355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Фиалков » Девятый знак » Текст книги (страница 2)
Девятый знак
  • Текст добавлен: 29 сентября 2016, 01:45

Текст книги "Девятый знак"


Автор книги: Юрий Фиалков



сообщить о нарушении

Текущая страница: 2 (всего у книги 10 страниц)

Полицейское управление всегда смотрело сквозь пальцы на коммерческие операции господ ювелиров, хотя многие из этих операций не очень укладывались в рамки закона. Но, когда анонимные доносы в полицейское управление посыпались слишком уж настойчиво, пришлось решиться на обыск. В результате во всех магазинах были обнаружены большие запасы платины. Господа ювелиры, которых допрашивали порознь, измышляли что могли, лишь бы не дать сколь-нибудь ясного объяснения насчет происхождения платины. В таможенных книгах о поступлении через границу такого количества металла не говорилось. Вот почему пришлось начать этот процесс, в результате которого на крупнейших ювелирных магазинах Берлина уже три месяца уныло висели замки.


Публика в зале называла имена судьи, прокурора, но мало кто мог подумать, что решающее влияние на течение дела окажет малоприметный эксперт, имя которого решительно ничего не говорило ни судьям, ни публике, привлеченной в зал громким процессом.

Основной вопрос, в котором предстояло разобраться суду, – это происхождение платины. Господа ювелиры утверждали, что платина эта немецкого происхождения, сплавленная из различных платиновых изделий. Полицейское управление настаивало на том, что платина завезена тайно из Южной Америки. Платина находилась в небольших слитках в виде почти стопроцентного металла. Казалось, что выхода не было и следствие зашло в тупик.

Бесконечные прения сторон успели порядком надоесть публике, и поэтому объявление председателя суда, что слово дается ученому эксперту, нисколько не ослабило ровного гула в зале.

Вечерние газеты, старающиеся перещеголять друг друга в остроумии, сообщали, что продолжительность речи глубокоуважаемого профессора в полной мере соответствовала ее непонятливости.

Что и говорить! Не часто в зале имперского суда звучали химические и физические термины. Вот почему председатель слушал профессора морщась и мучительно старался припомнить те скудные сведения из химии, которые он получил в училище правоведения.

Эксперт начал, видимо, издалека, с вещей, на первый взгляд, не имеющих ничего общего с сомнительными операциями господ ювелиров.

– Современная аналитическая химия, – говорил эксперт, – обладает громадными возможностями. При помощи различных методов мы можем определить в одном грамме вещества такие ничтожные количества примесей, которые по размерам своим, пожалуй, даже недоступны человеческому воображению. Удалось установить, что самое чистое вещество содержит постоянно в виде примесей доступные определению количества почти всех известных нам химических элементов.

Вот хотя бы элемент никель. Этот металл в заметных количествах содержится только в рудах, малочисленных никелевых минералах и в сплавах. Но, несмотря на это, его можно обнаружить и во всех растениях и в животных организмах. Никель имеется и в сукне, из которого сшит сюртук, и в пуговицах, на которые он застегнут.

Точно то же можно сказать и о более редких элементах, например золоте…

– Золоте? – переспросил заинтересованный председатель. – Продолжайте, господин профессор, продолжайте…

– Золото, подобно всем другим элементам, незримо присутствует повсюду.

– Не может ли господин эксперт, – перебил выступающего язвительный защитник одного из ювелиров, – сказать, сколько содержится золота во мне, например?

– Так как тело господина адвоката не особенно отличается по составу от тела серых крыс, над которыми мы производили эксперименты, то три десятимиллионные доли вашего уважаемого веса следует отнести за счет золота, – невозмутимо отвечал профессор. – Кстати, следует отметить, – продолжал он свою речь, – что примеси различных элементов в металлах одного происхождения находятся в одинаковом соотношении. И, напротив, микропримеси к железу одного из рудников будут отличаться по количеству, а зачастую и по качеству от микропримесей железа, которое добывали в другом руднике.


Все это дает возможность установить происхождение платины, предложенной для экспертизы. Мы подвергли анализу ряд изделий, изготовленных из платины заведомо южноамериканского происхождения. Точно так же нами были исследованы изделия из уральской платины. Сличив результаты анализа с данными, полученными при исследовании образцов, представленных мне судом, я прихожу к выводу, что эта платина несомненно американская. Об этом говорит большое количество меди в ней и малое количество мышьяка.

Показания эксперта предопределили решение суда. Приговор, впрочем, не был особенно суровым. Подсудимые были состоятельными людьми, а с такими молодой райх предпочитал сохранять хорошие отношения.

Спустя месяц рекламные огни снова освещали ювелирные магазины, в широких витринах которых, сверкая застывшими улыбками, стояли увешанные драгоценностями манекены.


Периодическая система в… куске мела

Вот какое неожиданное применение получила формирующаяся в то время проблема малых количеств веществ.

Вряд ли стоило бы сейчас вспоминать о кучке берлинских спекулянтов, если бы в истории с ними весьма рельефно не отобразилось одно из наиболее крупных достижений химии того времени – учение о повсеместном присутствии химических элементов.

Но сначала кое-что о цифрах. Есть ли какая-либо разница между числами 100,0 и 100,000? Не торопитесь говорить «нет». Лучше еще раз подумайте. Считаете, что все равно разницы нет? Ну что ж, с точки зрения математики, быть может, вы и правы. Но я – химик и поэтому заявляю: разница есть, и весьма существенная.

– Что за вздор? – возразят мои оппоненты. – При чем тут разница между химиком и математиком? Сотня есть сотня!


Попробуем разобраться. Пусть вы едете на автомашине по шоссе. Заметили вон то дерево? Проедем от него километр, отмерив расстояние по спидометру. Стоп! Километр проехали. Теперь выйдем из машины, присядем на травку, займемся вычислениями.

Итак, мы проехали километр. 1 километр = 1000 метров. 1000 метров = 100 000 сантиметров. Можем ли мы сказать, что проехали сто тысяч сантиметров? Кто сказал «да», тот, конечно, ошибается. Почему? Можно ли утверждать, что автомашина от того дерева прошла именно сто тысяч сантиметров? А может быть, 100 002 или 99 998 сантиметров. Разница еще большая! В лучшем случае, мы можем утверждать, что машина проехала 1000 метров, да и то возникнут сомнения: 995, скажем, или 1008. Как видим, количество знаков в цифре совсем не безразлично для внутреннего содержания этого числа.

Если написано, что машина проехала 1 километр, никто не станет утверждать, что она проехала на метр меньше или на десять метров больше. Но если сказано: машина проехала 1,00 километра, то это означает, что автор утверждения ручается, что указанное им расстояние измерено с точностью до сотых долей километра, иными словами, до десятков метров.

Теперь уже понятно, что величина 1,0000 километра обозначает, что расстояние измерено с точностью до десятитысячных долей километра, или до дециметров. Итак, и нули могут нести большую смысловую нагрузку.

То же самое и в химии. Не безразлично будет сказать, что вещество имеет 100 % или 100,0 % чистоту. В первом случае эта чистота может выражаться также числом, например, 99,6 а во втором – 99,96. Как видим, разница большая.

Было время, когда и химики не очень обращали внимание на эти нюансы, но эти «беззаботные» времена давно миновали.

Есть такая наука геохимия. Занимается она изучением химического состава различных горных пород, минералов, вод морей и рек. Химический анализ минерала – вещь самая обычная. Определяют, сколько какого элемента входит в состав этого минерала, и делу конец. Если сложить процентное содержание всех элементов в минерале, сколько должно получиться? 100 % – тут и гадать нечего. Действительно, химики проделывали тысячи анализов, и если только анализ проводился правильно, то всегда получалось 100 %.

Однако мало кто из этих аналитиков задавался вопросом: а какого «чина», так сказать, эти сто процентов? Можно ли написать 100,0 % или 100,000 %. И вот, когда задумались над этим, оказалось, что только в самых лучших случаях можно писать 100 % (т. е. это, как мы теперь знаем, может быть и 99,91 и 99,66 и т. п.). В подавляющем же большинстве случаев следовало бы писать 99,9 %.

И вот в этой одной десятой процента оказалась бездна чрезвычайно интересных вещей.

Есть такой минерал – цинковая обманка. Во всех учебниках химии можно найти, что это такое: сернистый цинк ZnS. Правильно, так, в основном, оно и есть. Но в чистом сернистом цинке цинка должно быть 67,09 %, в минерале же, как показывает точный анализ, его всего 63,55 %. Серы должно быть 32,91 %, а в обманке – 31,92 %. Сложим эти проценты: 95,47. До ста процентов, как видим, еще далеко. Значит, в минерале есть еще что-то. Это, конечно, неудивительно: разве может природный минерал быть таким же чистым, как химический реактив, специально приготовленный в лаборатории?

Действительно, произведя дополнительный анализ, можно установить, что в нашем образце имеются весьма значительные примеси железа – 1,57 %, кремния – 0,34, марганца – 0,27, кислорода – 0,15, свинца – 0,15, мышьяка – 0,15 и меди – 0,13 %. Перед вами результаты анализа, который не так давно назывался полным.

Но действительно ли он полный? Сложим все эти результаты. Да, анализ почти полный – получилось 99,22 %. На долю чего же приходятся остальные 0,78 %?

Нет надобности дальше утомлять читателя числами. Скажу только, что при весьма тщательном анализе можно набрать еще около семи десятых процента. Эти 0,7 % приходятся на элементы: водород, кальций, кадмий, алюминий, магний, селен, хлор, сурьму, углерод, фосфор, натрий, калий, титан, висмут.

Итак, анализировали цинковую обманку, которая должна состоять из цинка и серы, а нашли уже 23 элемента. Но ведь это не все. Еще остается около 0,1 %. На долю примерно одной десятой процента приходится содержание еще 23 элементов. Я не буду всех их перечислять. Скажу только, что среди них находятся такие, как германий, индий, золото (его в цинковой обманке приблизительно 0,0005 %). Но самое интересное, что эти 23 элемента в сумме опять-таки не дадут ровно 0,08 %. Будет еще и остаток, приблизительно в одну тысячную процента. Чтобы установить, что входит в эту одну тысячную, и пришлось прибегнуть ко всем тем тонким методам исследования, которые были описаны в предыдущих разделах. Оказывается, в этой одной тысячной можно с абсолютной достоверностью установить наличие еще 30 химических элементов.

Всего 76 элементов. Итак, почти вся Менделеевская таблица в одном куске цинковой обманки.

Этот минерал не представляет исключения. Пусть не создастся мнение, что цинковая обманка приведена тут в качестве примера из-за того, что только ей свойственна такая замечательная особенность. Ничего подобного. Опыты показали, что во всех исследованных минералах можно найти ничуть не меньшее количество химических элементов, чем в рассмотренной нами цинковой обманке.

От изучения минералов перешли к другим объектам. Оказалось, что какой бы предмет ни подвергнуть тщательному анализу, будь то кусок мела или коровье молоко, пепельница или молоток, школьная тетрадь или кухонный половник, – всюду можно найти почти все элементы Периодической системы. Как и в случае с обманкой, содержание одних будет составлять десятки процентов, другие будут находиться там в десятых долях процента, а третьи будут лежать за пятым или шестым десятичным знаком: их будет там не более одной стотысячной, а то и меньшей доли процента.


Одна стотысячная процента – это очень мало. Если установлено, что в данной породе, например, содержится такое количество какого-либо элемента, то потребовалось бы переработать десять тысяч килограммов ее, чтобы добыть только один грамм элемента. Вот почему бессмысленно, например, добывать золото из цинковой обманки, хотя присутствие его там установлено с несомненностью.

Совершенно очевидно, что, не обладай химики такими чувствительными методами анализа, нельзя было бы установить этот в высшей степени интересный факт, называемый теперь эффектом повсеместного присутствия химических элементов.

Что и говорить, нужно было достичь виртуозного мастерства, чтобы суметь отыскать и установить содержание элемента, который находится в количестве нескольких десятитысячных или стотысячных долей процента. И это мастерство не пропало даром, потому что умение оперировать с исчезающе малыми количествами вещества принесло науке такие открытия, которые даже через много сотен лет будут называться удивительными. Да, именно удивительными. Самый взыскательный читатель не обвинит меня в неудачно выбранном определении, когда познакомится с проблемами, которым посвящены следующие главы.


Алхимия XX века



Бискайская история

Настоящие алхимики вовсе не сидели в мрачных и низких подвалах: они большей частью работали на воздухе. Это были обыкновенные и зачастую жизнерадостные люди. И даже не у каждого из них была борода. И уж совсем мало кто из них держал у себя в лаборатории такую невеселую вещь, как человеческий череп. Нет, алхимики были совсем не такими, как их любят изображать современные художники!

Не были они и пройдохами, какими их представляют авторы некоторых книг и рассказов о средневековой химии. Никогда жажда к наживе не смогла бы двигать науку, тем более в течение веков. А то, что алхимия была наукой, сомневаться не приходится. Конечно, попадались среди алхимиков и такие, которых прежде всего интересовало золото. Были и просто мошенники, обманывавшие легковерных правителей. В старых книгах и журналах я нашел кучу историй об этих прощелыгах. И надо отметить, что ни один из них не умер своей смертью. Одних вешали, когда открывались их проделки; других после первого же «удачного» опыта казнили короли, боявшиеся, что владелец «секрета» убежит и предложит свои услуги соседнему герцогу; третьих медленно умерщвляла пытками святая инквизиция, справедливо усматривавшая в попытках искусственного изготовления золота покушение на монополию господа бога в такого рода делах.

Но почему-то совсем мало пишут о тех алхимиках, которые скромно возились в своих домашних лабораториях. Они искали «философский камень» не только ради его способности превращать в золото неблагородные металлы. В этом камне они видели прежде всего средство исцеления от болезней и продления жизни. Именно эти неизвестные труженики алхимии писали смешные для нас, но полные смысла для них трактаты, вроде «О добродетели и составе воды». Да, да, добродетель тоже почиталась предметом алхимии!

В то время как мошенники, прикрывавшиеся именем алхимиков, изыскивали способы, как получше надуть жадных и не очень умных правителей, настоящие алхимики упорно растворяли, перегоняли, прожаривали, взбалтывали сотни веществ и в результате дали для будущей химии очень и очень немало.

Начать с того, что алхимики чуть ли не вдесятеро увеличили количество известных науке соединений по сравнению с тем, что было известно древним грекам. Алхимики открыли важнейшие способы воздействия на вещество или смесь веществ с целью возбуждения химической реакции. Этими способами мы пользуемся и сейчас почти в неизменном виде. Алхимики изобрели самую разнообразную химическую аппаратуру. Очень многие приборы из тех, которые стоят сейчас на столах современной химической лаборатории, почти в таком же виде украшали лабораторию алхимика: это колбы, воронки, реторты, перегонные аппараты. Именно алхимики нашли важнейшие кислоты, многие органические соединения, открыли способ сухой перегонки дерева.

Начиная рассказ об алхимии XX века, я считаю своим долгом дать читателю правильное представление об истинной алхимии, убедить его, что слово «алхимик» не должны считать бранным. И я подумал, что очень хорошей иллюстрацией к сказанному будет история о бенедиктинском монахе Лоренца Пика.


Я натолкнулся на эту историю случайно, рассматривая одну старую книгу. Эта книга была напечатана на немецком языке еще в 1809 году и содержала различные сведения из истории естественных наук. На толстых и ломких от времени страницах этой книги я и вычитал историю о монахе Лоренца Пика. Конечно, там она излагалась сухим и подчеркнуто бесстрастным тоном, который прежде считался единственно приемлемым для научных сочинений. Но подробности нетрудно было прочитать, как говорят, «между строк». Вот она, эта история.

…Ветер с моря подымал с прибрежных дюн тонкие и острые струйки песка. Они заводили пронзительную песню, напоминавшую стенания грешных душ в преисподней. Когда это сравнение пришло в голову отцу-настоятелю бенедиктинского монастыря Святого Назера, то он, несмотря на трагичность положения, не мог не улыбнуться. Монастырь стоял в нескольких лье от берега Бискайского залива, на высоком берегу Луары и был хорошо виден в лучах заходящего солнца. От этого монастыря, сопровождаемые заунывным пением двух уже охрипших мальчиков-прислужников, увязая в густом песке и тяжело дыша, ползли на коленях братья-бенедиктинцы, возглавляемые идущим отцом-настоятелем.


Первым полз брат Лоренца Пика, который, собственно говоря, и был причиной этой диковинной процессии.

Частная записка папы Климента V, написанная слишком красиво и вычурно, чтобы быть просто запиской, а не повелением, предписывала монастырю Святого Назера заняться «поиском тех замечательных веществ, которые превращают неблагородные металлы в золото, столь необходимое нам сейчас в то многотрудное время, когда наши братья во Христе отвернулись от нас настолько, что руководители богопротивного ордена тамплиеров, обладая секретом философского камня, отказываются нам его сообщить».

Отец-настоятель, читая тогда эту записку, не смеялся, нет, а почтительно улыбался, что, по правде говоря, тоже было порядочной крамолой. Было слишком очевидно: письмо написано под диктовку одного из соглядатаев Филиппа IV, которые вечно подвизались в папской резиденции. «Красавчик Филипп», как его малопочтительно называла почти половина Франции, растратил все свои и без того малые средства на борьбу с папой Бонифацием VIII, борьбу, которую он вел с упорством и кровожадностью хорька. Но зато следующий папа – Климент – фактически был прислужником короля.

Настоятель знал, что папа не случайно избрал его монастырь. Монастырь Святого Назера вот уже двадцать лет отличался своей ученостью от прочих. Основная заслуга в этом принадлежала Лоренца Пика, который сейчас, дыша тяжелее других, полз по песку, помогая себе руками.

Свободные нравы в монастыре Святого Назера были, можно сказать, освященной десятилетиями традицией. Даже невыход к утренней обедне не почитался там за тяжелый грех. Вот почему Лоренца Пика, который поступил в этот монастырь в 1387 году, мог свободно заниматься изучением естественных наук и достиг в этом деле немалых успехов. Автор книги сообщает, что Лоренца Пика даже изобрел телескоп – за 200 лет до Галилея! – и наблюдал в него Луну. Он оставил сочинение о чудесных свойствах вещества, называемого теперь окисью ртути, которое бесконечное число раз можно превращать в блестящую ртуть, и обратно. Последнее открытие, впрочем, задолго до Лоренца сделали арабы. Но весьма вероятно, что он об этом не знал.

Так тянулась безмятежно спокойная жизнь Лоренца Пика в монастыре Святого Назера, жизнь, не нарушаемая происками братьев-бенедиктинцев, которые, на счастье, отличались нравом спокойным и веселым. И так шло до тех пор, пока не пришло в монастырь письмо Климента. Срок на отыскание рецепта приготовления золота был очень небольшим. В том же, что такой рецепт существует, папа не сомневался. Торжествующие декларации ордена тамплиеров о том, что он может получить много золота, только подогревали нетерпение Климента. Правда, хорошо осведомленные кардиналы из папского окружения не раз осторожно намекали его святейшеству, что тамплиеры добывают золото не столько с помощью «философского камня», сколько убийствами и шантажом. Однако начитанный папа сейчас же приводил в доказательства сочинения знаменитого Арнольда Виллановануса, имя которого гремело тогда по всем государствам Западной Европы. Вилланованус утверждал, что им найден «философский камень», превращающий ртуть в золото.


Тут будет небезынтересно отметить, что Вилланованус, судя по всему, был дошлым пройдохой. Он описал не только «философский камень», но и «эликсир жизни». «Эликсир» этот был не что иное, как плохо очищенный винный спирт. Он действительно приводил принимавших его в самое радужное настроение. Но сам-то изобретатель «эликсира» знал, чем он потчует легковерных современников, знал, что добывает этот «эликсир» из обычного виноградного вина!

Поиски «философского камня» были поручены, разумеется, Лоренца Пика. Когда тот пробовал отказаться, не совсем искренне ссылаясь на то, что все его помыслы заняты богом, папский посланник сильно рассердился. Кроме того, посланник добавил, что он впервые встречается с таким отношением к священному документу, каким является бумага, подписанная папой. При этом он так выразительно посмотрел на отца-настоятеля, что тот, простерши руки к изображению Святого Назера, поспешно заверил сановного гостя, что при способностях Лоренца золото скоро можно будет вывозить из монастыря на лошадях. С этим посланник и уехал, приказав под конец дать Лоренца в помощь столько монахов, сколько он пожелает, ибо алхимические опыты, как ему известно, многотрудны и суетны.


Вот почему уже на второй день после отъезда посланника Лоренца Пика стал обучать братьев-бенедиктинцев немудрым приемам алхимического мастерства. В монастыре наступили страдные дни. Виноградные гроздья осыпались и гнили без присмотра, а из узких окон трапезной, превращенной теперь в лабораторию, вылетал едкий дым и слова, которые ясно показывали, что знакомство с алхимией отвращает души и помыслы бенедиктинцев от бога.


Сам Лоренца Пика не сомневался, что все рецепты «философского камня», приводимые в различных сочинениях, и прежде всего в сочинениях самого Виллановануса, являются шарлатанством. Эти произведения большей частью представляли набор каких-то слов, которые были не то шифрованным текстом, не то просто галиматьей.

Полутора месяцев с избытком оказалось достаточным, чтобы лишний раз убедиться, что ни один из рецептов получения золота не приводит ни к чему, кроме бесполезной траты времени. Но тут произошло непредвиденное..

Приливая к раствору ртути в разбавленной азотной кислоте, к которой, видимо, были примешаны соединения йода, раствор серебра в азотной кислоте, Лоренца получил какой-то желтый осадок. Отделив его от раствора, он начал сушить этот осадок. И вдруг, на глазах, порошок из желтого стал ярко-красным. Пика быстро снял жаровню с огня, и порошок медленно стал превращаться снова в желтый. Жаровня была поставлена на огонь – порошок начал краснеть, огонь погасили – и цвет порошка снова стал желтым.


Если бы в наше время кто-либо из химиков столкнулся с этим явлением, он нисколько бы не удивился, поняв, что имеет дело с обычной термокраской [3]3
  Термокраска– соединение, изменяющее свой цвет в зависимости от температуры.


[Закрыть]
. Вещество, которое получил Лоренца Пика, – серебряная соль тетрайодортутной кислоты – действительно является термокраской. Но шестьсот лет назад это открытие произвело потрясающее впечатление. Монахи, столпившись за спиной Лоренца, не дыша смотрели на чудесные превращения. И даже сам настоятель, прибежав в трапезную, вместо того чтобы вознести молитву богородице за дарованное чудо, стоял как столб и дивился наравне с прочими.

Тут монахи впервые уверовали, что то, чем они занимаются, не просто средство скоротать тягучую скуку монастырских дней. Но в тот же вечер, а может быть, несколькими днями позже – разве это имеет значение? – Лоренца сказал бенедиктинцам, что золото не может быть получено искусственным путем и что все попытки сделать это обречены на неудачу.


А еще через несколько дней монахи заявили папскому посланнику, который, приехав в монастырь назад, с нетерпением дожидался результатов опытов, что они отказываются искать рецепт изготовления золота, поскольку из этого все равно ничего не выйдет.

Легко представить себе гнев высокого гостя. Легко вообразить, как он с поспешностью, явно недостойной его высокого сана, вывел коня и умчался из монастыря. А потом, некоторое время спустя, прибыло повеление папы замолить неслыханное неповиновение лично перед папой в Авиньоне, причем из Сен-Назера в Авиньон надо было идти на коленях. Исключение было сделано только для отца-настоятеля.

Вот почему семнадцать монахов ползли на коленях по дюнам Бискайского залива от монастыря Святого Назера, который стоял на высоком берегу Луары и был хорошо виден в багровых лучах заходящего солнца…


Четыре вопросительных

Проблема превращения элементов волновала много поколений ученых. Но природа крепко хранила эту одну из самых сокровенных своих тайн. Атомистическая теория, прочно утвердившаяся в химии к середине прошлого столетия, начисто смела все мистические представления о возможности вызывать превращения одного элемента в другой с помощью каких-то «духовных сил». Приверженцы этих теорий были даже не алхимиками (те зачастую сами не ведали, что говорили), а просто идеалистами. Атомистическая теория подействовала на все эти противопоказанные науке измышления подобно крику петуха на нечистую силу.

Однако провозглашение атома абсолютным и неделимым привело к тому, что ученые впали в другую крайность. В науке укоренилось мнение, что атом неделим, а следовательно, и превращения элементов быть не может.

Только на границе двух веков – XIX и XX – дверь, за которой скрывалась тайна превращения элементов, со скрипом отворилась и из-за нее показался узкий луч света. Первыми обратили на него внимание знаменитые ученые Мария Кюри-Склодовская и Пьер Кюри. Но они смогли увидеть этот луч только потому, что поднялись к заветной двери по ступенькам, вырубленным Дмитрием Ивановичем Менделеевым.

…Привести в какую-то систему хаос всех сведений о свойствах химических элементов и их соединений – задача мучительно трудная. Ведь больше трети из известных теперь химических элементов в то время наука не знала. Ведь именно Дмитрий Иванович первый указал, сколько всего элементов должно быть, и предсказал свойства многих из этих неоткрытых элементов.

Менделеев терпеливо перетасовывает свои карточки. Закона пока еще нет. Ночные сторожа и дворники уже не удивляются тому, что свет в одном из окон профессорского корпуса Технологического института никогда не гаснет.


И действительно, посмотрим на Периодическую систему элементов в том виде, в каком ее впервые опубликовал Менделеев весной 1869 года. Мы видим, что великий химик поставил вопросительные знаки в тех местах, где по его предположению должны были стоять эти неизвестные науке элементы. Менделеевым описаны не открытые еще элементы «экабор», «экаалюминий», «эка-кремний». Проходит несколько лет, и эти элементы были найдены, получив свои нынешние наименования: скандий, галлий, германий. Нахождение новых элементов перестало быть делом случая. Оно стало плодом систематических научных исследований. Поэтому не следует удивляться тому, что если за двести лет существования химии было открыто 63 элемента, то поиски каких-нибудь пятидесяти лет, последовавшие за созданием Периодической системы элементов, добавили к этому числу еще около тридцати.

История заполнения пустых клеток таблицы Менделеева очень интересна. О самом конце этой истории необходимо рассказать.

1925 год… Открыт еще один из неизвестных науке, но предсказанный Менделеевым элемент – элемент № 75 – рений. В таблице остались только четыре клетки, в которых вместо символа химического элемента стояли вопросительные знаки – клетки 43, 61, 85 и 87. Самые тщательные поиски этих элементов в различных рудах и химических соединениях не привели пока ни к каким результатам.


Но наступило время, когда было испробовано все. Были исследованы все вероятные месторождения, были применены самые фантастические способы возможного обогащения руд неоткрытыми элементами. Однако попытки оставались безрезультатными. Загадочные элементы под номерами 43, 61, 85 и 87 не желали даваться в руки исследователям.

А время шло.

…Тридцатые годы XX столетия. На Периодической системе Менделеева, висящей и в школьном классе и в лаборатории химика, помещенной в научном издании и в студенческом учебнике, – всюду четыре вопросительных знака. А сколько их, этих вопросительных знаков, в рабочих записях ученых, в лабораторных журналах химиков-экспериментаторов?


Луч света

Способность некоторых химических элементов распадаться с испусканием особых лучей, открытая Анри Беккерелем, поразила воображение современников. Проблема радиоактивности стала в то время одной из самых модных не только в науке, но и в самых широких слоях общества. Парижские модницы предпочитали скромную лабораторию супругов Кюри салонам с картинами Монэ или спектаклю с участием итальянской примадонны. При встречах только и было разговоров, что о замечательных колбах с растворами солей радия, которые светятся в темноте. В Лондоне публика валом шла на лекции известного химика Содди, демонстрировавшего удивительные свойства радия. Мария Склодовская много лет спустя писала в своих воспоминаниях, как утомляла ее шумиха, поднятая вокруг открытия радия.

Бульварная пресса на все лады расписывала свойства радия, хотя ее при этом явно интересовала больше всего баснословная цена этого металла, достигавшая тогда нескольких сот тысяч долларов за один грамм.

Зато ученых волновало научное содержание открытия супругов Кюри. Явление радиоактивности показало, что атом не является чем-то незыблемым, неделимым. Оказывается, возможно превращение элементов друг в друга. А если это так, то нельзя ли, подробно изучая проблему радиоактивности, понять, каким образом устроены атомы веществ?

Последующие годы принесли ученым все, о чем они могли мечтать. Действительно, изучение явления радиоактивности оказалось тем единственным путем, идя по которому стало возможным проникнуть в тайны строения вещества.

Когда явление радиоактивности – естественного превращения атомов элементов – было изучено с достаточной полнотой, возник вопрос: если возможно самопроизвольное превращение элементов друг в друга, то почему бы не попытаться искусственным путем вызвать этот интересный процесс?

Ответ не заставил себя ждать. Темпы развития науки в XX столетии были уже не те, что в прошлые века. Всего через двадцать с небольшим лет после открытия радиоактивности произошли события, которые вызвали на страницах научных журналов ставшее старомодным и покрывшееся уже пылью времени слово « алхимия».


    Ваша оценка произведения:

Популярные книги за неделю