355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Фиалков » Девятый знак » Текст книги (страница 6)
Девятый знак
  • Текст добавлен: 29 сентября 2016, 01:45

Текст книги "Девятый знак"


Автор книги: Юрий Фиалков



сообщить о нарушении

Текущая страница: 6 (всего у книги 10 страниц)

Прошло лет пять. И вот Бейкер вспомнил, что у него в лаборатории хранится трубка с запаянным азотистым ангидридом, который как раз в это время понадобился ему для каких-то экспериментов. В лабораторной практике химики всего мира обычно очищают жидкости перегонкой. Для того чтобы отделить азотистый ангидрид от кусочков пятиокиси фосфора, Бейкер налил жидкость в перегонную колбу и начал ее нагревать.

…В этот день люди, проходившие по Слау-стрит, могли наблюдать, как из подъезда научного института вышел немолодой уже человек, который усиленно спорил о чем-то сам с собой с выражением крайнего недоумения.

Что и говорить, у Бейкера были все основания быть пораженным! Когда началась перегонка азотистого ангидрида, сначала все шло как обычно. Ангидрид налили в охлажденную снаружи льдом колбу: приемник, куда должна была собраться перегоняющаяся жидкость, тоже поместили в лед. После этого Бейкер стал ждать, когда ангидрид, нагреваясь при комнатной температуре, начнет кипеть. Прошло десять минут, двадцать, но перегонка не начиналась. Разговаривая со своим сотрудником, Бейкер машинально взглянул на термометр, который был опущен в жидкость, и остановился на полуслове. Термометр показывал 20°, то есть ровно столько, какова была температура окружающего воздуха. Согласно всем справочникам, азотистый ангидрид должен был уже давно кипеть, но жидкость оставалась недвижимой. Пожав плечами на немой вопрос ассистента, Бейкер начал осторожно подогревать колбу. Никакого эффекта: синяя жидкость оставалась спокойной.

30°… 35°… 40°… Только при 43° началась перегонка. Азотистый ангидрид кипел, вопреки всем справочникам, вопреки здравому смыслу, на 40° выше, чем ему полагалось.

«Может быть, это не то вещество, за которое я его принимаю?» – мелькнула у Бейкера мысль. Немедленно был проведен анализ: чистейший азотистый ангидрид, чистейший, 100 %! Снова повторили перегонку: 43°. Это было невероятно.

За соседним столом ассистент Бейкера, все время оглядываясь на непонятную колбу, лихорадочно приготовлял из азотной кислоты азотистый ангидрид. Вот она, синяя жидкость, по внешнему виду ничем не отличающаяся от своей соседки, стоящей рядом. Какова будет ее температура кипения? Термометр показывал 3,5°. Все правильно. Снова начали перегонять первую жидкость: 43°.

Бейкер приказал запаять обе жидкости, оделся и вышел. Быть в лаборатории лицом к лицу с этой пугающей загадкой он больше не мог.

Что же так поразило английского химика? Неужели какие-то сорок градусов могли стать причиной столь сильного волнения?

Могли! Дело в том…


Постоянны ли постоянные величины?

…Дело в том, что каждое вещество, так же как и каждое химическое соединение, обладает определенными физическими и химическими свойствами.

Можно брать, например, воду из Индийского океана и из заплесневелого болота, из полярной льдины и из дорожной лужи, но все равно, каким бы ни было ее происхождение, всегда она будет и замерзать при 0°, а кипеть при 100°. Бензол, добытый из продуктов переработки каменного угля, и бензол, полученный синтетически, например из ацетилена, не отличаются друг от друга ни на йоту.

Не знаю, можно ли назвать даже аксиомой настолько очевидное для каждого следующее положение: данному химическому соединению отвечает одна вполне определенная температура кипения, одна температура плавления, одна плотность и т. д. Более того, это правило лежит в основе процессов получения очищенных от примесей веществ. Если хотят, например, получить чистую уксусную кислоту, то удаляют из нее примеси до тех пор, пока ее температура плавления не станет равной 16,6°. Теперь исследователь может быть уверен, что он держит в руках чистый препарат уксусной кислоты. Если химик, перегоняя какое-либо вещество, видит, что при нормальном атмосферном давлении оно кипит, скажем, при 110,8°, то он уверенно может сказать, что в колбе у него находится толуол.

И вот теперь аксиома стала теоремой. То, что каждому веществу отвечают определенные свойства, приходилось еще доказывать.

Есть целый ряд веществ, с которыми химикам приходится иметь дело в лабораториях почти каждый день. Для этих веществ температуры кипения и плавления были определены особенно тщательно. Загляните в любой, даже самый краткий справочник, там вы найдете: бензол кипит при 80°, спирт – при 78,4°, бром – при 59°, диэтиловый эфир – при 35°.

Словом, физические константы этих веществ изучены, как говорится, вдоль и поперек. С ними и решил начать Бейкер следующую серию опытов.

Опытов? Над чем? Неужели исследователю стала ясной причина такого невероятного поведения азотистого ангидрида?

Нет, разумеется, причина известной не была, но подозрения возникли. «Виновником» считали воду.

Читатель уже знает, каких трудов стоит химику получить чистое вещество. Очевидно, что чем выше степень очистки вещества, тем труднее его приготовить. Можно тщательно очистить какое-либо органическое вещество от примесей неорганических веществ. Значительно труднее, но тоже вполне осуществимо очистить это соединение от примеси посторонних органических веществ. Но как уберечься от воздуха и, главное, от паров воды, содержащихся в нем?

Вот почему, приступая к очистке бензола, брома, сероуглерода, спирта и других веществ, Бейкер уже знал, что от воды, от ничтожных следов воды, проникающих в очищенные вещества из воздуха, ему избавиться не удастся.

Итак, основная предпосылка была следующей: все описанные до настоящего времени химические соединения, какими бы чистыми они ни считались, всегда содержат некоторую, пусть самую ничтожную, примесь воды. Задача опыта: получить несколько абсолютно (абсолютно!) чистых веществ. Для этого тщательно очищенные обычным способом жидкости были запаяны в стеклянные трубки вместе с пятиокисью фосфора и спрятаны в ящик лабораторного стола.

В рабочем журнале появилась запись: 27 ноября 1913 года. Далее: январь… март… июнь… 1914 года. На этом записи обрывались.

Началась первая мировая война. В то бурное время Бейкеру было не до трубок. Империалистические правительства требовали от химиков составы новых взрывчатых веществ и рецепты смертоносных газов. Вот почему Бейкер вернулся к своим трубкам лишь через девять лет после того, как они были запаяны.


Вопросы, вопросы…

Трубки были вскрыты в 1922 году. Вскрытие производилось в условиях, которые исключали присутствие влаги: сосуды старательно высушивались, кончики трубок отламывались под ртутью.

Результаты превзошли все, даже самые смелые ожидания.

Первым перегонялся бензол. «Обычный» бензол, как известно, имеет температуру кипения 80°. Этот же закипел только при 106°. Дальше уже не было времени поражаться, и Бейкер с сотрудниками едва успевали вносить в лабораторные журналы новые поразительные факты: диэтиловый эфир кипел при температуре 83° вместо причитающейся ему «обычной» 35°; бром начинал перегоняться при 118°, в то время как «обычный» бром начинает кипеть при 59°, ртуть кипела при 459° вместо 357°, сероуглерод – при 80° (обычная температура кипения этого соединения 46°). Первые признаки перегонки спирта появились при 138°, в то время как спирт, очищенный обычными методами, закипает при температуре 78,4°.

Точно так же вели себя и другие жидкости, подвергнутые длительной сушке. Всего же было исследовано одиннадцать веществ.

Когда Бейкер спустя несколько дней сообщил о новых фактах своим ученым коллегам, те встретили это по-разному: одни откровенно хохотали, настолько нелепыми казались им эти слова, другие глубокомысленно закатывали глаза, а когда Бейкер отходил, недоуменно пожимали плечами, третьи же, наиболее «дальновидные», убеждали ученого:

– Удивляюсь вам, дорогой коллега! Неужели вы не видите, что имели дело с самым обыкновенным явлением перенагревания, когда очень чистая жидкость может некоторое время существовать при температурах несколько выше температуры кипения, оставаясь в жидком состоянии?


– Перенагревание, господа, – приходилось вступать в спор Бейкеру, – здесь совершенно исключено. Во-первых, на дно колбы, из которой велась перегонка, бросались кусочки пористого фарфора, а это, как известно, исключает возможность образования перегрева. Во-вторых, как происходит кипение жидкости, если имеет место перегрев? Жидкость все время остается внешне спокойной, пока температура не подымается на несколько градусов выше температуры кипения, а затем внезапно и очень бурно вскипает, причем все содержимое колбы становится пенообразным. В моем же случае, уважаемые коллеги, кипение начиналось совершенно спокойно, так же проходила и перегонка. Кроме того, не надо забывать, что перегрев бывает обычно не более чем на три-четыре, ну, самое большее, на десять градусов, а здесь – семьдесят – восемьдесят градусов! Нет, это не перегрев, господа!

«Господа» уже и сами видели, что здесь нет ничего общего с явлением перегрева. Это обычно клало конец научным спорам, и дальнейший разговор входил уже в сферу излишних бытовых переживаний.

Итак, налицо было новое выдающееся научное открытие, и все было бы хорошо, более того, блестяще, если бы… если бы Бейкер сам хоть в какой-либо степени догадывался, каким образом длительная осушка вещества может привести к таким поразительным и не укладывающимся в рамки обычных научных представлений последствиям.

Ко всему, через несколько дней выяснились еще новые факты. Оказывается, вещества, подвергнувшиеся длительной осушке, изменяли также и свою температуру плавления. Ромбическая сера плавилась при температуре 117,5° вместо 112,8°, йод – при температуре 116° вместо 114°. В сторону увеличения изменилась температура замерзания и жидкостей: бром замерзал на 2,8° выше своей «обычной» температуры замерзания, а бензол – на 0,6° выше, чем это ему «полагалось».

Как видим, было от чего прийти в смятение. С одной стороны, громадный фактический материал, накопленный не одним поколением тысяч и тысяч химиков. С другой стороны, совершенно очевидный факт, который наблюдался и воспроизводился в лаборатории неоднократно. Итак, какое все же из положений соответствует действительности? Отвечают ли каждому веществу определенные свойства? Впрочем, если в высушиваемом веществе имеется некоторая примесь влаги, значит, это не индивидуальное вещество. Но почему же тогда все исследователи всегда получали, скажем, для свойств бензола одни и те же значения, и только при многолетнем высушивании удалось установить изменение свойств? Вопросы, вопросы, вопросы..

Нет, тут надо все обдумать систематически. Надо определить, что в этой истории ясно? Ясного очень и очень немного.


Нет сомнений, что «виной» всему влага, потому что подобный эффект достигается только с помощью пятиокиси фосфора и подобных ему «любителей» воды. Доказательством этому может служить хотя бы то, что если высушенные жидкости оставить ненадолго на воздухе, хотя бы на пять минут, то их температура кипения начинает быстро понижаться и становится нормальной. (Впрочем, нормальной ли? А может быть, именно более высокая температура нормальная?.) Это связано с быстрым поглощением воды из воздуха, потому что если сухие жидкости поместить в атмосферу обезвоженного воздуха, то их свойства сохраняются.

Кроме того, можно догадываться, почему для достижения этого эффекта, названного Бейкером «эффектом высушивании», надо было подвергать вещества такой невероятно длительной (пять – девять лет!) осушке. Один из важнейших законов химии – закон действующих масс, открытый знаменитым русским химиком Н. Н. Бекетовым, гласит: скорость химической реакции пропорциональна концентрации взаимодействующих веществ.

Какова могла быть первоначальная концентрация воды в бензоле вместе с пятиокисью фосфора? Трудно сказать. Но вряд ли больше одной тысячной процента. После же того, как процесс высушивания начался, это количество вначале быстро, а потом все медленнее и медленнее стало уменьшаться: миллионная доля процента, десятимиллионная, стомиллионная… Соответственно этому все медленнее и медленнее идет реакция взаимодействия пятиокиси фосфора с водой, содержавшейся в бензоле. Стомиллионная доля процента… Если подставить эту величину в произведение, которым определяется скорость процесса высушивания, то понятно, что результат будет очень мал.

Вот почему на абсолютное высушивание бензола и других жидкостей требуются годы и годы.

Итак, некоторые стороны наблюдавшихся Бейкером явлений были объяснимы или почти объяснимы. Но все вопросы, перечисленные выше, так и остались вопросами. И что самое печальное: неизвестно, в какую сторону двинуться, чтобы отыскать ответы на эти вопросы.

Вот тогда-то и прозвучало впервые слово «сенсация». Нет, сенсация – это вовсе не обязательно, чтобы газеты выходили с аршинными заголовками, а газетчики на перекрестках надрывались от крика. Сенсация может быть и в удивленных вопросах аудитории, слушающей научный доклад, и в многозначительном перешептывании коллег, и в повышенной нервозности тона статей, посвященных сенсационному открытию. Впрочем, последней, пожалуй, было больше, чем это подобало бы даже в таких исключительных обстоятельствах.

В типографиях, набирающих строгие научные журналы – а журналы, где велась полемика об открытии Бейкера, принадлежали именно к таким, – самой неходкой литерой являлся, очевидно, восклицательный знак: в научных работах не принято отдавать дань эмоциям. Пусть, читатель возьмет наудачу какой-нибудь том журнала английского химического общества, где в свое время печатались основные статьи Бейкера, ну скажем, комплект за 1928 год. Могу биться об заклад, что во всей пятикилограммовой годовой подшивке вы не найдете ни одного восклицательного знака. Поэтому легко представить, как были удручены рабочие, набирая статьи, посвященные обсуждению «эффекта высушивания». Страницы некоторых из этих работ количеством восклицательных знаков походят на изображения строевого леса. Вот-то метались наборщики, одалживая друг у друга эту ставшую внезапно драгоценной литеру!

Один наиболее экспансивный автор заключил свою статью четырьмя – ни больше, ни меньше – восклицательными знаками, причем слово, которое венчало эту фразу, в переводе на русский язык звучит приблизительно как «бред», «чепуха».

Мне, например, не приходилось больше встречать в научных журналах статьи, где попадались бы такие категорические и резкие определения и эпитеты, как «сверхгениальный» и «поверхностный», «гений» и «верхогляд», «спекуляция» и «прозорливость» и т. д.

Понятно, почему результаты опытов Бейкера вызвали такое удивление и полемику среди ученых 20-х годов. Ведь и сейчас, почти через сорок лет после этого открытия, читатель, очевидно, недоумевает, в чем причина столь невероятного волшебного влияния ничтожных примесей воды.

Ясно также и то, почему это открытие стало сенсацией, то есть было забыто так скоро. Дело в том, что мало кто из химиков отважился на повторение этих экспериментов: у кого хватит терпения проводить опыт, который длится девять лет!

Но армия химиков на Земле велика. Поэтому нашлись энтузиасты, которые спокойно, без полемического задора принялись за проверку опытных данных английского ученого.


Спустя несколько лет…

Спустя несколько лет из громадного океана химической литературы стали выплывать отдельные работы, посвященные разработке «эффекта высушивания». Стали выясняться некоторые подробности, а ничто так не важно в науке, как подробности.

Так как все-таки было довольно скучно ждать несколько лет, пока проявится загадочное действие абсолютного высушивания, амстердамский химик Смитс решил по возможности сократить время, необходимое для достижения этого эффекта. Для этого надо было, чтобы в исходном для высушивания веществе было как можно меньше воды. Смитс установил, что основное количество воды, находящееся в высушиваемом веществе, возникает главным образом из микроскопических капилляров в стекле сосудов, где сохраняются эти жидкости. Обычное высушивание не может удалить воду из этих капилляров, и поэтому несколько работ Смитса посвящены описанию хитроумного приспособления, с помощью которого можно сплавлять капилляры в стекле сосудов, одновременно откачивая из них воздух, содержащий испаряющуюся воду.

Усилия экспериментаторов достигли цели: удалось значительно уменьшить первоначальное количество воды в высушиваемом веществе. Насколько? Вот этого уж сказать никто не мог. В то время химики «сидели» где-то около шестого десятичного знака, и эти ступеньки были гораздо ниже того уровня, который соответствовал количеству воды в высушиваемом веществе. Впрочем, важно было другое: удалось достичь «эффекта высушивания» за один год, а в некоторых случаях даже за девять месяцев.

Другой химик – Мейли – доказал, что время высушивания можно значительно сократить, если сосуды, в которых вещества запаяны в контакте с пятиокисью фосфора, хранить при высокой температуре. Это была хорошая мысль, потому что известно, что с повышением температур скорость химических реакций значительно ускоряется.


Таковы были два ручейка работ по сверхчистым веществам, которые мне удалось отыскать в море химической литературы того времени: Смитс и Мейли. Эти ручейки пожурчали некоторое время и исчезли, оставив каждый по три-четыре статьи. Столь длительные эксперименты, видимо, надоели даже энтузиастам.

Наступила некоторая пауза, и в 1924 году, наконец, снова появилась статья по сверхчистым! Тот же Смитс. Интересно, что там? Поистине «эффект высушивания» имеет какое-то свойство вызывать у ученых лирическое настроение. Передо мной дневник. Да, да, дневник в химическом журнале. С числами, днями недели и даже часами. Дневник с выражением эмоций автора по поводу проводимых опытов, его горести и радости.

Статья посвящена решению следующего вопроса: повышается ли температура кипения высушиваемых жидкостей внезапно, скачком, или постепенно – по мере удаления из нее влаги?

Был взят тщательно очищенный бензол. Описание процедуры очистки даже на скупом и точном языке химиков занимает почти две страницы, и мы его опустим. В начале эксперимента бензол, как и все остальные «бензолы» на земном шаре, имел температуру кипения 80°. 2 июня 1923 года жидкость была запаяна в специальный прибор, в котором его можно было перегонять из одного сосуда в другой, без контакта с воздухом, и где он находился все время вместе с пятиокисью фосфора.

25 августа бензол уже имел температуру кипения 81,5°. 23 февраля 1924 года – почти через девять месяцев после начала высушивания – бензол кипел при температуре 87°. Все шло как нельзя лучше. Но в этот день экспериментатора постигло несчастье. На колбу случайно упала курительная трубка. И хотя это была не громадная шкиперская трубка, которыми в кабаках Амстердама, случалось, проламывали друг другу головы подгулявшие моряки, а скромная вересковая трубочка ученого, все равно колба с бензолом дала небольшую трещинку. Трещинка была еле заметной, и к тому же ее почти тотчас же запаяли, но и этих нескольких минут оказалось достаточно, чтобы в колбу проникло ничтожное количество воздуха, содержавшего влагу. Опыт был испорчен: термометр снова показывал 80°.


Однако опыт продолжался. Через месяц после злополучного дня бензол кипел при температуре на полтора градуса выше. Еще через месяц температура кипения поднялась на три градуса по сравнению с первоначальной величиной, и, наконец, через год весь бензол перегонялся в интервале 86,6–87,7°. После этого опыт прекратили, хотя, продолжая дальше высушивать бензол, можно было довести его температуру кипения до той величины, которой достиг Бейкер, – до 106°, а быть может, и больше.

Надо не забывать, что Бейкера и его немногочисленных последователей при проведении каждого эксперимента мучил один вопрос: в чем дело, почему ничтожная, настолько ничтожная, что ее даже трудно выразить каким-либо определенным числом, примесь воды может оказывать такое разительное действие на свойства веществ?

Решению этого вопроса в той или иной степени был подчинен каждый эксперимент. Но шли годы, а решение вопроса было не ближе чем в 1913 году, когда впервые был открыт «эффект высушивания». Разве что только острота удивления притупилась немного.

Однако, когда исследователи поднялись еще на несколько ступенек, когда появилось еще несколько работ, забрезжил свет разгадки.


Еще несколько ступенек

Козьма Прутков в одном из своих афоризмов утверждает, что можно извлечь пользу даже из наблюдения расходящихся по воде кругов после падения камешка. Не знаю, какую именно пользу имел в виду этот вымышленный острослов. Однако могу подтвердить, что один из исследователей в аналогичной ситуации сумел сделать весьма интересные выводы. Он, правда, наблюдал, как выделяются пузырьки при кипении жидкости, но это немногим отличается от кругов, расходящихся по воде. Однако все дело в том, что жидкость эта – гексан (углеводород C 6H 14) – была не простая. Это был гексан, подвергавшийся многолетней осушке.

Сверхсухой и сверхчистый гексан кипел при температуре 82°; «обычный» же гексан имеет температуру кипения 69°. Но не различие в температурах кипения является удивительным – это вещь уже известная. Удивительным был сам процесс кипения и перегонки.

Кипение и перегонка обычных жидкостей протекает очень просто и понятно: сначала температура всего объема жидкости медленно повышается и затем при какой-то определенной температуре, называемой температурой кипения, жидкость начинает перегоняться, причем перегонка идет строго при температуре кипения до тех пор, пока не исчезнет последняя капля вещества.

Со сверхчистыми же веществами все обстояло иначе. Взять хотя бы тот же гексан. Первые признаки кипения появились при 79°. Но, несмотря на то что жидкость кипела, температура ее продолжала медленно подниматься до тех пор, пока не достигла 82°. При этой температуре и перегонялась бóльшая часть гексана.


Такое кипение – в более или менее широком интервале температур – наблюдается тогда, когда нагревается смесь жидкостей. Значит… перегоняемый гексан тоже состоит из смеси жидкостей? Но ведь это же абсурд! Ведь совершенно очевидно, что в колбе для перегонки находится чрезвычайно чистый гексан, настолько чистый, какой еще никогда не приходилось получать химикам!

Однако все сверхчистые жидкости вели себя подобным образом. Они кипели не в одной точке, а в довольно широких пределах температур. Получалось так, что сверхчистый гексан состоит из нескольких гексанов. Снова тупик! Какой по счету?

Попутно выяснились еще любопытные факты. Оказалось, что вещества, подвергнувшиеся тщательной очистке и длительному высушиванию, изменяют не только температуру кипения и плавления, но и почти все свои физические свойства: показатель преломления, поверхностное натяжение, теплоту смешения и др.

Стоит ли говорить, что новые факты прибавили немало вопросительных знаков к той отменной коллекции их, которая уже окружала эту проблему?!

Вздохнуть химикам с некоторым облегчением (но не полной грудью!) позволило очередное исследование в области «эффекта высушивания».

Была определена плотность пара веществ, подвергнувшихся длительной осушке. А зная плотность пара, каждый девятиклассник может в две минуты вычислить молекулярный вес вещества в парообразном состоянии. Эти измерения показали, что молекулярные веса сверхчистых жидкостей во всех случаях превышают рассчитанные. Так, молекулярный вес диэтилового эфира (C 2H 5) 2O оказался равным 170. Если же сложить атомные веса всех атомов, входящих в молекулу диэтилового эфира, то получится величина 12 · 4 + 10 +16 = 74. Выходит, что молекулы эфира собираются в какие-то агрегаты, состоящие из двух-трех молекул.


Похожие результаты получились и для других веществ: молекулярный вес метилового спирта превышал рассчитанный почти втрое, молекулярные веса брома, бензола и четыреххлористого углерода были завышены в полтора раза, гексана – вдвое, сероуглерода – в 2,7 раза и т. д.

Итак, все высушенные и очень чистые вещества находятся в парах в виде агрегатов молекул, или, как говорят, в ассоциированном [4]4
  Ассоциация в химии – образование групп из молекул одного рода.


[Закрыть]
состоянии. В жидком состоянии, естественно, величина этих агрегатов должна быть еще больше.

Стало понятно, почему температура кипения этих жидкостей так отличается от температуры кипения жидкостей обыкновенных. Естественно, что энергия, необходимая для отрыва молекулы с малым молекулярным весом, должна быть меньше, чем для молекулы с большим молекулярным весом. А отсюда – и повышение температуры кипения.

Казалось бы, все стало на свои места; вот он, ключ ко всем вопросительным знакам: молекулы очень чистых веществ собираются в агрегаты и это единственное, что отличает их от веществ просто чистых. Всё остальное – следствие этого.

Но на самом деле только сейчас и начались непонятные вещи. Явление ассоциации весьма распространено. Химикам известно громадное количество веществ, которые в жидком и газообразном состоянии находятся в ассоциированном виде. Если мы определим молекулярный вес паров уксусной кислоты, например, то найдем, что он равен 120, в то время как теоретический молекулярный вес этого вещества – CH 3COOH – равен 60. Следовательно, в парах молекулы уксусной кислоты находятся попарно.


Все вещества, способные к ассоциации, обладают одним общим свойством: положительный заряд их молекулы сосредоточен в одной части, а отрицательный – в другой. Стоит только посмотреть на рисунок, и сразу станет понятно, почему молекулы уксусной кислоты стремятся объединиться друг с другом. Положительный полюс одной молекулы притягивает отрицательный полюс другой. В жидком состоянии, когда расстояния между молекулами значительно сокращаются по сравнению с парообразным состоянием, агрегаты молекул могут быть значительно больше: они объединяются по четверо, по шестеро, а зачастую и больше.

Насколько ясна причина ассоциации веществ, молекулы которых имеют разделенный электрический заряд, или, как говорят ученые, молекулы которых обладают дипольным моментом [5]5
  Дипольный момент– произведение величины зарядов на расстояние между ними; очевидно, что дипольным моментом могут обладать лишь такие молекулы, у которых в одной части сосредоточен положительный заряд, а в другой – отрицательный.


[Закрыть]
, настолько же должно быть очевидно, что вещества, не обладающие дипольным моментом, не могут ассоциироваться.

Итак, само по себе явление ассоциации не является чем-нибудь удивительным и очень легко объяснимо. Обращаю только внимание на то, что способностью ассоциироваться обладают лишь те молекулы, которые имеют разделенный электрический заряд – дипольный момент.

Но то, что было понятным в отношении к «обычным» веществам, в области сверхчистых жидкостей только запутало и без того неясные перспективы решения загадки. Дело в том, что большинство из изученных на «эффект высушивания» жидкостей (мы помним, что всего их было 11) не имеет дипольного момента. Но даже те два соединения, молекулы которых имеют дипольный момент, – спирт и эфир – в «обычно» чистом состоянии имеют обычную плотность паров, соответствующую нормальному молекулярному весу.

Так на место одного решенного вопроса пришли по крайней мере два. Первый: почему именно вода обладает такими свойствами, что исчезающе малое количество ее способно оказывать громадное влияние на свойства веществ? Второй: что заставляет молекулы веществ, не обладающих дипольным моментом, ассоциироваться вопреки всем известным законам физики и химии?

Такова уж судьба ученых. Никогда не достигнуть им той точки, после которой можно было бы сказать: «Все, больше в этой области изучать нечего». Один решенный вопрос влечет за собой десятки других, которые еще требуют своих решений.


Почему вода?

Этот вопрос, в то время когда впервые исследовались свойства сверхчистых жидкостей, действовал на исследователей удручающе. Пугала полная неизвестность: с какой стороны следует «прицепиться» к воде, с тем чтобы нащупать разгадку.

Очевидно, что в чем-то, в каком-то свойстве вода резко отличается от других жидкостей. Но какое это свойство? Тут уже приходилось гадать. Иногда, за неимением других способов решить ту или иную научную проблему, гадание тоже может послужить методом исследования.

Итак, какое же свойство? Быть может, вязкость или плотность? Нет, сотни веществ имеют величины этих свойств такие же или почти такие же, как и вода. Поверхностное натяжение? Показатель преломления? Температура кипения? Температура плавления? Нет, и эти свойства у воды ничем не примечательны в сравнении со свойствами других жидкостей. Может быть, электропроводность? Нет. Дипольный момент? Нет. Теплота плавления? Тоже нет! Диэлектрическая постоянная? Стоп! Кажется, нашли!

Действительно, диэлектрическая постоянная [6]6
  Диэлектрической постояннойназывают величину, которая показывает, во сколько раз ослабляется электрическое взаимодействие в данной среде по сравнению с пустотой.


[Закрыть]
воды сильно отличается от диэлектрической постоянной других жидкостей. Для бензола, например, диэлектрическая постоянная равна 2,3. для гексана 1,9, для эфира 4,4, и так для многих других жидкостей. Для воды же эта величина равна 79. Ни одно вещество не может в этом отношении сравниться с водой. Ближе всего к воде подходит муравьиная кислота, но у нее диэлектрическая постоянная раза в полтора меньше, чем у «рекордсмена» – воды.

Но указать на диэлектрическую постоянную – это еще не значит объяснить наблюдаемые явления. И это объяснение не замедлило появиться.

Предположим, рассуждали исследователи, что молекулы всех веществ, даже тех, молекулы которых имеют дипольный момент, равный нулю, притягиваются друг к другу какими-то силами, природа которых нам еще неизвестна. Впрочем, каковы бы ни были эти силы, они, конечно, должны быть электрическими и, следовательно, должны подчиняться законам электростатического притяжения.

Если имеется какое-то чистое вещество, то что находится между какими-либо двумя молекулами этого вещества? Ничто, пустота. Следовательно, силы электрического притяжения в данном случае, в пустоте, будут наибольшими. Что же произойдет, если между двумя этими молекулами внедряется молекула какого-либо постороннего вещества? Конечно, сила взаимодействия между молекулами основного вещества значительно ослабеет. А если эта посторонняя молекула к тому же – молекула такого вещества, как вода, которая имеет наибольшую диэлектрическую постоянную, то есть в среде которой силы электростатического взаимодействия ослабляются больше всего, то легко представить, что никакого притяжения между молекулами основного вещества уже не будет.

Однако даже самые пространные рассуждения останутся рассуждениями, если не будут подкреплены экспериментами. И снова, в который раз, теоретические положения стали воплощаться в лабораторных установках.

Чистый бензол, высушенный обычным для лабораторной практики методом, поместили в специальный сосуд, в котором жидкость оказалась заключенной между двумя платиновыми электродами. Сосуд начали медленно нагревать до тех пор, пока не началось кипение бензола. Термометр показывал 80°. Иными словами, бензол вел себя так, как и полагается вести «нормальному» бензолу. Но вот к электродам подвели очень высокое напряжение. На первый взгляд, это было бессмысленной затеей: ведь бензол все равно не проводит ток. Но как только включили рубильник, кипение бензола сразу прекратилось. Пришлось нагреть жидкость еще на 8°, чтобы снова началось кипение. Бензол, помещенный между электродами, вел себя точно так, как сверхчистый бензол, подвергнутый многолетней сушке! Как только напряжение сняли, сразу температура кипения упала до нормальной. Снова подвели напряжение – снова 88°.


    Ваша оценка произведения:

Популярные книги за неделю