355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Корякин » Биография атома » Текст книги (страница 6)
Биография атома
  • Текст добавлен: 7 октября 2016, 19:22

Текст книги "Биография атома"


Автор книги: Юрий Корякин


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 6 (всего у книги 11 страниц)

Пауза в развитии ядерной физики кончилась. Началась новая волна интенсивных исследований, но уже при помощи нейтронов. Это был «бег на стартовой дорожке исследований», как сказал Резерфорд. И лидировали в этом стремительном беге науки все те же супруги – Фредерик и Ирен Жолио-Кюри. Они продолжали работать в Институте радия под руководством уже всемирно известной Марии Кюри.

Конечно, им было немного досадно, что в очень важном открытии нейтрона, которое, как говорится, было у них уже «на носу», их опередил, причем буквально на несколько дней, Чедвик. Но имеет ли это какое-нибудь значение, если наука от этого только выигрывает! А только так, а не иначе относиться к научной работе их научила Мария Кюри, и они продолжали исследования при помощи нейтронов.

Все новые и новые статьи об исследованиях нейтронов появлялись во французских научных журналах в 1932– 1934 гг. Под статьями стояли подписи Фредерик и Ирен Жолио-Кюри. Ими была точно измерена масса нейтрона, изучены условия, при которых возникает нейтронное излучение, и проведен большой ряд других исследований. И, наконец, 15 декабря 1934 г. они представили во Французскую академию наук новый доклад о еще одном замечательном открытии. Молодые супруги Кюри опрокинули устоявшееся мнение, что явление радиоактивности не подчиняется воле человека. Своим открытием они доказали, что радиоактивность можно создать.

Что случилось с алюминием?

Однажды Фредерик и Ирен Жолио-Кюри работали с радиоактивным элементом, открытым еще давно Марией и Пьером Кюри,– полонием. В ходе опытов нужно было на пути лучей, испускаемых полонием, поставить тонкую алюминиевую пластинку, чтобы отсеять альфа-лучи, испускаемые полонием. Пластинку поставили. Как и следовало ожидать, альфа-лучи задерживались пластинкой, а бета-лучи, также входящие в состав излучения полония, проходили через пластинку.

Но вот полониевый источник убрали. Что за чудо? Излучение продолжается, алюминиевая пластинка сама стала радиоактивной! Было над чем задуматься. И пока Фредерик и Ирен размышляли над непонятным явлением, излучение алюминия через несколько минут прекратилось. Новая загадка.

Опыт повторили. И снова возникало излучение из алюминия, которое пропадало через несколько минут. Что же происходит с алюминием? Почему он начинает сам излучать, причем его таинственное излучение довольно быстро пропадает?

>

Вот в чем дело

Было совершенно ясно, что причиной появления кратковременной радиоактивности у алюминия является облучение его излучением полония. Значит, решают супруги

Фредерик и Ирен Жолио-Кюри в 1930-х годах,

Жолио-Кюри, это излучение действует на атомы алюминия так, что они сами становятся радиоактивными. Но только на несколько минут, а не на тысячи лет, как атомы радия, урана, тория, полония и других естественных радиоактивных элементов.

Раз альфа-лучи полностью поглощались алюминиевой пластинкой, значит, только они и «ответственны» за радиоактивность алюминия. Это ясно. Но каков механизм возникновения радиоактивности? И супруги Жолио-Кюри делают смелое предположение: при захвате альфа-частиц ядрами алюминия происходит ядерная реакция, в результате которой эти ядра сами делаются способными испускать радиоактивное излучение. Но раз ядро поглотило альфа– частицу, то оно уже не является ядром атома алюминия, а становится ядром другого элемента—фосфора.

Но это надо доказать. И супруги Кюри идут к химикам. Они просят рекомендовать им такой способ обнаружения фосфора в веществе, чтобы его присутствие можно было обнаружить в течение нескольких минут. Ведь радиоактивность пропадает очень быстро. Но химики только разводили руками – способа такого молниеносного анализа они не знают. Вот если в течение нескольких часов, то пожалуйста!

Ничего не оставалось делать, как самим превратиться на время в химиков и разработать такой способ. Прошло немного времени, и такой способ Фредерик и Ирен Жолио– Кюри разработали. Они научились менее чем за три минуты определять присутствие фосфора и доказали, что радиоактивные ядра, возникающие в алюминии, действительно являются ядрами атомов фосфора.

Но супруги Жолио-Кюри шли еще дальше. Они доказали, что под действием альфа-частиц из ядер атомов алюминия образуются не встречающиеся в природе ядра атомов фосфора– новый, радиоактивный изотоп фосфора. Так впервые появился хорошо известный нам термин – радиоактивный изотоп.

Количество искусственно полученных радиоактивных атомов фосфора в результате радиоактивного распада уменьшалось вдвое примерно через каждые три минуты: излучение довольно быстро прекращалось.

Сделанное открытие чрезвычайно заинтересовало Фредерика и Ирен Жолио-Кюри. Они решили выяснить: а нельзя ли создать радиоактивные изотопы других элементов? Попробовали облучать альфа-частицами и нейтронами другие элементы и получили новые искусственные элементы. Стало ясно, что радиоактивные изотопы элементов, никогда не существовавшие в природе, могут быть созданы руками человека.

И супруги Жолио-Кюри записали в своем докладе представленном 15 января 1934 г. во Французскую академию наук: «Впервые и окончательно была установлена возможность создать вызванную внешней причиной радиоактивность определенных атомных ядер, которая сохранялась в течение измеримого времени и после устранения возбудившей ее причины».

Изотопный ассортимент

Уже через год после открытия искусственной радиоактивности учеными было получено более пятидесяти радиоактивных изотопов. Их стали получать главным образом путем облучения различных веществ нейтронами. Ведь для этой цели нейтроны более эффективны, так как они свободно проникают в глубь ядер.

Радиоактивные изотопы стали широко использоваться учеными для исследований по ядерной физике. По желанию можно было получить изотопы, испускающие различные виды излучений: нейтроны, альфа-, бета– и гамма-излучение,– причем любой интенсивности и с различными энергиями испускаемых частиц.

Количество радиоактивных изотопов, получаемых учеными, становилось все больше и больше. Были получены радиоактивные изотопы для разных целей и с самыми разнообразными свойствами. В настоящее время количество их достигает нескольких сотен. Настоящий изотопный ассортимент!

Это открытие принесло Фредерику и Ирен Жолио– Кюри мировую славу. Они были награждены орденами Почетного легиона, почетными премиями Французской академии наук и, наконец, в 1935 г.—Нобелевской премией.

Замечательное открытие искусственной радиоактивности привело к широкому использованию радиоактивных изотопов в науке и технике. Сейчас можно уже говорить о существовании целой изотопной промышленности, т. е. промышленности, занимающейся производством изотопов для самых разнообразных целей.

Эти изотопы и продаются в магазине на Ленинском проспекте в Москве – столице страны, которая широко использует замечательное открытие Фредерика и Ирен Жолио-Кюри для благо человека.

Но как и для чего используются радиоактивные изотопы?

Невидимки-помощники

Если бы пришлось рассказывать о всех сторонах применения радиоактивных изотопов, то описание этого составило бы несколько толстых томов. В настоящее время, пожалуй, нет ни одной отрасли науки и техники, в которой не использовались бы радиоактивные изотопы. Они широко применяются в металлургии, машиностроении, приборостроении, медицине, сельском хозяйстве, биологии, химии, геологии и многих, многих других отраслях знаний благодаря основному своему свойству – радиоактивности. Атомы радиоактивных изотопов – это невидимые радиостанции, которые все время посылают сигналы о своем местонахождении. Эти сигналы – альфа-, бета– и гамма-лучи и нейтроны, испускаемые радиоактивными атомами,– фиксируются специальными приборами – дозиметрами или счетчиками частиц. Этими приборами и обнаруживают местонахождение радиоактивных атомов.

И это очень удобно. Понадобилось, например, металлургам узнать, как быстро изнашиваются стенки домны. Делают очень просто. В стене домны закладывают немного радиоактивного вещества. После того как домна начала работать, пробы металла из каждой плавки проверяют на радиоактивность. Присутствие радиоактивных атомов в чугуне служит признаком износа стен домны. Удобно, не правда ли? И совсем не нужно прерывать работу печи, лезть в нее для проверки состояния стен домны. Это можно знать, находясь в лаборатории.

Или в медицине. Понадобилось, например, узнать, как распределяется какое-либо лекарство в организме человека. В состав этого лекарства, допустим, входит фосфор. Тогда для приготовления лекарства используют фосфор, содержащий немного радиоактивных атомов (радиоактивный изотоп фосфора). Приложив счетчик к разным участкам тела человека, принявшего такое лекарство, можно точно узнать, где оно задержалось. Или в сельском хозяйстве. Нужно, например, узнать, хорошо ли усваивается удобрение растением. В удобрение добавляют немного радиоактивных атомов и затем поливают растение раствором этого удобрения. Если через некоторое время это растение сорвать и приложить к фотобумаге, а фотобумагу затем проявить то по степени почернения ее можно судить, как распределились радиоактивные атомы удобрения в растении. А вот еще пример. Газовая магистраль, проходящая под улицами города, дала трещину. Газ теряется, но где место повреждения – неизвестно. Можно, конечно, вырыть траншею вдоль трубы и найти место повреждения. Но это дорого и долго. Вместо этого в газ, проходящий по трубе, добавляют газ с радиоактивными атомами. А затем со счетчиком радиоактивного излучения идут вдоль места расположения трубы. В том месте, где газ просачивается через землю, счетчик сразу дает показание. Место повреждения трубы определяется очень точно, и отрывать газовую магистраль нужно только в одном месте. Быстро, удобно и дешево.

Подобных примеров можно привести тысячи. Такой способ использования радиоактивных изотопов называется методом «меченых» атомов. Атомы «метят», делая их радиоактивными, а затем определяют их местонахождение, которое характеризует ход того или иного исследуемого процесса.

Кроме метода меченых атомов, применяются другие многочисленные методы использования радиоактивных изотопов. Особенно широко они применяются в медицине для так называемой лучевой терапии. Этот термин пришел на смену известному нам термину – кюритерапия. При кюритерапии лечение больных производилось при помощи излучения радия, а в лучевой терапии – при помощи излучения искусственно созданных радиоактивных изотопов. При том широком применении лучевой терапии, как, сейчас, потребовалось бы огромное количество радия. Тех нескольких килограммов радия, которые имеются сейчас во всем мире, конечно, не хватило бы для многочисленных современных лечебных установок. А искусственных радиоактивных веществ можно создать сколько угодно. И стоят они во много раз меньше радия.

Широко применяется излучение для контроля различных процессов. Например, по степени ослабления излучения можно легко и просто контролировать толщину материалов – стальной ленты, бумаги, искусственной кожи и т. д. Небольшой приборчик, называемый толщиномером, ставят рядом с лентой, сматываемой в рулон, и он безошибочно фиксирует в ее отклонения толщины ленты от заданного размера.

Или еще. Недавно разработан прибор для почти мгновенного определения влажности почвы. Ведь содержание влаги в почве очень важно знать для того, чтобы вовремя начать сев. Устройство прибора основано на изменении плотности почвы в зависимости от содержания в ней влаги. Чем больше влаги, тем сильнее земля поглощает радиоактивное излучение. Такой прибор состоит из двух заостренных палочек. На конце одной находится радиоактивный источник, а на конце другой – детектор излучения. Втыкают в почву эти две палочки на определенном расстоянии одна от другой и по прибору определяют прохождение излучения через землю, находящуюся между источником и детектором, а по излучению – содержание влаги в земле.

Таких примеров использования искусственных радиоактивных изотопов можно привести очень много. Потребность в изотопах очень велика. Поэтому и открыт в Москве магазин «Изотопы».

Однако обращаться с радиоактивными изотопами нужно осторожно. Ведь излучение в больших дозах вредно действует на здоровье людей. Поэтому изотопы перевозят и хранят в специальных контейнерах с толстыми стенками, полностью поглощающими излучение. Работают с радиоактивными изотопами только специально подготовленные люди. Вот поэтому не каждому продают изотопы в магазине на Ленинском проспекте, а только тем, кто является представителем организации, использующей эти изотопы.

Рассказывая об открытии искусственной радиоактивности, сделанном Фредериком и Ирен Жолио-Кюри в 1934 г., нам пришлось забежать вперед, в нынешние времена. Теперь мы вернемся назад, к 30-м годам нашего века, к следующему этапу в биографии атома.

Как-то раз...

В лаборатории одного из московских научно-исследовательских институтов пропал радиоактивный источник. Этот источник, использовавшийся для физических исследований, представлял собой металлический патрончик величиной с наперсток, внутри которого помещался радиоактивный источник малой мощности.

Сотрудники лаборатории называли его просто «пулька». Источник стоил дорого, и пропажа его грозила серьезными неприятностями для сотрудников лаборатории. Никто, конечно, не сомневался в том, что в пропаже «пульки» не было злого умысла. Такой источник ведь нельзя использовать ни для каких целей, кроме физических исследований. Начали искать. «Пулька» маленькая, могла закатиться в любую щель, и увидеть ее среди многочисленных приборов и оборудования лаборатории было почти невозможно. Поэтому «пульку» начали искать при помощи прибора, регистрирующего радиоактивное излучение. Но все было безрезультатно: признаков радиоактивности ни в одном месте лаборатории не обнаруживалось. Тогда решили, что уборщица, не заметив «пульки», просто вымела ее при уборке лаборатории и вместе с мусором унесла на институтскую свалку. И как ни было неприятно сотрудникам лаборатории идти на свалку и «обследовать» ее, им пришлось это сделать. В течение нескольких часов под иронические замечания и смех сослуживцев незадачливые сотрудники лаборатории «обследовали» весьма солидное количество мусора и отбросов. Однако добились своего. Действительно, в одном из ящиков было обнаружено присутствие радиоактивности: на дне ящика, под мусором, лежала разыскиваемая «пулька». Однако «искатели» считали себя все-таки удачниками: если бы мусор успели вывезти на городскую свалку, то поиски «пульки» там могли бы не увенчаться успехом или уж, во всяком случае, потребовали бы значительно большего и не очень приятного «труда».

1939 год

18 дней

18 дней отделяют 18 февраля от 30 января. Это новые, И очень важные даты в биографии атома, относящиеся к 1939 г. В эти дни было сделано два научных сообщения. Одно из них, представленное во Французскую академию наук, называлось «Экспериментальное доказательство взрывного расщепления ядер урана и тория под действием нейтронов». Другое сообщение было опубликовано в английском научном журнале «Природа» под названием «Распад урана под действием нейтронов: новый вид ядерной реакции». Автором первого сообщения был Фредерик Жолио-Кюри, авторами второго – немецкие ученые Отто Фриш и Лиза Мейтнер.

И хотя сообщения ученых имели разные названия, в них говорилось об одном и том же: о новом, доселе не известном явлении, происходящем с ядром самого тяжелого в природе элемента – урана. Об этом открытии наш рассказ.

Наблюдения «мальчуганов»

Не удивляйтесь, «мальчуганами» называли группу молодых физиков, образовавшуюся в 1934 г. в Римском университете. В нее входили Сегре, Д’Агостино, Амальди, Разетти, Понтекорво. Возглавлял эту группу Энрико Ферми, будущий великий Ферми, как его потом называли.

Кумиром этих ученых была нейтронная физика. Сколько нового и неизведанного видели они в ней!

Например, облучение элементов нейтронами. Удивительные превращения происходят при этом. Уже было замечено, что, если облучать элементы нейтронами, то в результате поглощения нейтронов ядрами одного элемента, как правило, получаются ядра другого элемента, стоящего на одну клеточку дальше в таблице элементов Менделеева. Это очень интересно.

А что если облучать нейтронами последний элемент – уран? Тогда должен получиться элемент, стоящий уже на 93-м месте. Элемент, которого нет в природе, искусственный элемент! Какой он, как выглядит, как ведет себя? Разве это не заманчиво? Молодым ученым не терпелось это узнать.

Сказано – сделано. Уран облучен нейтронами. Как и следовало ожидать, он приобрел искусственную радиоактивность. Но эта радиоактивность была какая-то странная: после облучения в уране появился не один элемент, как ожидалось, а по крайней мере десяток. И Энрико Ферми, пославший сообщение об этом в научный журнал, писал, что здесь налицо какая-то загадка поведения урана. Возможно, что появился 93-й элемент, но точных доказательств этому нет. С другой стороны, есть доказательства, что появились какие-то другие элементы. Но какие? Это пока неясно.

Совершенно непонятно!

Физики очень заинтересовались сообщением Энрико Ферми. Заинтересовались этим Ирен и Фредерик Жолио– Кюри. Ирен, имеющая большой опыт по химическим исследованиям, решила точно выяснить, прав ли Ферми, высказывая предположение, что после облучения урана нейтронами в нем появляются какие-то новые радиоактивные элементы.

Она повторила опыты Ферми и тщательно исследовала химический состав кусочка урана. И получила невероятный результат. В уране появился элемент лантан! Откуда он взялся? Ведь до облучения в уране его не было, и это было проверено. И вдруг лантан, элемент, стоящий в середине таблицы Менделеева?!

У Фредерика и Ирен сомнений не было. То, что появился новый элемент, это безусловно. Но почему? Это неясно. Значит, надо продолжать исследования.

Ирен Жолио-Кюри права!

Двое известных немецких физиков Отто Ган и Фридрих Штрассман никак не хотели согласиться с результатами опытов Ирен Жолио-Кюри. Откуда было взяться лантану? Нужно как можно тщательнее проверить опыты Ирен

Жолио-Кюри и доказать ей, что она ошиблась. Так они и решили.

Но произошло невероятное! Когда Ган и Штрассман сделали тщательный химический анализ урана (а они и химиками были отличными) после его облучения нейтронами, то убедились, что в уране появился не только лантан, но и барий. А барий также стоит примерно в середине таблицы Менделеева. Снова загадка. Но пришлось признать, что Ирен Жолио-Кюри права.

Догадка Лизы Мейтнер

Отто Ган.

Ган и Штрассман сообщили о своих наблюденияхв научный журнал. Написали они письмо и известному физику, их другу Лизе Мейтнер. Может быть, она поможет разгадать эту загадку? Лиза Мейтнер в то время была уже немолодой женщиной, известным ученым. С ее мнением считались многие. Но тяжелые жизненные испытания выпали в то время на долю Лизы Мейтнер. Преследуемая германским фашизмом, она была вынуждена бежать из Германии в Данию. В Копенгагене она стала работать вместе с другим знаменитым физиком, Нильсом Бором.

Письмо друзей очень заинтересовало Лизу Мейтнер. Действительно, в чем дело? Ферми, Кюри, Ган, Штрассман – замечательные ученые, превосходные экспериментаторы– не могли ошибаться. В облученном нейтронами уране действительно появляются элементы, имеющие примерно вдвое меньший атомный вес, чем уран.

И у Лизы Мейтнер мелькает догадка. А что если... Нет, это невероятно. Это чудовищно смело и необычно.

Ну, а все-таки? А что, если предположить, что при попадании нейтрона ядро урана разваливается на части?

Скажем, пополам. Ведь тогда можно объяснить появление в уране элементов с весом, примерно вдвое меньшим, чем уран.

Но это так необычно.

Снова и снова Лиза Мейтнер думает над этим. И чем больше думает, тем больше убеждается в том, что иначе и не может быть. Да, несомненно, ядро урана разваливается пополам. А образовавшиеся осколки и являются лантаном и барием.

И Лиза Мейтнер пишет сообщение в английский научный журнал. Опубликовано оно было 18 февраля 1939 г.

Фредерик Жолио-Кюри опережает Лизу Мейтнер

Но сообщение Лизы Мейтнер запоздало на две недели, Вы помните, что после обнаружения лантана в уране Фредерик Жолио-Кюри поставил перед собой задачу разгадать тайну появления этого элемента. Продолжая исследование, он пришел к такому же выводу и экспериментально доказал, что под действием нейтронов ядра урана разваливаются на два осколка. Об этом Жолио-Кюри и сообщил во Французскую академию наук двумя неделями

раньше, чем появилась статья Лизы Мейтнер. Но Фредерик Жолио-Кюри, этот замечательный ученый, шел дальше. Он по-прежнему лидировал на «дорожке исследований».

Это можно заметить, внимательно вчитавшись в заголовки сообщений Лизы Мейтнер и Фредерика Жолио– Кюри.

Прочитайте внимательно. Лиза Мейтнер пишет о распаде урана, а Жолио-Кюри – о взрывном расщеплении ядер урана. Лиза Мейтнер пишет более спокойно, фиксируя только факт деления ядра, а Фредерик Жолио-Кюри пишет более эмоционально, более широко. Он не только фиксирует факт расщепления, но и подчеркивает взрывной характер этого расщепления.

Следовательно, уже только из заголовков сообщений можно сделать вывод о том, что Фредерик Жолио-Кюри шел дальше Лизы Мейтнер в своих исследованиях. Так оно и было в действительности.

Он не только доказал факт деления ядра урана, но и первым пришел к главнейшему, необычайно важному для дальнейшего развития науки об атоме, выводу: при делении ядра урана выделяется огромная энергия! Ядро распадается на два осколка не как-нибудь, потихоньку, а носит характер взрыва. Осколки деления с необыкновенной скоростью разлетаются в разные стороны. Их огромная энергия постепенно распределяется между соседними ядрами, и весь кусок урана нагревается. А если число таких делений велико, то и выделяющаяся в результате торможения этих осколков тепловая энергия будет огромной.

Это и есть атомная энергия

Еще в 1935 г. при получении Нобелевской премии Фредерик Жолио-Кюри сказал прозорливые слова:«...мы вправе сказать, что искатели, создавая или расщепляя по своей воле элементы, смогут осуществить настоящие цепные реакции взрывного типа и перерождение элементов. Если такое перерождение распространится, можно предвидеть огромное освобождение энергии, способной быть использованной». Этим словам было суждено сбыться через несколько лет. Но тогда на них никто не обратил внимания: большинство ученых считало, что использование атомной энергии – дело далекого будущего. Даже Резерфорд считал разговоры об этом «вздором». Однако в 1939 г. ученым стало ясно, что они близки к заветной цели. Эффект нагревания куска урана при облучении нейтронами – это и есть искусственно выделенная атомная энергия. Ну, а если все ядра атомов развалятся одновременно? Что произойдет при этом – каждому понятно. Будет колоссальный взрыв. Когда подсчитали эту энергию, то оказалось, что если бы все ядра урана, содержащиеся только в одном грамме урана, разделились, то выделилось бы столько же энергии, сколько выделяется при сжигании нескольких тонн самого лучшего угля!

Но где взять нейтроны?

Когда Фредерик Жолио-Кюри сделал такой расчет, у него просто захватило дух. Действительно, каким неистощимым источником энергии может стать уран. Нужны только нейтроны, много нейтронов. И чтобы каждый нейтрон попал в ядро.

Вот в этом-то и была загвоздка. Все известные ученым источники нейтронов давали их во много миллиардов раз меньше, чем требовалось. Где взять нейтроны? И не мало, а огромное количество.

Но на этот раз природа помогла людям. И эту помощь первым заметил все тот же неутомимый исследователь– Фредерик Жолио-Кюри.

Природа помогает ученым

Сообщение Жолио-Кюри, представленное 30 января во Французскую академию наук, давало ответ и на вопрос о том, откуда взять большое количество нейтронов для деления большой массы урана. Сама природа позаботилась об этом. Фредерик Жолио-Кюри заметил, что в тот момент, когда ядро урана разваливается на два осколка, из него вылетают новые нейтроны! Правда, немного, но все-таки больше, чем расходовалось на деление ядер.

Тогда сразу стал ясен вопрос о принципиальном пути выделения внутриатомной энергии. Нейтрон, попавший в ядро атома урана, вызовет его деление. При этом освободятся из ядра два-три новых нейтрона. Эти нейтроны вызовут деление новых ядер урана и т. д. А поскольку деление ядер и освобождение новых нейтронов происходит почти мгновенно, то такой процесс будет происходить очень быстро. При этом выделится колоссальная энергия, которая должна все смести со своего пути.

Такой процесс называется цепным процессом или цепной ядерной реакцией.

Как будто принципиально все просто. Но почему тогда кусок урана, если его облучать нейтронами, не взрывается? На это Фредерик Жолио-Кюри ответить пока не мог. Но и то, что было рассказано им в январском сообщении 1939 г., навеки обессмертило его имя. Стало ясно, что есть возможность для выделения атомной энергии.

«Прометеем науки» назвал французский ученый Поль Ланжевен атомную энергию. Удастся ли ее расковать, вот в чем был вопрос. Какие условия для этого необходимы, с чего нужно начинать? Это оставалось загадкой. Разгадать эту загадку помогли советские ученые.

1940год. Январь. Май

«ЖЭТФ»

Странное слово, не правда ли? Но все объясняется просто. Это начальные буквы слов «Журнал экспериментальной и теоретической физики». Внешне это не очень заметный журнал. Серая обложка, никаких украшений. Внутри журнал сплошь заполнен формулами, схемами, вычислениями. Журнал рассчитан на неширокий круг читателей – только специалистов-физиков.

Но, как говорится, не красна изба углами, а красна пирогами. И вот такие «пироги» и появились в январском и майском выпусках журнала «ЖЭТФ» за 1940 г.

Это были статьи двух видных советских ученых—Я. Зельдовича и Ю. Харитона. Назывались они: «О цепном распаде урана под действием медленных нейтронов» и «Кинетика цепного распада урана».

Советская школа физиков

Прежде чем говорить об этих статьях, как о новом этапе в биографии атома, заглянем немного в прошлое.

Тяжелое наследство досталось советским ученым от царской России. Империалистическая война, разорительная гражданская война, иностранная интервенция, период восстановления народного хозяйства – трудные были годы. Но даже в это время советское правительство делало все возможное для обеспечения работы физиков. Владимир Ильич Ленин внимательно следил за работой советских ученых и всемерно помогал им. Несмотря на трудности, недостаток самых элементарных приборов и материалов, советские физики постепенно разворачивали работы по исследованию тайн атома.

Исследованиями в области ядерной физики занимались ныне всемирно известный академик Д. Скобельцын, Д. Иваненко, о котором мы уже упоминали, и другие ученые. Наиболее талантливые молодые физики посылались за границу для изучения опыта иностранных ученых по овладению тайнами атома. Так, например, к знаменитому английскому ученому Резерфорду в 20-х годах были посланы Ю. Харитон, Л. Капица, А. Лейпунский. Сейчас они видные советские ученые, академики.

Начались годы пятилеток. По всей стране сооружались новые заводы, фабрики, институты, новые лаборатории. В высших учебных заведениях стали готовить все больше и больше специалистов по физике, в том числе и по ядерной физике. В лаборатории и научно-исследовательские инсти туты начало поступать первоклассное электронное и электрическое оборудование, необходимое для ядерных исследований. Начали проводиться научные съезды и конференции, на которых зачитывались доклады советских ученых об открытых ими явлениях ядерной физики. К научным сообщениям советских ученых-ядерщиков все больше и больше прислушивались видные иностранные ученые.

Группа советских ученых-физиков в лаборатории (1934 г.). Слева направо: Фок, Гуревич, Курчатов, крайний справа – Скобельцын.

На одном из научных заседаний. Справа налево: Фок, Алиханов,Курчатов.

Забота советского правительства о нуждах науки не замедлила сказаться. 1932 год принес теоретическое обоснование нейтронно-протонной структуры атомных ядер. Это сделал Дмитрий Иваненко.

Исследования с нейтронами интенсивно стали проводиться и советскими учеными. Их тоже интересовал замечательный металл нашего века – уран. Они внимательно следили за работами Резерфорда, Ферми, Гана, Штрассмана, Мейтнер, Жолио-Кюри. И не только следили, но и активно участвовали в экспериментальных и теоретических исследованиях.

Таким образом, в предвоенные годы в Советском Союзе образовалась отечественная школа опытных физиков-ядерщиков. Вот несколько имен видных советских ученых: Иоффе, Скобельцын, Капица, Фок, Иваненко, Мысовский, Курчатов, Зельдович, Харитон, Лейпунский, Флёров, Петржак, Векслер, Черенков, Тамм, Ландау, Алиханов. Ими был сделан ряд важных исследований, значительно обогативших знания ученых о мире атомов.

Советская школа физиков была способна самостоятельно разрешать важные и сложные проблемы, стоящие перед ядерной физикой. Как мы узнаем потом, они это успешно доказали. Советские ученые видели в атомной энергии великую силу технического прогресса. Огромное количество энергии, заключенное в атомном ядре, позволило бы создать новые, невиданные источники энергии. А такие источники энергии крайне нужны быстро развивающемуся народному хозяйству СССР.

Поэтому цепная реакция деления ядер урана, при которой освобождается огромное количество энергии, и была предметом пристального внимания советских физиков.

Два условия

Теперь вернемся к статьям, опубликованным в советском научном журнале «ЖЭТФ».

В этих статьях двое замечательных советских ученых теоретически обосновали возможность осуществления цепной реакции деления. Фредерик Жолио-Кюри, обнаружив вылет нескольких нейтронов из делящегося ядра урана, сразу пришел к выводу, что именно эти нейтроны и помогут осуществить цепной процесс. Но какие должны быть условия для того, чтобы начался такой процесс?

Статьи Зельдовича и Харитона давали ответ на этот вопрос. Авторы статей в заключение писали: «Можно думать... что, создавая большую массу металлического урана либо... обогащая уран изотопом 235, окажется возможным создание условий цепного распада урана... причем это приведет к развитию ядерной реакции».

Разберем это утверждение. Во-первых, почему нужна большая масса металлического урана? Ведь ядра урана делятся одинаково независимо от того, в каком куске урана они находятся – большом или малом. Но, оказывается, для цепной реакции это не все равно. Вспомним, какие соображения были у Жолио-Кюри. В ядро урана попал нейтрон, и ядро развалилось на две части. Одновременно вылетело два-три нейтрона. Эти нейтроны могут попасть в новые ядра и вызвать их деление. Тогда освобождаются новые нейтроны и т. д. В том случае, когда число получаемых вновь нейтронов не убывает со временем, идет, как говорят, цепная реакция. Основным условием для протекания такой реакции должно быть то, чтобы определенная доля освобождающихся нейтронов обязательно попала в другие ядра урана.


    Ваша оценка произведения:

Популярные книги за неделю