355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Фиалков » Девятый знак » Текст книги (страница 4)
Девятый знак
  • Текст добавлен: 29 сентября 2016, 01:45

Текст книги "Девятый знак"


Автор книги: Юрий Фиалков



сообщить о нарушении

Текущая страница: 4 (всего у книги 10 страниц)

Когда я рассказывал об истории возникновения новых клеток Периодической системы, то намеренно ни разу не употребил слово «сколько». Могло возникнуть впечатление, что количества, из которых выделяли заурановые элементы, не играют никакой роли. На самом же деле эти количества являются, пожалуй, самым главным из всех тех многих факторов, которые обусловливают возможность и легкость (а правильнее говоря, трудность) выделения того или иного элемента.


Однако будем рассказывать по порядку. Взгляните на рисунок. На нем изображено все наличное в 1944 году количество элемента америция. Справа – это отнюдь не телеграфный столб, а острие иглы, частокол внизу – это миллиметровая шкала; вся же фотография снята под микроскопом. Сколько же может быть америция, спросите вы? Это известно точно – одна стотысячная грамма.

Да, тут уже идет речь о количествах гораздо меньших, чем те, о которых мы рассказывали в разделе об опытах незадачливого профессора Литте. Да ведь и время настало другое! А тридцать лет в XX веке для химии что-нибудь да значат!

Возьмем одну из статей о каком-либо трансурановом элементе, которые теперь десятками публикуются в химических журналах. Внешне ничего удивительного нет. Обычные, традиционные химические фразы и выражения: «соединение получали сливанием двух растворов», «состав определяли титрованием», «соль растворяли в дистиллированной воде» и тому подобное, что всегда встречается в любой работе, имеющей даже отдаленное отношение к химии.

Однако внимательный разбор такой статьи сразу повергает непривычного читателя в изумление. Оказывается, бюретки здесь отмеривают не миллилитры, как в обычных химических лабораториях, а одну стотысячную миллилитра. Самые большие из тех химических стаканов, с которыми манипулировали авторы этой статьи, имели диаметр 1 миллиметр. На весах взвешивались количества веществ в одну тысячную долю грамма, причем взвешивание проводилось с точностью до одной стотысячной грамма.

Может быть, кое-кому эти числа с большим количеством нулей впереди покажутся маловыразительными. Тогда призовем на помощь сравнения.

Одна стотысячная доля миллилитра… По сравнению с объемом жидкости в стакане воды это то же, что один метр в сравнении с половиной экватора. И этот объем измеряют с точностью до одного процента! Иными словами, отмеряют объемы жидкостей еще в сто раз меньше. Это то же, что измерить окружность экватора с точностью до двух миллиметров. Представьте себе, что кто-либо заявил что-нибудь вроде: «От города Обояни до Сан-Франциско четырнадцать тысяч сто шестьдесят восемь километров девятьсот сорок четыре метра пятнадцать сантиметров и три миллиметра». Вы бы тотчас же ответили этому гражданину, чтобы он оставил шутки. Но когда химик пишет аналогичные вещи, мы хотя и удивляемся, но принимаем эти вещи как должное. Вот это и есть осязаемые чудеса атомного века!

Теперь представим себе, как протекает работа с подобными количествами веществ. Стаканы и пробирки имеют такие размеры, что их удобнее захватывать не пальцами, а особыми пинцетами. Разные приспособления, вроде воронок для фильтрования, палочек для перемешивания растворов и прочей обычной химической утвари, имеют такой размер, что подковы, которые изготовил для блохи лесковский Левша, в сравнении с ним поражали бы своими громадными размерами. Жидкости, находящиеся в этих сосудах, тщательно переливают из одного сосуда в другой, следя, чтобы не пролилось ни капли. Впрочем, о какой тут капле может идти речь? Ведь капля в тысячи раз больше всего наличного объема раствора!

Ну, а весы, как выглядят они? Коромысло этих весов сделано из чистого кварца толщиной в человеческий волос. Большинство частей этих весов вообще не видно невооруженным глазом, настолько тонки и невесомы эти детали. Такие весы уже в комнате не поставишь. Даже на самой прочной и неподвижной подставке они будут подвержены большим колебаниям. Пройдет по улице рядом с домом, где находится лаборатория, человек – и весы уже соврут на несколько знаков; проедет по улице грузовик – и на весах целая свистопляска!


Такие весы стоят в глубоком подвале. Приближаются к ним с осторожностью канатоходца. В этом помещении не положено громко разговаривать, нельзя сильно размахивать руками, производить резкие движения. Даже чихать здесь пришлось бы в специальную отдушину. И, уж конечно, упаси вас боже сказать при этом «будьте здоровы!».

А прибегают ко всем этим ухищрениям только для того, чтобы можно было взвешивать с точностью до 0,000001 грамма. Вот что такое шестой десятичный знак и чего он стоит исследователям!

Исследователям трансурановых элементов приходилось работать с чрезвычайно малыми количествами веществ. Дело в том, что искусственные элементы возникают при обстреле элементарными частицами соответствующих мишеней в таких количествах, которые могут быть уловлены только при работе вот такими методами.

Теперь, когда пишут или говорят о многих из заурановых элементов, то счет ведут не на килограммы и не на граммы. Даже миллиграммы и те являются слишком большой единицей измерения веса.

Для трансурановых элементов пришлось выдумать новую единицу измерения: микрограммы – одна миллионная доля грамма, величина в тысячу раз меньшая, чем миллиграмм.

Так вот, нептуний впервые был выделен в количестве десяти микрограммов, плутоний – двадцати микрограммов. Долю полученного впервые америция мы уже видели на рисунке. В таких же количествах был вначале добыт и кюрий.

Для элементов же берклия и калифорния и микрограммы – слишком большая единица измерения. Они были выделены в индивидуальном состоянии в десятых, а то и сотых долях микрограмма – это соответственно десятимиллионные и стомиллионные доли грамма!

Однако эти обстоятельства не смогли явиться помехой подробному исследованию химических и физических свойств заурановых элементов. Более того, интерес, проявленный к заурановым элементам, был настолько велик, что теперь мы о свойствах этих элементов знаем больше, чем об иных, обычных.

Сейчас передо мной лежит книга, в которой сведены результаты исследований только лишь шести (от нептуния до калифорния) заурановых элементов. Это толстый фолиант, в котором около тысячи страниц и не меньше двух килограммов весу.

Микрохимия – так назвали этот раздел химии, позволяющий исследовать свойства ничтожных количеств веществ. Это название является до некоторой степени и буквальным: ведь за всеми превращениями, происходящими в пробирках, химику необходимо наблюдать в микроскоп.

Как видим, одна из основных трудностей, возникшая при работе с заурановыми элементами, – чрезвычайно ничтожное количество их – была успешно преодолена.

Но не так просто быть «алхимиком» в наши дни! Если бы необходимость прибегать к методам микрохимии составляла единственную сложность работы с заурановыми элементами, то это было бы еще полбеды или даже, выражаясь точнее (а химия – наука точная!), четверть беды. Ну, получили один раз 10 микрограмм, другой раз еще столько же, третий раз, четвертый, пятый… Глядишь – и есть уже одна десятитысячная грамма. А там и с десятую грамма набрать можно. А десятая грамма – это уже величина!

Сложность была в другом. Уже упоминалось, что все элементы Периодической системы, начиная с элемента полония, являются радиоактивными. И вот оказалось, что радиоактивность трансурановых элементов необычайно велика.

Один микрограмм плутония испускает в минуту сто сорок тысяч альфа-частиц. Это очень большое число. Если какую-либо соль плутония растворить в воде, то в ней сейчас же начинает образовываться перекись водорода: альфа-частицы, выделяющиеся при распаде плутония, вызывают в воде сложные химические процессы.

Радиоактивность америция – больше в десятки раз. Один микрограмм этого элемента испускает в минуту семьдесят миллионов альфа-частичек. Однако и это ничто в сравнении с радиоактивными свойствами соседа америция – элемента кюрия. Кюрий испускает за такое же время десять миллиардов альфа-частиц на один микрограмм.

А эти десять миллиардов означают вот что. При растворении в воде даже ничтожного количества соли кюрия раствор начинает интенсивно разогреваться. И вскоре закипает. Стоит этот стакан с раствором соли кюрия под стеклянным колпаком, а из стакана бурно валит пар, хотя поблизости нет никакого источника тепла. Таким источником является сам кюрий, или, вернее, испускаемые им радиоактивные частицы. Благодаря этому обстоятельству никогда не удастся изготовить более или менее заметный кусок металлического кюрия, так как такой кусок немедленно бы разлетелся из-за саморазогрева.

Сильная радиоактивность заурановых элементов неприятна еще и тем, что радиоактивное излучение чрезвычайно вредно влияет на человеческий организм. Не один из тех, кто работал с сильно-радиоактивными веществами, не соблюдая необходимых мер предосторожности, умер от тяжких заболеваний, вызываемых радиоактивными лучами. Еще сегодня в японских городах Хиросиме и Нагасаки, которые стали объектом атомного нападения в 1945 году, продолжают умирать люди, подвергшиеся во время взрыва атомной бомбы облучению.

Все эти обстоятельства заставляют исследователей, работающих с заурановыми элементами, прибегать к особым мерам предосторожности.

Обычно радиоактивные препараты заурановых элементов помещают за пластмассовым экраном. Этим самым исследователь защищает лицо и тело от действия радиоактивных лучей. На руки надевают специальные перчатки, которые также в значительной степени задерживают излучение.

Однако такие меры помогают, когда количество радиоактивного вещества небольшое либо интенсивность излучения данного элемента невелика. Если приходится работать с большими количествами, то «удлиняют» руки с помощью манипуляторов. Это разнообразные инструменты: пинцеты, щипцы, захваты, которые укреплены на длинной ручке. Таким образом, исследователь может держаться от радиоактивного вещества на почтительном расстоянии.

Но если имеешь дело с такими излучателями, как америций или кюрий, то и ручные манипуляторы не спасают. Тогда приходится конструировать дистанционные манипуляторы. Один из таких манипуляторов можно видеть на Выставке достижений народного хозяйства СССР. Я полагаю, что ловкости рук такого манипулятора мог бы позавидовать любой фокусник. Хотя, как видно из рисунка, каждая рука манипулятора имеет всего по два «пальца», эти руки способны выполнять самые тонкие операции. За манипулятор, который стоит на выставке, несколько раз в день садится оператор, и столпившиеся вокруг зрители с изумлением наблюдают, как металлические руки раскрывают коробок спичек, вынимают одну спичку, зажигают ее и преподносят прикурить кому-либо из посетителей выставки. Тот сначала испуганно отстраняется, а затем с довольным видом прикуривает. После этого «рука» аккуратно бросает в урну обгоревшую спичку.


Впрочем, при работе с заурановыми элементами приходится выполнять более сложные манипуляции, чем зажигание спичек. Ведь количеств, скажем, америция или кюрия, которые собирается исследовать химик, намного меньше спички по своим размерам да и по весу. Однако здесь уже дело только в опыте и мастерстве исследователя.

Как видим, и второе препятствие было успешно преодолено учеными. Но существует, оказывается, еще одно обстоятельство, которое затрудняет исследования заурановых элементов гораздо больше, чем те, о которых я уже рассказал.

Что прежде было основным в проблеме изучения свойств нового элемента? Выделить более или менее значительные количества соединений этого элемента. Мы уже знаем, сколь малым научились довольствоваться химики при определении абсолютной величины этих «более или менее значительных количеств».

Для заурановых элементов проблема выделения стоит на втором плане. Прежде чем выделить, надо эти элементы получить. Только для первых заурановых элементов процесс получения прошел сравнительно легко. Но чем дальше углублялись химики в «лес» заурановых элементов, тем с меньшими количествами «дров» приходилось им сталкиваться.

Здесь вступает в игру величина, называемая периодом полураспада. Мы уже имели случай прибегать к этому понятию: это то время, за которое распадается половина атомов данного радиоактивного элемента. Первые заурановые элементы довольно устойчивы. Так, период полураспада нептуния исчисляется миллионами лет, кюрия – десятками тысяч лет. Самая долгоживущая разновидность плутония имеет период полураспада даже в десятки миллионов лет. Но дальше эта величина быстро уменьшается. Берклий «умирает» наполовину за семь тысяч лет, калифорний – всего за четыреста. А потом счет идет уже на дни. Для эйнштейния эта величина составляет приблизительно 300 дней, для фермия – 20 часов, для менделевия – минуты.

Дни – это куда ни шло. Но минуты?.. Ведь операции получения и последующего выделения элемента довольно продолжительны. А тут надо за доли минуты выделить элемент, сконцентрировать его и изучить важнейшие химические и физические свойства. Ну конечно, в «минутном» элементе это сделать невозможно, с какой бы лихорадочной скоростью ни работал экспериментатор.

«Ну что ж, нельзя так нельзя, – скажете вы, – выше себя, как говорят, не подскочишь».

Да, раньше химики, пожалуй, так и поступали. Столкнувшись с подобным обстоятельством, например неустойчивостью какого-либо интересного для них соединения, они подавляли вздох разочарования и пеняли на природу.

Но когда идет речь о такой проблеме, как заурановые элементы, то разве могут современные химики «пенять на бога»? Вздохи сожаления, что греха таить, были, и в немалых количествах. Но это был тот самый случай, когда лирика в расчет не принимается.

Когда появилось первое сообщение об элементе 101 – менделевии, то почти все химики, с которыми я обсуждал в те дни статью об этом элементе, единодушно пришли к выводу, что в одном месте там вкралась опечатка. Да и как же иначе могло быть, если в статье значилось буквально следующее: элемент 101 был идентифицирован (определен, узнан) в количестве 17 атомов. Все единодушно сошлись на мысли, что рассеянный наборщик пропустил после цифры 17 десять в какой-либо степени. Там должно было быть написано, скажем, 17·10 8, ну, самое меньшее 17·10 6атомов, хотя, по правде говоря, последнюю величину по причине малости тоже представить себе трудно. Почему? Да хотя бы потому, что в одном кубическом сантиметре воздуха содержится в три миллиардараз атомов больше, чем 17·10 6. Итак, даже количество вещества в семнадцать миллионов атомов представить себе нелегко, но просто семнадцать атомов – это вначале даже не укладывалось в сознании. Но тем не менее в сообщении об элементе 101 все было правильно, и мы напрасно укоряли наборщика.

Найти такое ничтожное количество менделевия в материале мишени, которая была подвергнута обстрелу с целью получения 101-го элемента, помогли радиоактивные свойства этого элемента. Альфа-частицы, испускаемые разными радиоактивными элементами, различаются друг от друга по своей энергии. Так, начальная скорость снаряда, выпущенного из дальнобойного орудия, отличается от скорости пули, вылетевшей из малокалиберной винтовки. Определяя величину энергии альфа-частицы, можно с уверенностью сказать, какому радиоактивному элементу обязана эта частица своим происхождением.


А зафиксировать распад даже одного отдельного атома в настоящее время не составляет труда. Сейчас сконструированы приборы, которые необычайно чувствительны к явлениям радиоактивного распада. Эти приборы позволяют определить, какая радиоактивная частица вылетела при распаде атома, какова ее энергия и заряд. Именно с помощью таких приборов было обнаружено, что в мишени из эйнштейния при обстреле альфа-частицами возникают атомы 101-го элемента.

Приступая к получению элемента с порядковым номером 102, ученые уже знали, что период полураспада его будет исчисляться немногими минутами.

Вначале было решено попытаться получить 102-й элемент, обстреливая кюрий ядрами углерода (96 + 6). Для этого в США были получены значительные количества кюрия. Мишень – тонкий слой кюрия, нанесенный на алюминиевую пластинку, – была изготовлена в Англии. Затем пластинку с величайшими предосторожностями повезли в Швецию, где, наконец, в Нобелевском институте ее подвергнули обстрелу углеродом.

102-й и не пытались даже выделить из мишени. Было установлено, что мишень после обстрела «выбросила» несколько альфа-частиц неизвестной дотоле энергии – и этого оказалось достаточным для того, чтобы объявить о создании очередного нового элемента. Элемент был назван «нобелием» – по имени института, где проводился обстрел кюриевой мишени.

Однако с этим элементом дело обстояло не так гладко, как с предыдущими заурановыми элементами. Когда в Соединенных Штатах были повторены опыты по получению 102-го, то результаты шведских экспериментаторов не подтвердились. Символ No, появившийся было в клетке 102, сначала заколебался, а затем и вовсе исчез. Вопрос остался открытым.

Ну, а совсем недавно появился еще один «новосел» Периодической системы: обитаемой стала клетка № 103. Проживает в ней элемент лоуренсий. Так же как и в случае двух-трех его предшественников, о свойствах лоуренсия можно догадываться, но изучать многие из них попросту невозможно. Дело в том, что до сих пор получено вряд ли больше десятка атомов лоуренсия, потому что период полураспада его составляет одну-две секунды.

В 1957 году получением 102-го начали заниматься советские химики и физики под руководством Г. Н. Флерова. Пять лет продолжались поиски. И вот получено сообщение: в лаборатории Г. Н. Флерова в Объединенном институте ядерных исследований получено более семисот атомов 102-го элемента. Масса его 256. Время жизни – 8 секунд. Еще один трансурановый элемент вписан в Периодическую систему.

В разных странах, на разных континентах ученые объединены одной мыслью, одним желанием раздвинуть границы Периодической системы как можно дальше, раздвинуть границы нашего познания.

Вы читаете сейчас эти строчки, а в лаборатории люди в белых халатах, склонившись над многочисленными приборами, внимательно следят за показаниями стрелок. Один из них что-то негромко говорит остальным и, сокрушенно покачав головой, вписывает несколько строчек в большую тетрадь, на обложке которой крупно написано: 104-й. И затем, обращаясь к своим сотрудникам, говорит: «Попробуем выбрать другие условия…»

А быть может, именно в эту минуту им, этим исследователям неведомого, повезло, может быть, стрелки показали то, что нужно, и 104-й получен.

Может быть! И если не в эту минуту, то завтра, через месяц.

А получен он будет. Наверняка!



Новое семейство

Могу биться об заклад, что я сейчас задам вопрос, правильный ответ на который не даст, пожалуй, ни один из юных читателей. Вопрос как будто бы простой: какой химический элемент в настоящее время изучен лучше всех? Железо? Нет. Хлор? Нет! Кислород? Нет!!! Натрий? Тоже нет!

Оказывается, по химическим свойствам в настоящее время лучше всего исследованным элементом является… плутоний.

Что, неожиданный ответ? Я сам поразился, когда впервые об этом узнал. Действительно, достойного удивления в этом обстоятельстве немало. Элемент, который нам известен всего двадцать лет, изучен лучше, чем, скажем, железо, с которым люди познакомились еще на заре развития человечества. Да, да, плутоний, которого после его открытия вряд ли получили больше одной тонны, изучен лучше, чем, предположим, кремний, запасы которого на поверхности земли исчисляются астрономическим числом тонн.


Проблема получения плутония была в свое время так остра, что ею занимались сотни лабораторий в разных странах. Занимались не просто интенсивно, а прямо-таки лихорадочно. Для того чтобы выделять плутоний – и по возможности полнее – из продуктов распада содержимого атомных реакторов, нужно было всесторонне изучить его свойства и свойства многочисленных его соединений. Над одними и теми же проблемами работали разные лаборатории. После того как многие из этих исследований были опубликованы, оказалось, что многие ученые приходили к одним и тем же выводам принципиально разными путями.

Все это и явилось причиной того, что не осталось буквально ни одной области химии плутония, куда бы не заглянул пытливый и острый взгляд химика-исследователя.

Хотя сам факт получения искусственных элементов сам по себе являлся поразительным, все-таки когда были изучены свойства первых заурановых элементов, то результаты оказались в высшей степени неожиданными. Выяснилось, что все эти элементы очень похожи по своим химическим свойствам. Так, все они в водных растворах могут давать соли с валентностью металла +3.

С другой стороны, многие заурановые элементы во многом напоминают уран. Пришлось бы очень долго перечислять однообразные факты чрезвычайной схожести этих элементов. Но здесь читатель может поверить автору на слово.

Вопрос здесь может быть другой: что же в этой схожести могло удивить химиков? Похожи так похожи. Однако утверждение еще не ответ на вопрос.

Пусть читатель закроет рукой или листком бумаги группу элементов на Периодической системе, которая обозначена как семейство актиноидов (почему так назвали семейство заурановых элементов, мы поясним чуть позже). Теперь таблица Менделеева выглядит точно так, как в конце 40-х годов, когда об искусственных заурановых элементах ничего известно не было. Представим себе химика того времени, пользующегося этой таблицей. Что мог сказать ученый о свойствах еще не существовавшего тогда элемента 93? Он мог бы рассуждать приблизительно так: «Если элемент 93 будет открыт или получен искусственно, то его квартира – клетка 93 – окажется в седьмой группе Периодической системы, под элементом рением. Значит, по свойствам 93-й должен походить на рений, как рений, в свою очередь, походит на технеций и марганец».

С такой же уверенностью этот химик мог предсказать, что 94-й элемент будет похож на осмий, потому что именно под осмием должна была находиться незаселенная в те годы еще квартира № 94 в доме «Группа № 8» по улице «Периодической системы».

Однако ничего подобного не оказалось. Заурановые элементы ничуть не походили на своих предполагаемых аналогов, зато были похожи друг на друга если не как близнецы, то как родные братья, наверное. Оказалось, что эти элементы и являются родными братьями не только по рождению, а так сказать, и по духовному или, вернее, химическому единству.

Читатель, наверное, уже обращал внимание на то, что в Периодической системе элементов после элемента с порядковым номером 56 следует клетка, в которой стоят номера 57–71. 15 элементов в одной клетке! Или, говоря вернее, 15 клеток в одной. В чем тут дело? Какова причина этого, на первый взгляд, странного явления?


Известно, что внешняя электронная оболочка атома каждого элемента Периодической системы отличается от внешней электронной оболочки атомов соседних элементов. Так, например, литий имеет один электрон на внешней электронной оболочке, бериллий – два, бор – три и т. д. Многим также должно быть известно и то, что именно это число электронов на внешней электронной оболочке определяет химические свойства элемента. Вот элемент лантан – первый член выделенного нами семейства, которое носит название лантаноидов, то есть лантаноподобных. У лантана на внешней электронной оболочке имеется три электрона. Поэтому лантан и является трехвалентным. Мы должны были бы предполагать, что следующий за лантаном элемент – церий – должен иметь на внешней электронной оболочке четыре электрона. Однако на внешней электронной оболочке церия, как и у лантана, три электрона. Куда же девается лишний электрон? Оказывается, он заполняет одну из внутренних электронных оболочек. То же самое наблюдается и у следующих лантаноидов. Все они: и празеодим, и неодим, и прометий, и другие, все – по элементу 71 – имеют во внешнем электронном слое три электрона, а заполняются у них внутренние электронные оболочки. Вот почему эти 15 элементов чрезвычайно похожи друг на друга по своим химическим да и физическим свойствам.

Точно такая же картина наблюдается в случае элементов, следующих в Периодической системе за актинием. У тория – соседа актиния – тоже заполняется не внешняя электронная оболочка, а одна из внутренних. То же самое у элементов протактиния, урана и всех полученных до настоящего времени заурановых элементов. Поэтому заурановые элементы вместе с ураном, протактинием и актинием, подобно лантаноидам, выделяются в отдельное семейство актиноидов. Таким образом, в Периодической системе появилась еще одна «многокомнатная квартира» – клетка, которая вмещает в себя номера с 89-го по 103-й.

Сейчас уже с полной уверенностью можно предсказать, что семейство актиноидов будет завершаться 103-м элементом. И только 104-й элемент будет стоять в IV группе Периодической системы.

Можно даже заключить, что электронная оболочка этого еще не полученного элемента будет подобна электронной оболочке гафния. Впрочем, для такого заключения не надо быть особенным провидцем – для этого достаточно иметь перед глазами Периодическую систему элементов.


В лабораториях природы

Когда были изучены свойства первых из полученных заурановых элементов, стало понятным, почему оказались безрезультатными поиски этих элементов в природе. Периоды полураспада даже самых долгоживущих из них столь невелики в сравнении с временем существования нашей планеты, что за это время они успели полностью распасться.

Впрочем, если бы все положения ученые брали на веру, то вряд ли появились бы многие из тех замечательных открытий, которыми так богато наше время. Сразу возникли вопросы. Во-первых, нельзя ли обнаружить заурановые элементы вне Земли, в атмосфере звезд, поскольку нам известна характеристика спектра этих элементов? И вопрос второй: не могут ли некоторые из заурановых элементов образовываться в природе в настоящее время, пусть даже в самых небольших количествах?

Лучше будет разобрать все эти вопросы по порядку. Итак, нельзя ли попытаться обнаружить заурановые элементы где-нибудь во Вселенной?

Тут надо еще раз напомнить, что спектроскопические методы исследования, с помощью которых элемент гелий был открыт сначала на Солнце, а потом уже на Земле, обладают чрезвычайной чувствительностью, Но все же спектроскопия не позволила обнаружить во Вселенной присутствия хотя бы небольших следов плутония или других заурановых элементов. Не дали желаемых результатов и другие методы исследования.

Ответ на заданный вопрос пришел оттуда, откуда его меньше всего ждали. Его помогли найти… историки. Химия не раз оказывала большие и малые услуги историкам и особенно археологам: то надо было определить состав какого-нибудь древнейшего сплава, то с помощью анализа чернил установить дату рождения рукописного документа. Но чтобы историки помогали химикам – такое, пожалуй, встретилось впервые. Но об этом следует рассказать подробнее, тем более что начинать придется издалека.

…Начинать придется с 4 июля 1054 года. В этот день или, вернее, в эту ночь астроном пекинской обсерватории Большого Дракона Ма Туан-лин, как обычно, вышел на центральную площадку наблюдать небо. Он некоторое время внимательно смотрел на звезды и, убедившись, что расположение светил в точности совпадает с предсказанным, приготовился записать свои вычисления в толстую тетрадь, которую вел уже много лет. Но кисточка так и не дошла до сосуда с тушью: рука повисла в воздухе. Вдруг астроном заметил – почти над головой – какую-то довольно яркую звезду. Еще вчера ее не было на этом месте. Не писалось о ней ничего и в тех старинных книгах, содержание которых Ма Туан-лин знал хорошо, будучи настоящим ученым. На следующую ночь звезда появилась на небе задолго до того, как солнце уступило свое время ночи. На улицах толпились сотни людей и громко обсуждали это невиданное зрелище.


В своих записках Ма Туан-лин назвал эту звезду Гостьей. Китайский астроном очень точно выбрал название для новой звезды. Гостья с каждым днем разгоралась все ярче. Через два месяца ее яркость была больше, чем яркость Луны. Обладающие острым зрением дети различали Гостью даже днем, при ярких лучах Солнца. Сейчас нетрудно подсчитать, что если это было именно так – а сомневаться в достоверности записок Ма Туан-лина нет никаких оснований, – то новая звезда имела такую яркость свечения, как шестьсот миллионов наших солнц.

Однако пришелица сияла на небе всего около двух месяцев, а потом яркость ее свечения стала быстро уменьшаться. Через полгода она уже ничем не выделялась среди других звезд. А еще через год на том же участке, где была Гостья, снова зияла, как и за два года до того, чернота неба.

Когда историки разыскали записи средневекового китайского ученого, то меньше всего заинтересовали они астрономов. Дело в том, что Ма Туан-лин описал явление, которое очень хорошо известно современной астрономии и носит название «сверхновых звезд». Образование новых звезд сравнительно часто можно наблюдать на небосклоне. Правда, исключительно яркие звезды, какой была «сверхновая-1054», наблюдаются очень редко. Но при изучении неба с помощью телескопа открытие «сверхновой» – дело довольно обычное. Когда в 1948 году на то место небосклона, где была Гостья, описанная Ма Туан-лином, навели радиотелескоп, то установили, что оттуда идет интенсивный поток радиоволн. Это явление говорило об очень многом…

Я подозреваю, что нетерпеливый читатель прервет меня вопросом: «Почему на протяжении целой страницы здесь идет речь о ком угодно: об астрономах, историках, радиоастрономах и ни разу не упоминаются химики?» Вопрос законный. Химики сейчас появятся, появятся обязательно, хотя бы потому, что мощный поток радиоволн, идущий с того места, которое занимала «сверхновая-1054», прежде всего касается именно их.

Известно, что источниками радиоволн и космических лучей, идущих к Земле из мирового пространства, являются вспышки новых звезд. Эти вспышки, как считают теперь, являются следствием образования и распада элементов.

Источником энергии Солнца является реакция превращения водорода в гелий. Но наше светило – сравнительно молодая звезда. Во Вселенной же существуют звезды постарше – те, у которых значительная часть водорода «выгорела», превратилась в гелий. Что же, такое светило затухает? Оказывается, что нет. Ядра атома гелия, сливаясь, образуют атомы углерода.

Есть основания считать, что чем старше звезда, тем более тяжелые элементы возникают на ней. Но очевидно, что такое укрупнение не может идти бесконечно. На каком же элементе обрывается этот процесс увеличения порядкового номера элементов на звездах?


    Ваша оценка произведения:

Популярные книги за неделю