355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Фиалков » Девятый знак » Текст книги (страница 9)
Девятый знак
  • Текст добавлен: 29 сентября 2016, 01:45

Текст книги "Девятый знак"


Автор книги: Юрий Фиалков



сообщить о нарушении

Текущая страница: 9 (всего у книги 10 страниц)

В последнее время появились интересные исследования по использованию лития в качестве горючего. Если литий в распыленном состоянии ввести в струю воздуха или кислорода, то при сгорании его выделяется громадное количество тепла.

Подсчеты показывают, что при использовании лития в качестве топлива можно при сжигании всего лишь одного килограмма этого металла получить такое количество тепла, которое выделяется при сгорании четырех тысяч тонн каменного угля.

Литиевые соли стеариновой и пальмитиновой кислот, как выяснилось, являются отличными смазочными материалами. Эти смазки сохраняют свойства при пятидесятиградусном морозе, при нагревании до 150°.

Можно было бы перечислить еще много отраслей техники и промышленности, где литий нашел свое применение.

Однако еще больше имеется среди них тех, которые ждут внедрения этого замечательного металла. Вот почему литий с полным правом называют металлом будущего.

Впрочем, все те металлы, о которых мы поведем разговор, в большей или меньшей степени являются металлами будущего, как это мы увидим на примере «героя» следующего раздела.


Металл драгоценностей

Сейчас уже никто не может сказать, что побудило французского ученого Вокелена в бурное для Франции время конца XVIII столетия заняться химическими экспериментами. Вероятно, причиной всего были деньги. Почтенный месье Вокелен не думал добывать деньги нечестным путем. Он отнюдь не жаждал лавров известного подделывателя бриллиантов графа Сен-Жермена, о похождениях которого столько говорили при дворе последнего Людовика. Однако если уж заниматься химией, то почему бы не исследовать свойства и состав замечательного драгоценного камня изумруда – этого если не короля, то, по меньшей мере, герцога всех драгоценностей?

К сожалению, эксперименты над изумрудами скоро пришлось оставить: то ли опыты не удавались, то ли госпожа Вокелен отнеслась с большим осуждением к разорительным для семьи экспериментам своего мужа с изумрудами. Однако все же некоторые результаты были получены. Из изумруда Вокелен выделил сероватую массу, которую из-за ее сладковатого вкуса он назвал «сладкой землей», или глициной, от слова «гликос» – сладкий. «Землями» же тогда химики называли большинство окислов. Произошло это в 1798 году.

Ровно через двадцать лет из глицины был выделен серый блестящий металл, получивший название глициния. Несколько позже харьковский профессор Ф. И. Гизе предложил назвать этот элемент бериллием. Название привилось. Так в списке химических элементов появилось еще одно новое наименование.

Но даже сорок лет спустя свойства бериллия были изучены еще настолько плохо, что Менделеев долго колебался, не зная, в какую клетку поместить этот элемент. И если бы не гениальная интуиция великого химика, бериллий долго бы слонялся по Периодической системе, пока не обрел квартиру № 4.

«Биография» бериллия в высшей степени необычайная. Не менее оригинальна и его «анкета». Год рождения на ней обозначен 1798. Год поступления на работу – 1932. Именно в этом году в промышленности были применены некоторые сплавы бериллия. Но, подобно Илье Муромцу, который «тридцать три года сиднем сидел» и только потом развернулся во всю свою богатырскую силу, бериллий сразу же после поступления на службу человеку начал показывать чудеса.


Да, на долю бериллия в земной коре приходится лишь несколько десятитысячных долей процента. Но эти десятитысячные стоят того, чтобы за ними поохотиться.

Удельный вес бериллия несколько выше, чем у его соседа по Периодической системе – лития. Но все же он значительно меньше, чем у многих остальных металлов. Если же принимать во внимание только те металлы, которые в свободном состоянии устойчивы к действию воздуха, то бериллий занимает в этом списке место № 1. Хотя прочность бериллия меньше, чем стали, но разница в удельных весах между ними столь велика, что конструкция из бериллия будет во много раз прочнее, чем такого же веса сооружение из стали.

Известно, что самой большой заботой всех авиаконструкторов является снижение веса деталей самолета. Иногда они сидят месяцами и мучительно решают задачу, каким образом снизить вес машины хотя бы на несколько килограммов. Приходится накапливать эти килограммы буквально по граммам: в одном месте убирают винтик, в другом иначе планируют соединение, в третьем заменяют ручки из металла на пластмассовые.

Применение бериллия в самом ближайшем будущем освободит конструкторов от этих тягостных поисков. Уже достаточно подробно исследованы сплавы бериллия с магнием и алюминием, и можно уверенно сказать, что эти сплавы свершат в самолетостроении такой же переворот, какой произвело применение алюминия. Несложные расчеты показывают, что дальность полета самолета, сконструированного на основе бериллиевых сплавов, больше дальности полета машины, изготовленной на основе алюминия.

Уже это одно свойство бериллия ярко показывает, что редкими элементами следует заниматься с большей настойчивостью, так как сулят они фантастически много. А то, что их мало по сравнению с элементами-гигантами, не помеха. Ведь на то и существует химия.

И химики оправдали надежды, возложенные на них. В настоящее время разработано несколько вариантов получения недорогого бериллия даже из самого бедного сырья.

Впрочем, поиски новых методов получения бериллия и изыскание источников сырья ведутся все нарастающими темпами. Дело в том, что этот металл завоевывает все большее число отраслей техники и промышленности.

Вот новое слово, которого не было в химическом и техническом словаре десяток лет назад: бериллизация. А скоро это слово станет таким же обычным, как «прокатка», «закалка» или им подобные. При бериллизации стальную деталь, нагретую до высокой температуры, помещают в порошок бериллия. Бериллий при этом в очень незначительном количестве проникает в поверхностный слой металла, и изделие оказывается окруженным как бы броней из бериллиевого сплава. Да, именно броней, я не оговорился. Потому что обработанная таким образом деталь резко увеличивает свою прочность и твердость.

Бериллизованные изделия работают во много раз дольше, чем обычные, стальные. Самое интересное, что бериллия на эту операцию идет ничтожно мало. При правильной работе можно бериллизовать одним килограммом его сотни, а иногда и тысячи самых различных деталей.

Буквально каждый месяц приносит новые сведения о замечательных свойствах бериллиевых сплавов. Оказывается, достаточно добавить к меди всего два процента бериллия – и образующийся сплав становится тверже нержавеющей стали. Добавка бериллия придает сплавам еще одно важное свойство – сопротивление к «усталости». Оказывается, металлические изделия тоже могут уставать. Самая лучшая стальная пружина, например, не может выдержать больше миллиона сжатий. Пружины из бериллиевой бронзы – сплава бериллия с медью – способны выдержать в 25 раз сжатий больше.

Известно, что медь обладает очень хорошей электропроводностью. Однако добавка к меди небольшого количества бериллия значительно улучшает способность меди проводить ток. Излишне говорить, как ценно это свойство бериллия для промышленности. Ведь чем лучше проводимость, тем меньше потери тока.

Незаменимым сейчас стал бериллий в рентгеноскопии для производства рентгеновских трубок. Бериллий для рентгеновских лучей все равно что самое прозрачное стекло для света. Почти все металлы задерживают рентгеновское излучение, бериллий же «прозрачен» для этих лучей.

Можно было бы еще очень много рассказывать о бериллии, металле, который сейчас переживает свое второе рождение, рождение для славных дел.


Пятнадцать близнецов

Если подробно описать историю открытия пятнадцати элементов, помещающихся в одной клетке Периодической системы Д. И. Менделеева, то получился бы рассказ не менее увлекательный и драматический, чем, скажем, «Одиссея», и, уж наверное, более объемистый. Потому что перипетии и приключения отважного и находчивого Одиссея – ничто в сравнении с тем, что пришлось пережить химикам, пока в Периодической системе между порядковыми номерами 57 и 71 воцарился относительный порядок.

Между этими номерами в Периодической системе находятся элементы, которые называются редкоземельными. Уже само название показывает, что эти элементы являются большой редкостью. Действительно, еще лет десять назад соединения редкоземельных металлов можно было увидеть разве только на демонстрационных опытах по неорганической химии. Да и то профессор, доставая из жилетного кармана запаянную пробирку с невзрачным порошком – соль какого-нибудь неодима или иттербия, – не отсылал ее по рядам, чтобы, упаси боже, не разбили, но зато пускался всякий раз в пространные воспоминания о том, как ему удалось заполучить этот образец.

Если попытаться даже очень кратко изложить историю открытия редкоземельных элементов, то получился бы научный трактат в сотню страниц. Десятки ученых в различных странах начиная с первых лет прошлого столетия бились над разгадкой проблемы редкоземельных элементов. Даже такой могучий ум, как Д. И. Менделеев, и тот в течение многих лет не знал, какие места в Периодической системе следует отвести этим металлам. Не одна гора бумаги была исписана, не одна теория была отвергнута, прежде чем стало очевидным, что пятнадцать химических элементов должны стоять в одной клетке.

Действительно, редкоземельные элементы походят друг на друга больше, чем иные близнецы. Эти близнецы неразлучны не только в Периодической системе, но и в природе. Никогда их нельзя встретить отдельно друг от друга. Но «воспитателей» близнецов-элементов – химиков – эта трогательная дружба почему-то не умиляла. Напротив, она доставила им немало горестных минут. Дело в том, что поразительное сходство химических свойств редкоземельных элементов чрезвычайно затрудняет процессы их разделения. До того как был найден способ экспериментального определения порядкового номера того или иного элемента, химики никогда не были уверены, не является ли данный редкоземельный элемент в действительности смесью нескольких элементов.

В самом деле, если посмотреть на таблицу открытия редкоземельных элементов, то возникает картина точно такая, как при делении бактерий. Вначале было известно только два элемента: иттрий и церий. Потом выяснилось, что церий содержит еще один элемент, названный лантаном. Лантан недолго оставался одиночкой. Кропотливые исследования показали, что элемент, который раньше принимали за чистый лантан, на самом деле является смесью лантана и дидима. Но напрасно мы стали бы сейчас искать в Периодической системе элемент дидим. По прошествии нескольких лет выяснилось, что дидим, в свою очередь, состоит из двух элементов: собственно дидима и самария. Однако «собственно дидим» оказался вовсе не «собственным», так как дотошные химики доказали, что он является смесью двух элементов, названных празеодимом и неодимом. Самарий тоже не остался в долгу и «отпочковал» от себя элемент гадолиний и европий.

Точно такая же картина наблюдалась и с иттрием, который последовательно «породил» элементы эрбий, тербий, гольмий, тулий, диспрозий и лютеций.


В главе «Алхимия XX века» было рассказано о том, сколько неприятностей доставил исследователям последний (не по порядку, а по времени открытия) из редкоземельных элементов – прометий.

Сейчас нам отлично известна причина удивительного сходства элементов с порядковыми номерами 57–71. Так же как и в описанном в главе об искусственных элементах семействе актиноидов, у редкоземельных элементов внешняя электронная оболочка построена одинаково.

Благодаря трудностям разделения лантаноидов свойства отдельных металлов до самого последнего времени были изучены очень плохо. Химия этих элементов представляла собой, образно говоря, целину. Но стоило по этой целине провести первые борозды научных исследований, как показались дружные всходы.

Начнем с того, что само название «редкоземельные» с каждым годом становится все более неправильным. Оказалось, что этих элементов в земной коре содержится гораздо больше, чем предполагали прежде. Хотя относительное содержание лантаноидов очень невелико – всего шестнадцать тысячных процента, – но тем не менее это значительно выше содержания многих элементов Периодической системы. Во всяком случае, химикам, для которых в настоящее время работа с шестым и седьмым десятичными знаками является столь же обычным делом, как поездка в трамвае, выделение и получение чистых соединений элементов-близнецов не представляется таким уж сложным. Однако, разумеется, без методов микрохимии здесь в большинстве случаев не обойтись. Химия редкоземельных элементов – еще один и притом очень яркий пример того, как умение отыскивать вещества, которые прячутся в далеких от запятой десятичных знаках, дало технике новые прекрасные материалы. Впрочем, и сейчас некоторые из лантаноидов являются очень дефицитными. Стоимость, например, лютеция превышает цену золота в двести раз, а элемент тулий расценивается в 350 раз дороже золота. Но это не из-за редкостности этих элементов, а скорее, из-за трудностей разделения.

Умение довольствоваться предельно малым для изучения свойств труднодоступных элементов привело к тому, что за последнее десятилетие сведения о химии редкоземельных металлов возросли во много раз.

Если лет двадцать назад даже самая полная сводка всех сведений о химических свойствах лантаноидов представляла бы, очевидно, невзрачную книжицу толщиной менее сотни страниц, то теперь для такого же издания пришлось бы напечатать с десяток толстенных томов, каждый из которых был бы предельно напичкан цифрами, формулами, диаграммами…

Соответственно изменилась и область практического применения редко (а теперь уже «нередко») земельных элементов.

В течение чуть ли не семидесяти пяти лет единственным применением лантаноидов было изготовление сплава, из которого делали камни для зажигалок. Но никто, даже химики, прикуривая папиросу или сигару от неизменно капризных зажигалок, не предполагали, что каждый из входящих в этот искристый сплав металлов, взятый в отдельности, откроет новую страницу в металлургии и химической промышленности.

Рассмотрим наудачу выбранные некоторые из них. Вот хотя бы страница тулия. Впрочем, правильнее будет сказать, не «страница», а «книга». Если еще лет десять назад этому элементу даже в самых объемистых руководствах отводилось всего несколько строк, набранных к тому же петитом, то теперь о тулии действительно можно написать специальную, и притом немалую, книгу.

Искусственный радиоактивный изотоп тулия с атомным весом 170 испускает гамма-лучи, которые сходны с рентгеновскими. Эта фраза, которая звучит так, как будто бы она заимствована из сугубо специальной книги, на самом деле таит в себе переворот в огромной области техники и медицины – в области рентгеноскопии.

Почти все, наверное, хотя бы раз в жизни были в рентгеновском кабинете. Это, пожалуй, самый таинственный из всех кабинетов любой поликлиники. Врач скрыт от вас непроницаемым мраком. Только в глубине кабинета тускло светит красная лампочка. Неестественным зеленым светом мерцает экран. А когда вы замечаете на этом экране скелет просвечивающегося пациента, зашедшего перед вами, то вас охватывает вполне понятное благоговение перед техникой рентгеноскопии. Это благоговение безусловно усугубилось бы, если бы вам удалось подробнее ознакомиться с конструкцией рентгеновских аппаратов. Впрочем, вряд ли непосвященный разберется с первого раза в хитроумных сплетениях проводов и в устрашающих своими размерами лампах.

В настоящее время рентгеновские лучи находят очень широкое применение, причем не только в медицине. О ней и говорить не приходится! Без рентгеноскопического исследования нельзя установить правильный диагноз многих заболеваний. Не меньшее применение находят рентгеновские лучи в технике для просвечивания металлических изделий. Эти лучи безошибочно выделяют бракованные детали – такие, в которые закрались невидимые при наружном осмотре трещины или пустоты.

Однако применение рентгеновских лучей все же сильно ограничено громоздкостью аппаратуры. Врач, идущий на обследование больного, берет с собой набор самых различных медицинских приборов и инструментов: стетоскопы, шприцы, приборы для определения кровяного давления или деятельности сердца, но вот такой важный прибор, как рентгеновский аппарат, с собой не захватишь.

Впрочем, скоро все сказанное выше можно будет с легким сердцем перевести в прошедшее время. «Виновником» этого будет редкоземельный элемент тулий. Рентгеновские аппараты, изготовленные на основе тулия, будут до смешного простыми: ампулка с почти невесомым количеством металлического тулия или какой-либо его соли, небольшой защитный кожух для предохранения от влияния излучения тулия и небольшой экран для проецирования изображения. Не знаю, поместится ли такой рентгеновский (или уже правильнее будет сказать – тулиевый) аппарат в дамскую сумочку, но в мужской портфель он влезет безусловно. Так что в самом ближайшем будущем тулиевые аппараты станут такими же карманными приборами для врачей, как и стетоскопы.


Стоит ли говорить, что приборы, работающие на основе радиоактивного тулия, окажутся незаменимыми и для работников, контролирующих качество изделий из металла!

Не менее блистательное будущее предстоит прометию, тому самому элементу, который все еще не найден в природе, а получается пока искусственным путем. Вот где поистине необъятный простор для писателей-фантастов! Впрочем, возможно, я и ошибаюсь. Потому что ничего фантастического из того, что будет рассказано о прометии, нет: есть сухие и точные протоколы экспериментов, есть уже сконструированные приборы, есть незаурядная фантазияученых, но фантастики нет.

Радиоактивное излучение прометия (прометий испускает электроны – бета-лучи) оказалось возможным использовать в качестве источника энергии. Достаточно самого ничтожного количества прометия, чтобы сконструировать миниатюрную батарейку с весьма внушительной, сообразно с ее размерами, отдачей энергии. Например, прометиевая батарейка, имеющая размеры и толщину шляпки обычной канцелярской кнопки, может в течение пяти лет двигать механизм ручных часов. Уже сейчас выпускаются слуховые аппараты, где источником энергии является прометиевая батарейка. А ведь большим неудобством для тех, кто был вынужден пользоваться слуховыми аппаратами, является необходимость носить в кармане электрические батареи, которые к тому же необходимо часто менять.

Очевидно, подсчет того, что может дать прометиевая батарея размером хотя бы с куриное яйцо, является только арифметической задачей. Читатель может здесь дать полную волю своему воображению, и вряд ли в чем-нибудь он ошибется.

А если можно фантазировать читателю, то почему бы не заняться этим (в разумных пределах, конечно) и автору? Впрочем, фантазия ли это? Как-то мне пришлось выступать перед молодежной аудиторией с лекцией о некоторых достижениях современной химии. Среди прочих сведений я сообщил и о замечательных свойствах прометия. Передо мной с рассказом о чудесных успехах советской медицины выступал один известный советский медик, специалист в области хирургии сердца. После окончания вечера он пригласил меня к себе и совершенно неожиданно стал подробно расспрашивать о прометии, и особенно о прометиевых батареях. Причина этого пристального внимания к новому источнику энергии скоро стала очевидна. Уже много лет врачи в разных странах мечтают о создании искусственного сердца. Не тех громоздких аппаратов, с помощью которых сейчас производят операции на сердце, а таких сердец, которые больной мог бы всегда носить с собой. Впрочем, такой человек был бы здоровее иного человека с обычным сердцем. Ведь его сердце не знало бы ни усталости, ни болей.


Однако все предложения по «проектам» портативного искусственного сердца пока еще не выходят из стадий полуфантазии. Вся остановка, оказывается, за источником энергии. Наше сердце должно выполнять настолько интенсивную работу, что даже килограммовой электрической батареи хватило бы владельцу искусственного насоса крови всего на час с небольшим. А если не годится электричество, то тем менее пригодными будут и двигатели внутреннего сгорания.

И вот тут-то прометий может оказаться в высшей степени полезным. Правда, сейчас прометия во всех лабораториях мира добыто столько, что его не хватило бы, пожалуй, и на один «сердечный двигатель». Однако истории науки известно немало примеров, когда металл, дефицитный вначале, в течение нескольких лет уменьшал свою стоимость со скоростью пассажирского экспресса. В 1889 году Д. И. Менделееву во время пребывания его в Лондоне в качестве драгоценного подарка преподнесли весы, одна чаша которых была изготовлена из золота, а другая из несравненно более драгоценного в то время металла… алюминия. Однако не прошло и пятидесяти лет, как алюминий стал таким же обыденным материалом, как и дерево.

Боюсь, что после всего рассказанного изложение «прозаического» применения других редкоземельных элементов покажется скучным. Однако прошу поверить, что от этого колоссальное значение, которое с каждым годом приобретают редкоземельные элементы в народном хозяйстве, не станет меньше.

Прибавление лантаноидов к чугуну буквально волшебным образом действует на этот обычно хрупкий сплав. Редкоземельные элементы сильно понижают хрупкость чугуна и в такой же степени увеличивают его прочность. Чугун, который, как известно, с трудом поддается обработке, будучи сплавлен с редкоземельными, может даже обтачиваться на токарных станках. Причем примешивать эти металлы надо в самых мизерных количествах: от трехсот граммов до двух килограммов на тонну чугуна. А самое важное то, что для этого редкоземельные металлы не надо разделять: их действие отлично проявляется, когда их прибавляют «скопом».


Последние годы показали, что редкоземельные элементы могут быть использованы для варки высококачественного стекла, которое находит применение и для линз телескопов, и для иллюминаторов глубоководных батисфер, и для хранения исключительно чистых веществ.

Интерес исследователей к элементам-близнецам настолько велик, что буквально каждый месяц приносит новые фундаментальные открытия в этой области. Не так давно были описаны необычные свойства гадолиния. Оказалось, что он с успехом может быть использован для получения сверхнизких температур. Для этого сернокислую или хлористую соль гадолиния помещают в атмосферу инертного газа и подвергают действию магнитного поля. При этом соль гадолиния нагревается, и тепло передается газу. После этого газ откачивают и прекращают воздействие магнитного поля. При этом гадолиний заметно охлаждается в сравнении с первоначальной температурой.

Многократно повторяя такую операцию, исследователи достигли температуры, которая всего на две десятитысячных доли градуса отличается от абсолютного нуля.

Сто лет назад о существовании многих из лантаноидов знали, вернее, догадывались, но выделить в чистом виде соединения их не могли. Шестьдесят лет назад – на рубеже столетий – на Всемирной выставке в Париже в качестве экспоната, иллюстрирующего громадные достижения химии, демонстрировались чистые препараты нескольких редкоземельных. Десять лет назад разделение редкоземельных элементов почиталось делом великой трудности. Сейчас, в наши дни, в самой обычной лаборатории можно получать чистые препараты лантаноидов. Это сделает вам любой лаборант, пользуясь в качестве инструкции широко известными работами в этой области, вошедшими в вузовские учебники.

Так впервые за геологическую историю нашей планеты человек нарушил трогательное единство редкоземельных элементов и разбил дружную семью элементов-близнецов. Это, пожалуй, единственный случай, когда можно приветствовать людей, посягающих на единство «семьи».

В одном из номеров старинного юмористического журнала приблизительно тех лет, когда в таких журналах печатался Антон Павлович Чехов, был помещен рисунок. Десяток бородатых людей, в которых без труда можно было уловить портретное сходство с выдающимися русскими учеными того времени, заарканив веревкой улитку, на которой было написано слово «наука», тянули ее на железнодорожную платформу. Это, очевидно, должно было обозначать, что темпы развития науки ускорились. Не знаю, показался бы остроумным аналогичный рисунок теперь, но то, что паровоз следовало бы заменить космической ракетой, – в этом можно не сомневаться. Рассказанная только что история элементов-близнецов – лучшее тому подтверждение.


Миллиардная доля земной коры

Здесь, конечно, не удастся рассказать о всех областях «химической Антарктиды». Слишком много элементов до самого последнего времени были недоступны и исследователям, и промышленности. Но о некоторых «белых пятнах» нельзя не упомянуть. Более того, о них нельзя даже сказать кратко.

К таким областям химической карты относится 75-я клетка Периодической системы – элемент рений, самый «младший» по времени открытия. Из всех элементов, которые находятся в земной коре, этот элемент позже всех раскрыл свое инкогнито. Символ Re – рений – только в 1925 году встал в клетке № 75 на место вопросительного знака. Все остальные дополнения в Периодической системе произошли уже за счет искусственно полученных элементов.


Причина столь позднего вступления рения в число «прописанных» обитателей Периодической системы объясняется его исключительной редкостностью. На долю рения приходится миллиардная доля веса земной коры. Такие металлы, как золото или платина, содержатся в земной коре в количествах, впятеро превосходящих долю рения.

Вот почему ни один, пожалуй, другой химический элемент не водил так долго «за нос» химиков, охотившихся за новыми элементами, как этот тускло-серебристый металл, не отличающийся, на первый взгляд, ничем особенным, кроме разве большого удельного веса.

Количество экспедиций, занимавшихся и занимающихся сейчас поисками «снежного человека», – ничто в сравнении с числом исследователей, которые посвятили себя поискам этого элемента.

К. Г. Паустовский в одном из своих очерков («Погоня за растениями») писал: «Известно, что настойчивость ученых чудовищна и может вывести из себя даже самого спокойного человека». Так вот, здесь все было наоборот. Загадка 75-го элемента заставила отступить не одного исследователя, и не один из тех, кто все же продолжал поиски, рано или поздно начинал роптать на несговорчивого и пока еще неизвестного обитателя квартиры № 75.

В 1869 году 75-й, по-видимому, выделил Гияр, дав этому элементу название «уралий». Но потом он отказался от своих выводов. Этим самым он избежал печальной судьбы химика Розе, радостное сообщение которого об открытии им в 1846 году элемента пелопия было опровергнуто несколькими исследователями сразу. Такая же судьба постигла и элемент ниппоний, описанный в 1906 году Огавой, и люций Баррьера, сообщение о котором появилось в 1896 году, и многие другие.

Но все-таки в одном случае ошибки, по-видимому, не было. 27 июня 1877 года появилось сообщение русского химика С. Керна о том, что в веществах, оставшихся после переработки платиновых руд, им открыт новый элемент, который он предложил назвать дэвием в честь знаменитого английского химика Г. Дэви. Определение атомного веса дэвия и его свойств показали, что он должен занять в Периодической системе место, уготованное Д. И. Менделеевым для элемента, названного им дви-марганцем. Лет двадцать спустя американский химик Мале повторил работу Керна, но из платиновых остатков не смог получить выделенный русским исследователем элемент. Сыграло ли тут роль то, что платиновая руда была иного происхождения, чем в опытах Керна, или то, что Мале был неопытным химиком, но факт остается фактом: открытие дэвия не подтвердилось. Ответа Керна не последовало; по-видимому, он к тому времени уже скончался, а так как критикам всегда верят немножко больше, то в клетке № 75 снова воцарился тот же вопросительный знак.

Только когда существование элемента 75-го – рения – было бесспорно установлено Ноддаком, Таке и Бергом, химики обратили внимание на то, что все реакции, которые Керн описал для дэвия, тождественны реакциям рения.

Так почти на пятьдесят лет несправедливая критика отодвинула срок замечательного открытия, каким всегда является обнаружение нового элемента.

Только пять из естественных химических элементов могут похвалиться, что в цифре, выражающей их содержание в земной коре, после запятой стоит большее число нулей, чем у рения: это элементы полоний, радон, радий, актиний и протактиний. Однако рений имеет над ними то несомненное преимущество, что в настоящее время он добывается в промышленном масштабе. Да, тот элемент, который два десятка лет нельзя было сыскать даже в самой богатой демонстрационной коллекции, сейчас производится на специальных заводах.

Дело в том, что свойства рения оказались настолько интересными и многообещающими для современной техники, что химики сочли своим долгом разработать методику получения больших количеств этого элемента.

Рений – один из самых тугоплавких металлов. Сейчас, когда с высокими температурами приходится сталкиваться во многих областях науки и техники и, прежде всего, в ракетной авиации, это свойство рения является исключительно ценным. Только один металл плавится при более высокой температуре, чем рений. Это вольфрам. Но и 3200° – температура плавления рения – величина достаточно внушительная.


Вторым ценным свойством рения является его химическая инертность. Даже при полутора тысячах градусов он не соединяется с кислородом воздуха. При обычных же температурах он не изменяется совершенно. Блестящая пластинка из рения не тускнеет практически вечно. Легко представить, какое применение найдет этот металл для отделки автомобилей и самолетов.

Большинство кислот не оказывает на рений никакого действия. Он сохраняет «невозмутимость» даже при обливании его горячей плавиковой кислотой, которая славится своей агрессивностью. Поэтому самая небольшая добавка рения делает многие сплавы кислотоупорными. Химическая аппаратура из сплавов рения служит в десятки раз дольше, чем агрегаты, сконструированные из обычных сплавов.


Не надо быть особенным пророком, чтобы предсказать, что в самом недалеком будущем рений вытеснит вольфрам во многих областях техники. Дело прежде всего в том, что при высоких температурах рений обладает большей прочностью, чем вольфрам. Поэтому уже сейчас в наиболее ответственных машинах поверхности трущихся деталей, если при трении возникает высокая температура, покрывают рением. Ко всему следует добавить, что рений очень легко и хорошо образует электролитические покрытия, а это в высшей степени ценное свойство этого элемента.


    Ваша оценка произведения:

Популярные книги за неделю