355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Зви Боди » Финансы » Текст книги (страница 31)
Финансы
  • Текст добавлен: 12 октября 2016, 05:06

Текст книги "Финансы"


Автор книги: Зви Боди


Соавторы: Роберт К. Мертон
сообщить о нарушении

Текущая страница: 31 (всего у книги 45 страниц)

12.2.4. Концепция эффективности портфеля

Эффективным портфелем (efficient portfolio) мы называем такой портфель, который предлагает инвестору максимально возможный ожидаемый уровень доходности при заданном уровне риска.

Чтобы объяснить значение концепции эффективности портфеля и показать, как получить действительно эффективный портфель, давайте рассмотрим предыдущий пример, дополнительно включив в него еще один рискованный актив. Рискованный актив 2 имеет ожидаемую ставку доходности 0,08 в год и стандартное отклонение 0.15. Он представлен точкой R на рис. 12.2.

Инвестор, который хоче1 получить ожидаемую ставку доходности в 0.08 годовых, может добиться своей цели, вложив всю сумму в рискованный актив 2. Тогда он окажется в ситуации, описываемой точкой R. Но при этом портфель инвестора неэффективен, потому что в точке G инвестор может получить такую же ожидаемую ставку доходности (0,08 в год) при меньшем значении стандартного отклонения.

Из табл. 12.1 видно, что в точке G стандартное отклонение составляет только 0,05. Это объясняется тем, ч-ю 25% инвестиций данного портфеля вложены в рискованный актив 1, а 75% – в безрисковый актив. Действительно, не желающий рисковать инвестор выберет на прямой риск/доходность, соединяющей точки G и S, любую точку – только не точку R. Любая из этих точек соответствует вполне приемлемой ситуации, когда некоторое количество рискованного актива 1 уравновешивается безрисковым активом. Например, портфель в точке J имеет стандартное отклонение, равное стандартному отклонению рискованного актива 2 (о = 0,15), но его ожидаемая ставка доходности составляет 0,12 годовых, а не 0,08. Из табл. 12.1 нам известно, что такое соотношение соответствует портфелю, который на 75% состоит из рискованного актива 1 и на 25% из безрискового актива.

С помощью уравнений 12.1 и 12.2 можно определить состав других эффективных портфелей, которые описываются точками между G и J и имеют, следовательно, более высокую ожидаемую ставку доходности и меньшее значение стандартного oтклонения в сравнении с рискованным активом 2. Рассмотрим, например, портфель, который на 62,5% состоит из рискованного актива 1 и на 37,5 % – безрискового актива. Его ожидаемая ставка доходности равна 0,11 в год, а стандартное отклонение составляет 0,125.

Контрольный вопрос 12.7

Как инвестор может получить ожидаемую ставку доходности в 0,105 годовых, вложив средства в рискованный актив 1 и безрисковый актив? Каким будет стандартное отклонение такого портфеля? Сравните это значение со стандартным отклонением рискованного актива 2.

Рис. 12.2. Эффективность портфеля

Примечание. В точке R портфель на 100% состоит из инвестиций, вложенных в рискованный актив 2 с ожидаемой ставкой доходности 0,08 и  = 0,15. Инвестор может получить более высокую ожидаемую доходность и меньшее стандартное отклонение в любой точке прямой, проходящей через точки G и J.

12.3. ЭФФЕКТИВНАЯ ДИВЕРСИФИКАЦИЯ ПОРТФЕЛЯ 1РИ НАЛИЧИИ МНОГИХ РИСКОВАННЫХ АКТИВОВ

Рабочая книга Несмотря на то что инвестирование исключительно в рискованный актив 2 само по себе неэффективно, может быть, имеет смысл объединить в одном портфеле два вида рискованных активов? Или добавить к двум видам рискованных активов безрисковые?

Мы исследуем способы эффективного объединения трех активов в два этапа. На 1ервом этапе мы рассмотрим соотношение риска и доходности, достигаемое объединением только рискованных активов 1 и 2; на втором этапе мы добавим к ним безрисковый актив.

12.3.1. Портфели из двух рискованных активов

Объединение в одном портфеле двух видов рискованных активов аналогично объединению рискованного актива с безрисковым; эта тема обсуждалась в разделе 12.2. Просмотрите еще раз табл. 12.1, рис. 12.1 и уравнения 12.1 и 12.2.) Если один из двух активов безрисковый, то стандартное отклонение его ожидаемой ставки доходности и корреляция с другим активом равны нулю. Если оба актива являются рискованны-, w, то так или иначе необходим анализ соотношения риск/доходность.

Формула для вычисления среднего значения ставки доходности любого портфеля, в котором w — это доля рискованного актива 1, а (1 – w) — это доля рискованного актива 2, имеет следующий вид:

Е(r) = wE(r1)+(l-w)E(r2) (12.4)

В свою очередь формула дисперсии такова:

2 = 12 + (1 – w)22 + 2w (1 – w) p12 (12.5)

Эти два уравнения можно сравнить с уравнениями соответственно 12.1 и 12.2. Сравнение 12.4 – это, по сути, уравнение 12.1, только вместо процентной ставки безрискового актива rr в него вставлена ожидаемая доходность рискованного актива 2, Е (r2) Уравнение 12.5 – это более общая форма уравнения 12.2. Если актив 2 безрисковой, то 2 = 0 и уравнение 12.5 упрощается до вида уравнения 12.2. В табл. 12.2 сведены наши оценки распределения вероятности ставок доходности скованных активов 1 и 2. Обратите внимание: мы исходим из предположения, что коэффициент корреляции равен нулю = 0).

В табл. 12.3 и в рис. 12.3 показаны комбинации средних значений и стандартных отклонений доходностей, которые можно получить при объединении в одном портфеле рискованного актива 1 и рискованного актива 2. Точка S на рис. 12.3 соответствует портфелю, который состоит исключительно из рискованного актива 1, а точка R – портфелю, состоящему исключительно из рискованного актива 2.

Давайте покажем, как ожидаемые ставки доходности и стандартные отклонения в In 12.3 рассчитываются по формулам 12.4 и 12.5. Рассмотрим портфель С, который эит на 25% из рискованного актива 1 и на 75% – из рискованного актива 2.

Щ

Рискованный актив 1

Й.йЙйЙй.Йй?;

Рискованный актив 2

Среднее значение

'/!-

Эгакдартное отклонение рйрреляция

0,14 0,20 0

0,08 0,15 0

Соотношение риск/доходность для портфелей с двумя рискованными

eSllleSltESgeKeeiBe

пь

Доля средств, вложенная в рискованный актив 1 (%)

Доля средств, вложенная в рискованный актив 2 (%)

Ожидаемая ставка доходности

Стандартное отклонение

0

100

0,0800

0,1500

25

75

0,0950

0,1231

|ьная я

36

64

0,1016

0,1200

50

50

0,1100

0,1250

100

0

0,1400

0,2000

1одставив необходимые значения в уравнение 12.4, мы найдем, что ожидаемая ва доходности в точке С составит 0,095 в год:

jE'(r)=0,25 E(r,) +0,75 E{r} =0,25х0,14 +0,75х0,08 =0,095 ставив в уравнение 12.5 значение w, мы выясним, что стандартное отклонение

2 = W22 + (1 – w) (72 + 2w (1 – w) pO'iO'2

=0,252x0,22+0,752x0,152+0 =0,01515625

о– =УО,01515625 =0,1231

Рис. 12.3. Кривая соотношения риск/доходность: только рискованные активы

Примечание. Предполагается, что £'("/•=0,14, о-/=0,20, E(r)=0,OS, crj=0,15, /т=0.

Давайте с помощью табл. 12.3 исследуем кривую, соединяющую на рис. 12.3 точки R и S. Начнем с точки R и переместим часть наших капиталов из рискованного актива 2 в рискованный актив 1. При этом наблюдается не только повышение средней ставки доходности, но и снижение стандартного отклонения. Оно снижается до тех пор, пока мы не получим портфель, который на 36% состоит из инвестиций в рискованный актив 1 и на 64% – в рискованный актив 26.

Эта точка характеризует портфель с минимальной дисперсией (minimum-variance portfolio), состоящий из рискованного актива 1 и рискованного актива 2. Если в рискованный актив 1 инвестируется более 36% общего капитала, то стандартное отклонение портфеля увеличивается.

Контрольный вопрос

Каково среднее значение доходности и ее стандартное отклонение для портфеля, который на 60% состоит из рискованного актива 1 и на 40% – из рискованного актива 2, если их коэффициент корреляции равен 0,1? .

6 Формула, описывающая долю рискованного актива 1, которая минимизирует дисперсию портфеля, выглядит следующим образом:

12.3.2. Оптимальная комбинация рискованных активов

Теперь давайте рассмотрим комбинации риск/доходность, которые мы можем подучить посредством объединения безрискового актива с рискованными активами 1 и 2. На рис. 12.4 показано графическое представление всех возможных комбинаций риск/доходность; этот рисунок показывает также, как можно получить оптимальную комбинацию рискованных активов для объединения с безрисковым активом.

Стандартное отклонение

Рис. 12.4. Оптимальная комбинация рискованных активов Примечание. Предполагается, что Гу=0,06, £/-=0,14, сг/=0,20, £)=0,08, сг;=0,15, /?=0.

Сначала проанализируем прямую линию, соединяющую точку F с точкой S. Она нам уже знакома, поскольку представляет собой график соотношения риск/доходность, который мы видели на рис. 12.1. Прямая показывает ряд комбинаций риск/ доходность, которые могут быть получены посредством объединения безрискового актива с рискованным активом 1.

Прямая линия, соединяющая точку Fc любой точкой кривой, соединяющей точки R и S, представляет собой график, описывающий соотношение риск/доходность для всех комбинаций следующих трех активов: рискованных активов 1 и 2 с безрисковыми активами. Наибольшие значение этого соотношения, которого мы можем достичь, находится на линии, соединяющей точки F и Т. Точка Т является общей точкой прямой линии, выходящей из точки F, и кривой, соединяющей точки R и S. Мы называем такой рискованный портфель, который соответствует общей точке Г на рис. 12.4, оптимальной комбинацией рискованных активов. Именно объединением этого портфеля рискованных активов с безрисковым активом достигается формирование максимально эффективного портфеля. Формула для определения долей портфеля в точке Г такова:

Подставляя данные в это уравнение, получаем, что оптимальной комбинацией Рискованных активов (для портфеля в точке пересечения с прямой, который еще называют тангенциальным портфелем (the tangency portfolio)), является 69,23% рискованного актива 1 и 30,77% рискованного актива 2. Это означает, что ставка доходности Е(г-г), и стандартное отклонение, оу, равны:

£(/y)=0,122 От =0,146

Следовательно, новый график для эффективного соотношения риск/доходность задан формулой:

где угол наклона – отношение доходности к риску – равен 0,42. Сравним полученное выражение с формулой для прежней линии соотношения риск/доходность, соединяющей точки F и S:

Е (г) =0,06 +0,40ст

где угол наклона равен 0,40. Понятно, что теперь инвестор находится в лучшем положении, потому что он может достичь более высокой ожидаемой ставки доходности для любого уровня риска, на который он готов пойти.

12.3.3. Формирование наиболее предпочтительного инвестиционного портфеля

Чтобы завершить анализ, давайте рассмотрим выбор инвестора с точки зрения его предпочтений и с учетом графика соотношения риск/доходность для эффективных портфелей. Надеюсь, вы не забыли, что в разделе 12.1 мы упоминали о том, что предпочтения при формировании портфеля зависят от стадии жизненного цикла, на которой находится инвестор, периода (горизонта) планирования и толерантности к риску. Следовательно, инвестор может выбрать позицию в любой точке на отрезке, ограниченном точками F и Г. На рис. 12.5 для этого выбрана точка Е. Портфель, который соответствует точке Е, на 50% состоит из портфельных инвестиций в общей точке (тангенциальный портфель) и на 50% из инвестиций в безрисковый актив. Преобразуем уравнения 12.1 и 12.2 таким образом, чтобы они отражали тот факт, что портфель в точке касания – это теперь единственный рискованный актив, который следует объединять с безрисковым активом. Выясняется, что ожидаемая доходность и стандартное отклонение портфеля Е имеют вид:

() = /у + 0,5 х [£(/y) – /7] = 0,06 + 0,5(0,122 – 0,06) = 0,091 ст= 0,5ха,– =0,5х0,146=0.073

Учитывая, что тангенциальный портфель состоит на 69,2% из рискованного актива 1 и на 30,8% – из рискованного актива 2, можно определить, что состав портфеля будет следующим:

Доля безрискового актива

50,0%

Доля рискованного актива 1

0,5х69,2%=

34,6%

Доля рискованного актива 2

0,5х30,8%=

15,4%

Всего

100,0%

Следовательно, если вы инвестировали 100000 долл. в портфель Е, то 50000 долл. инвестировано в безрисковый актив, 34600 долл. – в рискованный актив 1 15400 долл. – в рискованный актив 2.

Давайте теперь обобщим имеющиеся у нас сведения относительно создания эффективного портфеля, когда имеется два вида рискованных активов и один безрисковый актив. Существует только один портфель с рискованными активами, который оптимальным образом можно объединить с безрисковым активом. Мы называем этот особенный портфель с рискованными активами, соответствующий общей (тангенциальной) точке Г на рис. 12.4, оптимальной комбинацией рискованных активов. Предпочтительный портфель всегда является какой-либо комбинацией портфеля рискованных активов в общей точке и безрискового актива .

Стандартное отклонение Рис. 12.5. Выбор наиболее предпочтительного портфеля

12.3.4. Как получить заданную ожидаемую доходность: пример 2

Предположим, что у вас имеется 100000 долл., которые вы хотели бы инвестировать с ожидаемой ставкой доходности в 0,10 годовых. Сравните стандартное отклонение доходности, на которое вам пришлось бы пойти при прежнем графике риск/доходность (линия, соединяющая точки Ей S) со стандартным отклонением при новом графике риск/доходность (линия, соединяющая точки F и 7). Каков состав каждого из этих двух портфелей?

Решение

Во-первых, давайте запишем формулу, связывающую ожидаемую доходность Портфеля с долей, инвестированной в рискованные активы, и решим его. Таким обра-эом мы определим долю, которую надо инвестировать в рискованные активы. Для но-"ого соотношения риск/доходность, в котором используется оптимальная комбинация Двух рискованных активов, формула имеет следующий вид:

£ (г) =£•(/,+г, (1-w) £(/•)= 0,122w+0,06(1-н')

Установив ожидаемую ставку доходности портфеля равной 0,10 и определив н', получим:

£(/-)=-0,06 + 0,062w =0,10

0,10-0,06 . .-

w = – = 0,6D 0,062

Следовательно, для получения оптимальной комбинации 65% от 100000 долл. должно быть инвестировано в рискованные активы, а 35% – в безрисковый актив. Стандартное отклонение в таком портфеле определяется по формуле:

(j=v(t =0,65х0,146=0,095

Поскольку оптимальная комбинация рискованных активов сама по себе содержит 69,2% рискованного актива 1 и 30,8% рискованного актива 2, состав итогового портфеля с ожидаемой доходностью в 0,10 в год определяется следующим образом:

Доля безрискового актива

35%

Доля рискованного актива 1

0,65х69,2%=

45%

Доля рискованного актива 2

0,65х30,8%=

20%

Всего

100%

Для прежнего графика соотношения риск/доходность с единственным рискованным активом формула, связывающая ожидаемую доходность и w, имела вид:

£(r) =£(/•+/у (1-uQ £(r)=0,14w+0,06(l-w)

Установив ожидаемую ставку доходности портфеля равной 0,10 и вычислив w, получим:

£(r)= 0,06+0,08=0,10

0,10

–0,

06

–0,

50

w =

0,

08

Таким образом, 50% от 100000 долл. должно быть вложено в рискованный актив 1.

а 50% – в безрисковый актив.

Стандартное отклонение этого портфеля задано уравнением:

Контрольный вопрос 12.9

Предположим, инвестор выбрал портфель, который на рис. 12.5 соответствует точке, лежащей на отрезке между точками F и Т на расстоянии в три четверти длины отрезка от точки F. Другими словами, 75% его портфеля вложено в портфель, соответствующий общей точке, а 25% – в безрисковый актив. Какова ожидаемая ставка доходности и стандартное отклонение этого портфеля? Если у инвестора имеете 1000000 долл., то сколько ему следует вложить в каждый из трех активов?

Важно отметить, что при поиске оптимальной комбинации рискованных активов нам не нужно ничего знать ни о благосостоянии инвестора, ни о его предпочтениях. Состав этого портфеля зависит только от ожидаемых ставок доходности и стандартных отклонений рискованного актива 1 и рискованного актива 2 и от корреляции между ними. Это означает, что все инвесторы, которые согласились на такие характеристики доходности (среднее значение, стандартное отклонение, корреляция), захотят инвестировать в один и тот же тангенциальный портфель, дополненный безрисковым активом. Вот общее правило, применимое ко всем случаям, когда имеется множество рискованных активов:

Всегда существует оптимальный портфель рискованных активов, который все инвесторы, избегающие риска и имеющие одинаковые представления о характеристиках

доходности, будут объединять с безрисковым активом с целью получения наиболее предпочтительного портфеля.

12.3.5. Портфели с множеством рискованных активов

При наличии большого числа рискованных активов мы используем двухэтапный метод создания портфеля, аналогичный тому, который был рассмотрен в предыдущем разделе. На первом этапе мы рассматриваем портфели, состоящие только из рискованных активов, а на втором этапе мы определяем тангенциальный портфель рискованных активов, который можно объединить с безрисковым активом. Такая работа требует большого количества вычислений, поэтому лучше выполнять ее на компьютере.

На рис. 12.6 показаны исходные данные и результат их обработки в программе электронных таблиц, используемой для оптимизации портфеля7. Индивидуальные базовые активы (basic assets) – это рискованный актив 1, рискованный актив 2 и т.д. Они представлены затененными точками на диаграмме слева. Кривая, лежащая выше и правее этих точек, называется границей эффективного множества портфелей (efficient portfolio frontier) рискованных активов. Она определяется как множество портфелей с рискованными активами, каждый из которых предлагает инвесторам максимально возможные ставки доходности при любом заданном стандартном отклонении.

ис. 12.6 создан с помощью программного обеспечения, поставляемого с этой книгой.

Отдельные базовые активы находятся с внутренней стороны границы эффективности по той причине, что обычно существует некая комбинация из двух и более базовых активов, ожидаемая ставка доходности которой при таком же стандартном отклонении выше, чем у этих базовых активов.

Оптимальное сочетание рискованных активов обнаруживается в общей точке пересечения прямой, которая начинается в точке, представляющей безрисковый актив (на вертикальной оси), и границы эффективности рискованных активов. Отрезок, соединяющий точку безрискового актива и тангенциальную точку, которая соответствует оптимальной комбинации рискованных активов, представляет самые лучшие соотношения риск/доходность.

Теперь вернемся к вопросу, который мы уже затрагивали в разделе 12.1. Каким образом финансовый посредник (например, компания, предлагающая инвесторам инвестиции в управляемые ею взаимные фонды) составляет "финансовое меню" из разных комбинаций активов, чтобы предложить его своим клиентам? Мы только что показали, что нахождение оптимальных комбинаций рискованных активов зависит только от ожидаемого уровня доходности, стандартных отклонений базовых рискованных активов и от корреляции между ними. Оно не зависит от предпочтений инвесторов. Следовательно, для того, чтобы создать эффективный портфель, сведения о предпочтениях инвесторов совершенно не нужны.

Итак, клиенты возлагают на финансовых посредников, которые специализируются на соответствующих видах деятельности, составление прогноза ожидаемого уровня доходности активов, стандартных отклонений и корреляции; посредники берут на себя также функцию комбинирования базовых активов в оптимальных пропорциях. Следовательно, клиентам остается только выбрать размеры капиталов, которые они намерены вложить в оптимальный рискованный портфель.

Статическая модель выбора активов для инвестиционного портфеля, опирающаяся на среднее значение доходности и ее дисперсию, заложила теоретические основы финансового посредничества взаимных фондов. Начиная с конца 60-х годов академические исследования в области составления оптимального портфеля вышли за пределы этой модели и занялись динамическими версиями. В них межвременная оптимизация решений инвесторов относительно сбережения/потребления, принимаемых на определенных стадиях жизненного цикла домохозяйства, объединяется с распределением высвободившихся сбережений среди альтернативных направлений инвестиций. В этих моделях спрос на индивидуальные активы зависит от более серьезных факторов, нежели достижение оптимальной диверсификации, как было показано выше. Он является также следствием желания хеджировать различные риски, не включенные в пере-воначальную модель. В число рисков, которые создают потребность в хеджировании при принятии решений о составе портфеля, входят риск смерти, риск случайных изменений процентных ставок и ряд других. Динамические модели значительно обогатили теоретические воззрения на роль ценных бумаг и финансовых посредников при формировании инвестиционного портфеля8.

В практике управления активами в рамках инвестиционного менеджмента по-прежнему преобладает базовый метод оценки риска на основании вычисления средней доходности и дисперсии портфеля (mean-variance approach). Однако все меняется. Благодаря более совершенным моделям составления портфеля инвестиционные компании теперь могут предлагать клиентам не просто оптимальные комбинации Р1101 ванных и безрисковых активов, а целое «семейство» взаимных фондов. Эти дополн". тельные фонды позволяют создавать оптимальные хеджинговые портфели, Р041") ные на еще более полное удовлетворение запросов самых разных клиент» Инвестиционная компания может создавать из своих взаимных фондов интегрйР

'-"•''•la

8 См. R.C. Merton, Continuous-Time Finance, Blackwell, 1992, главы 4-6, 14, 15 и 21.

Цанные продукты, объединяя разные комбинации своих фондов в пропорциях, кото-|це соответствуют запросам клиентов на разных стадиях их жизненных циклов.

резюме

Не существует "единственно верной" стратегии выбора инвестиционного портфеля, которая одинаково подходила бы всем инвесторам без исключения.

Стадия жизненного цикла, на которой в данный момент находится инвестор, является важнейшим определяющим фактором при выборе оптимального состава портфеля активов и обязательств данного инвестора.

При выборе портфеля очень важен временной период. Мы различаем три вида

временных периодов – период планирования, период пересмотра решений и период биржевых торгов.

При принятии решений о составе портфеля инвестор достигнет более высокой

ожидаемой (средней) доходности, только если согласится на более высокую степень риска.

Иногда можно снизить степень риска инвестиций, не снижая ожидаемой доходности, за счет более полной диверсификации как в пределах одного класса активов, так и среди нескольких разных классов активов.

Способность за счет диверсификации снизить рискованность портфеля инвестора зависит от корреляции между активами, составляющими портфель. На практике подавляющее большинство активов имеет между собой положительную корреляцию, потому что на них влияют одни и те же экономические факторы. Следовательно, возможность снижения риска за счет диверсификации среди рискованных активов без снижения ожидаемого уровня доходности ограничена.

Несмотря на то что в принципе инвесторы при составлении портфеля могут выбирать среди тысяч разнообразных активов, на практике их "меню" ограничено несколькими продуктами, которые предлагают им финансовые посредники. К ним относятся банковские счета, взаимные фонды, состоящие из акций и облигаций, а также недвижимость. При разработке и составлении "меню" активов, предлагаемых клиентам, компании-посредники используют новейшие достижения финансовых технологий.

Основные термины

• формирование портфеля (portfolio selection), 396

• портфель с минимальной дисперсией (minimum-variance portfolio), 408

• оптимальная комбинация рискованных активов (optimal combination of risky assets), 409

• граница эффективного множества портфелей (efficient portfolio frontier), 413

1 пожизненная рента (life annuity), 397

стратегия инвестирования (investment strategy), 399

эффективный портфель (efficient I portfolio), 405

на контрольные вопросы

иьный вопрос 12.1. В чем разница между инвестиционным портфелем молодого че-с гарантированной занятостью и инвестиционным портфелем пенсионера, для 'W доход, приносимый им – это единственное средство существования?

ОТВЕТ. Молодой человек, не рискующий потерять работу, может рассчитывать на длительный период регулярного получения жалованья, размер которого, возможно будет увеличиваться с ростом инфляции. Для него инвестирование в акции не будет столь рискованным делом, как для пожилого вкладчика, который заинтересован в том, чтобы обеспечить себе стабильный источник дохода до конца жизни. Молодой человек в какой-то мере защищен от инфляции, а пожилой – нет, поэтому ем' имеет смысл подыскать себе форму страхования от роста цен.

Контрольный вопрос 12.2. Существует ли у вас фиксированный период пересмотра решений? Какова его протяженность?

ОТВЕТ. Ответы зависят от конкретных обстоятельств каждого студента.

Контрольный вопрос 12.3. Как вы полагаете, увеличивается ли толерантность к риску с повышением уровня благосостояния человека? Почему?

ОТВЕТ. У более богатого человека может появиться желание подвергнуться большему риску (по сравнению с менее богатым), потому что у него больше возможностей делать большие ставки и проигрывать. Другими словами, даже после проигрыша он будет достаточно богат.

Контрольный вопрос 12.4. Какими будут безрисковые активы, если за расчетную денежную единицу принят швейцарский франк, а период пересмотра решений равен одной неделе?

ОТВЕТ: Бескупонные облигации правительства Швейцарии со сроком погашения через неделю, деноминированные в швейцарских франках.

Контрольный вопрос 12.5. Найдите на рис. 12.1 точку, которая соответствует портфелю J. С помощью табл. 12.1 определите состав данного портфеля, его ожидаемую доходность и стандартное отклонение. Какая часть от общей суммы в 100000 долл. будет вложена в рискованный актив, если вы выберете портфель J?

ОТВЕТ. 75000 долл. будет вложено в рискованный актив, а 25000 долл. – в безрисковый.

Контрольный вопрос 12.6. Где будет находиться пересечение прямой риск/доходность с осью OY и каков будет ее наклон (рис. 12.1), если безрисковая процентная ставка будет равна 0,03 годовых, а ожидаемая ставка доходности рискованного актива – 0,] 0 годовых?

ОТВЕТ. Точка пересечения прямой с осью ОУ имеет значение 0,03, а коэффициент наклона прямой снижается с 0,4 до 0,35.

Контрольный вопрос 12.7. Как инвестор может получить ожидаемую ставку доходности в 0,105 годовых, вложив средства в рискованный актив 1 и безрисковый актив? Каким будет стандартное отклонение такого портфеля? Сравните это значение со стандартным отклонением рискованного актива 2. ОТВЕТ. Надо вложить 56,25% в рискованный актив, а остальное – в безрисковыи;

тогда будет достигнута ожидаемая ставка доходности, равная 0,105. Стандартное отклонение портфеля равно 0,1125 (сравните со стандартным отклонением для рискованного актива 2, которое равно 0,15).

Контрольный вопрос 12.8. Каково среднее значение доходности и ее стандартное отклонение для портфеля, который на 60% состоит из рискованного актива 1 и на 40% рискованного актива 2, если их коэффициент корреляции равен 0,1? ОТВЕТ.

Е (г)– 0,6х0,14 +0,4х0,08 =0,114 (72=(0,6)2x(0,2)2+(0,4)2x(0,15)2+2(0,6)(0,4)(0,l)(0,2)(0,15)= 0,01944

а =0,1394

Контрольный вопрос 12.9. Предположим, инвестор выбрал портфель, который на рис. 12.5 соответствует точке, лежащей на отрезке между точками F и Т на расстоянии в три четверти длины отрезка от точки F. Другими словами, 75% его портфеля вложено в портфель, соответствующий тангенциальной точке, а 25% – в безрисковый актив. Какова ожидаемая ставка доходности и стандартное отклонение этого портфеля ? Если у инвестора имеется 1000000 долл., то сколько ему следует вложить в каждый из трех активов?

ОТВЕТ.

Е (г) = 0,12154 х 0,75 + 0,06 х 0,25 = 0,1062 = 0,75 х 0,14595 = 0,1095

Надо вложить 25% в безрисковый актив, 51,9% (0,75х69,2) в рискованный актив 1, а 23,1% (0,75х30,8) – в рискованный актив 2.

Вопросы и задания

1. Предположим, что ваш 58-летний отец работает в Ruffy Stuffed Toy Company (компании, производящей игрушки) и в течение последних 15 лет регулярно делает взносы в фонд сбережений компании (company-matched savings plan). Руководство Ruffy Stuffed Toy дополнительно добавляет в фонд сбережений 0,50 долл. к каждому 1,00 долл., которые вносит ваш отец, пока не будет достигнута сумма, равная 6% от его жалованья. Участники этого фонда могут разместить свои вклады по четырем видам инвестиций: (1) фонд облигаций с фиксированным доходом; (2) «смешанный» опцион, который инвестируется в крупные компании, мелкие компании и фонд облигаций с фиксированным доходом; (3) взаимный фонд, инвестирующий в растущие акции, при этом его средства не вкладываются в другие компании по производству игрушек; и (4) фонд, единственной инвестицией которого являются акции самой Ruffy Stuffed Toy Company. Когда вы приехали домой на День благодарения, ваш отец вспомнил, что вы специализируетесь на финансовых дисциплинах, и решил получить хоть какую-то отдачу от тех денег, которые он вложил в ваше образование. Он показал вам самый последний квартальный отчет по его плану сбережений, и вы увидели, что 98% его текущих вкладов находится в четвертом инвестиционном фонде – в акциях компании Ruffy.

Предположим, что ваш отец – самый обычный человек, не склонный к риску;

через пять лет он собирается выйти на пенсию. Когда вы спросили его, почему он разместил свои инвестиции именно таким образом, он ответил, что акции компании всегда котируются очень хорошо; правда, было несколько случаев, когда они падали в цене, но это было связано с проблемами в подразделениях компании, которые теперь уже проданы. Кроме того, говорит ваш отец, многие из его друзей, работающих в этой же компании, поступили так же. Какие советы вы могли бы дать отцу относительно размещения его вложений? Почему?

Учитывая тот факт, что ваш отец не только вложил в акционерный фонд Ruffy 98% своих сбережений, но и работает на эту компанию, что вы можете сказать о ситуации? Есть ли тут дополнительный риск или, наоборот, можно говорить о снижении риска? Или это не имеет никакого значения? Почему? 2. См. табл. 12.1.

а. Выполните вычисления, подтверждающие, что ожидаемая доходность каждого из портфелей (F, G, И, J, S) в таблице (столбец 4) указана верно.

Ь. Выполните то же самое для стандартного отклонения в столбце 5 таблицы.

с. Предположим, у вас есть миллион долларов, который вы хотели бы инвестировать. Разместите деньги, как показано в таблице для каждого из этих портфелей, и рассчитайте ожидаемый уровень доходности (в долларах) для каждого из портфелей.

d. Который из портфелей мог бы выбрать инвестор с очень высокой толерантностью к риску?

3. Компания, управляющая взаимными фондами, предлагает вложить деньги в безрисковый фонд денежного рынка (фонд, инвестирующий в высоколиквидные краткосрочные ценные бумаги – Прим. ред.}, чья ставка доходности равна сегодня 4,50% (0,045). Та же компания предлагает также акции взаимного фонда, нацеленного на агрессивный рост (инвестиционный фонд, пытающийся обеспечить максимальную долгосрочную прибыль от акций мелких компаний и узких секторов рынка – Прим. ред.), который на протяжении ряда лет показывает средний уровень доходности в 20% (0,20) и стандартное отклонение в 0,25.


    Ваша оценка произведения:

Популярные книги за неделю