. летательных аппаратов. Из сплавов Ц. с ниобием делают обмотки магнитов сверхпроводящих . В литейном производстве применяют цирконистые огнеупоры . К числу наиболее распространённых пьезокерамических материалов (пьезокерамики) относится группа цирконата – титаната свинца (например, ЦТС-23). В металлокерамических материалах (керметах) металлическим составляющим является Ц., а керамическим – его двуокись ZrO2 . При производстве генераторных ламп проволока из Ц. служит геттером .

  Ц. используют в качестве коррозионно-стойкого материала в химическом машиностроении. Присадки Ц. служат для раскисления стали и удаления из неё азота и серы. Порошкообразный Ц. применяют в пиротехнике и в производстве боеприпасов. Сульфат Ц. – дубитель в кожевенной промышленности.

  Лит.: Справочник по редким металлам, ред. К. А. Гемпел, пер. с англ., М., 1965; Основы металлургии, т. 4, М., 1967; Зеликман А. Н., Меерсон Г. А., Металлургия редких металлов, М., 1973.

  О. Е. Крейн.

Цирконистые огнеупоры

Цирко'нистые огнеупо'ры, изготовляются на основе двуокиси циркония (ZrO2 ) или циркона (ZrSiO4 ). Циркониевые (бадделеитовые) огнеупоры изготовляют из ZrO2 формованием порошкообразных масс и обжигом при 1700—2200 °С. Предварительно ZrO2 стабилизируют плавлением или обжигом при 1700—1750 °С с добавкой 5—7% CaO или других структурно близких к ней окислов. Изделия имеют огнеупорность выше 2000 °С и характеризуются высокой химической стойкостью к расплавам, щелочам и большинству кислот. Применяются в виде тиглей для плавки платины, палладия и др. металлов и кварцевого стекла, в реакторостроении, для футеровки высокотемпературных печей и т. д. Легковесные изделия, волокна и зернистые порошки пригодны для высокотемпературной теплоизоляции. Цирконовые огнеупоры изготовляют из цирконового концентрата или предварительно обожжённой смеси циркона с глиной путём прессования и обжига при температуре около 1500—1550 °С. Свойства изделий: кажущаяся плотность 3,0—3,4 г/см3 , температура начала деформации под нагрузкой 2 кгс/см2 1500—1570 °С, огнеупорность 1900—2000 °С. Применяются в виде стаканов для разливки стали, в печах для плавки алюминия, в сталеразливочных ковшах для специальных сталей, а также в виде масс и обмазок.

  Лит.: Химическая технология керамики и огнеупоров, М., 1972.

  А. К. Карклит.

Циркония двуокись

Цирко'ния двуо'кись, циркония оксид, ZrO2 , белые кристаллы; tпл 2900 °С. Нерастворима в воде, растворах большинства кислот, щелочей, солей и в органических растворителях; растворима в плавиковой кислоте, концентрированной серной, расплавленном стекле. Обладает амфотерными свойствами. В природе существует в виде минерала бадделеита. В промышленности получают прокаливанием сульфатов или хлоридов циркония. Получены синтетические кристаллы ZrO2 , стабилизированные окислами кальция, иттрия или др. редкоземельных элементов (названы фианитами ). Свыше 50% Ц. д. используется в производстве цирконистых огнеупоров , керамики, эмалей, стекла; служит также сырьём для получения циркония.

  Лит. см. при ст. Цирконий .

Цирконосиликаты

Цирконосилика'ты, группа редких минералов, в основе структур которых лежат комплексные кремниево-циркониевые радикалы типа [Z (Si3 O9 )]2- (подгруппа катаплеита), [Zr (Si4 O11 )]2- (подгруппа власовита), [Zr (Si6 O15 )]2- (эльпидит), {Zr [Si6 O12 (OH)6 ]}2- (ловозерит), {Zr3 [Si3 O9 ]×[Si9 O24 (OH)3 ]}9- (эвдиалит). Роль катионов играют Na+ , К+ , Ca+ , Cr2+, Ba2+ , TR3+ . Известно около 30 минералов. Для Ц. характерны каркасные и кольцевые кристаллические структуры. Твердость по минералогической шкале 4—5, плотность 2600—3200 кг/м3 . Ц. кристаллизуются из высокощелочных расплавов и растворов; характерны для нефелиновых сиенитов, сиенит-пегматитов и зон щелочного метасоматоза в ассоциации с нефелином, натролитом, микроклином, альбитом, эгирином и др. минералами.


    Ваша оценка произведения:

Популярные книги за неделю