Текст книги "Биография атома"
Автор книги: Юрий Корякин
Жанр:
Физика
сообщить о нарушении
Текущая страница: 5 (всего у книги 11 страниц)
Утверждать противоположное – значит согласиться с тем, что существуют какие-то предпосланные «свыше» часы, которые отстукивают время. Такое измерение времени, вне существования материи, может производить только сверхъестественное существо, т. е. бог.
Или явление радиоактивности. Не зная законов сохранения вещества и энергии, легко можно впасть в ошибку, считая, что при радиоактивных излучениях материя «исчезает». А это идеалистический вывод.
Такие и аналогичные, философски неправильные, выводы стали делать из открытий науки некоторые ученые. К ним относились француз Пуанкаре, немец Мах, русский Богданов и др. Идеалистические толкования великих открытий физики получали все большее и большее распространение. И в сущности это было не что иное, как протаскивание поповщины во взгляды на природу, как желание увести ученых, исследователей от решения насущных проблем. Так возник кризис в физике. И разрешить его мог только тот, кто с правильных идейных позиций объяснит ученым, в чем они заблуждались, истолковывая открытия атомной физики. Такой человек нашелся. Это был Владимир Ильич Ленин.
Пророческие слова
В мае 1909 г. вышла эта книга. Изданная с большим трудом в России на плохой бумаге и всего лишь тиражом 2000 экземпляров, она ничем внешне не привлекала к себе внимания. Книга называлась «Материализм и эмпириокритицизм». Несколько месяцев напряженно трудился над ней Владимир Ильич. Находясь в эмиграции в Швейцарии, куда он вынужден был уехать от преследований царского правительства, Ленин напряженно работал над книгой. Более 200 трудов по философским и научным проблемам ему пришлось прочитать и изучить.
Своей книгой Ленин нанес сокрушительный удар по идеалистическим толкованиям открытий атомной физики. Кризис в физике, по Ленину, связан с тем, что прежние представления о строении материи меняются, по мере того как знания человека о природе вещей становятся богаче и глубже. Однако, как бы ни менялись наши представления о строении материи, неизменным остается тот факт, что материя существует независимо от нашего сознания.
Бесконечно сложна материя, но так же бесконечны способности человека познавать тайны окружающего нас мира.
В этой книге Ленина есть пророческие слова о неисчерпаемости атома и электрона. Последующее развитие науки блестяще подтвердило гениальное высказывание Ленина. Ленин также показал, что понимание явлений природы, дальнейшее развитие науки немыслимо без правильного диалектического взгляда на природу вещей. Путь развития атомной физики был философски освещен Лениным на целую эпоху вперед. Так великое материалистическое учение позволило Ленину разобраться в сложных научных проблемах атомной физики и наметить пути выхода ее из кризиса. Этим самым в биографию атома были вписаны новые страницы.
1911 год
«Эрнест Резерфорд... произвел величайшую перемену в нашем взгляде на материю со времен Демокрита».
Английский физик АРТУР ЭДДИНГТОН
Что волновало ученых?
Наступление на атом продолжалось с новой силой.
Вспомним «пудинг с изюмом» – модель атома, которую создал Томсон в 1903 г. Ведь он предположил, что атом представляет собой сферу, равномерно заряженную положительным электричеством, в которую вкраплены отрицательно заряженные электроны. Сумма всех положительных зарядов равна сумме отрицательных. В целом атом нейтрален.
Но многое было неясно в этой модели.
Что представляет собой положительно заряженная масса атома?
Как связать между собой модель атома Томсона и наблюдаемые явления испускания из атома бета-частиц, т. е. электронов, положительно заряженных альфа-частиц и гамма-лучей, не имеющих заряда?
Есть ли в атоме положительно заряженные частицы?
Наконец, правильна ли модель атома, созданная Томсоном?
Ведь он создал модель на основе предположений. А их надо подтвердить опытом.
Все эти вопросы волновали ученых. И постепенно атом раскрыл свои тайны. Особенно много сделал в этом отношении знаменитый английский ученый Эрнест Резерфорд.
Важнейшая дата
1911 год вошел в биографию атома, как год создания новой модели атома, модели, положившей начало современному представлению об атоме. И эта модель ничего общего не имела с моделью «пудинг с изюмом» Томсона. Ее создал Резерфорд, ученик Томсона.
Доказательства правильности новой модели были неопровержимыми. И модель атома Томсона постепенно была отвергнута учеными. На смену ей пришла модель атома Резерфорда, о которой мы и хотим рассказать.
Студент делает важное предположение
Рассказывая биографию атома, мы уже несколько раз упоминали о Резерфорде. Это он впервые сделал предположение, что радиоактивность – внутриатомный процесс, а в 1899 г. обнаружил в составе излучения, испускаемого ураном, два сорта лучей: альфа– и бета-лучи. Это он в 1900 г. установил, что альфа-лучи представляют собой поток атомов гелия и что радий непрерывно превращается в другой элемент—радон.
Но еще значительно раньше (в 1891 г.), когда Резерфорд только учился в Кембриджском университете, на заседании студенческого научного общества он выступил с одним докладом. Название доклада для того времени звучало очень странно: «Эволюция элементов». В этом докладе Резерфорд высказал мысль, что все атомы состоят из одинаковых элементарных частиц. Такая мысль для того времени была очень необычной. Ведь господствовавшая тогда теория Дальтона говорила о том, что атомы элементарны, т. е. неделимы. Поэтому никто и не обратил внимания на высказывание какого-то студента. Но это было прозорливое высказывание. Потом оно блестяще подтвердилось, когда Томсон открыл электрон и разработал первую модель атома, в состав которого входили электроны.
Незадачливый преподаватель
После окончания Кембриджского университета Резерфорд поступил преподавателем в среднюю школу. Но эта деятельность для Резерфорда оказалась неудачной: ему мешало увлечение физикой.
Преподаватели школы, в которой работал Резерфорд, проходя по коридору, не раз обращали внимание на шум в классе, где вел урок Резерфорд. И среди этого шума выделялся громкий голос учителя, который с увлечением рассказывал о новых открытиях в физике, не обращая никакого внимания на шум в классе. Когда преподаватели прислушивались к тому, что говорил учитель, им казалось, что Резерфорд читает лекцию не ученикам школы, а по крайней мере научным работникам. В ней было столько непонятных терминов и объяснений, что не только ученикам, но и преподавателям было неясно содержание лекции. Резерфорд слишком увлекался и забывал о подготовке своих слушателей. Поэтому ученики и шумели.
Однажды в дом к Резерфорду пришло письмо. В нем сообщалось, что ему, как лучшему бывшему студенту университета, присвоена премия. Эта премия давала возможность продолжить образование в лучших английских университетах. Мать немедленно сказала об этом сыну, копавшему картошку на огороде. Резерфорд бросил лопату и воскликнул: «Это последняя картошка, которую я выкапываю». Он ни минуты не раздумывал. Решение пришло сразу: в Кембриджский университет, к известному физику Джозефу Томсону.
Ученик опровергает учителя
Начались годы работы под руководством Томсона. Учитель сразу обратил внимание на своего талантливого ученика.
Вначале Резерфорд занимался исследованиями в области радио. Впоследствии Томсон даже сказал, что он чувствовал себя виноватым, когда посоветовал Резерфорду заняться изучением беккерелевых лучей. Ведь успехи Резерфорда в области радиотелеграфии были очень велики.
Учитель и ученик начали наступление на атом. Последовал ряд блестящих открытий Резерфорда, о которых мы уже рассказали. Наступил 1911 год. В этом году Резерфорд произвел исключительный по своему значению эксперимент, доказавший существование ядра атома.
Эксперимент заключался в следующем. Резерфорд изучал рассеяние альфа-частиц при прохождении их через очень тонкие металлические пластинки. К своему большому удивлению, он заметил, что некоторые альфа-частицы при прохождении пластинки резко изменяли свой путь. Более того, некоторые даже отскакивали назад. Было ясно, что альфа-частицы сталкивались с атомами вещества пластинки. Но почему они при этом резко изменяли направление своего полета? Ведь согласно модели Томсона атом представляет собой сферу с равномерно распределенными положительными зарядами и вкрапленными в сферу электронами.
Схема опыта Резерфорда по пропусканию альфа-частиц через очень тонкие металлические пластинки. Этот опыт показал, что атом имеет ядро, заряженное положительно, и, следовательно, отрицательные заряды атома располагаются отдельно от положительных на электронных оболочках. А в целом атом нейтрален.
В целом он нейтрален. И такую сферу альфа-частицы, несущиеся с огромной скоростью, должны были бы пробивать, по выражению Резерфорда, «как пуля бумагу».
Но они не пробивали сферу. Над этим непонятным явлением долго ломал голову Резерфорд. И наконец пришел к чрезвычайно важному выводу. Раз положительно заряженные частицы резко изменяют свой путь и даже отскакивают назад, значит, они наталкиваются на какую-то положительно заряженную преграду: ведь одноименные заряды отталкиваются. Такой преградой мог быть только атом. Но это опровергает модель Томсона, согласно которой атом в целом нейтрален. Значит, решает Резерфорд, модель атома Томсона неправильна! Весь положительный заряд атома сосредоточен в его центре, отдельно от отрицательно заряженных электронов. Только в таком случае для альфа-частиц он может служить преградой.
Так ученик опроверг своего учителя.
Планетарная модель
Продолжая исследования, Резерфорд постепенно создал свою знаменитую планетарную модель атома.
Согласно этой модели, весь положительный заряд атома сосредоточен в его центре—ядре. А отрицательно заряженные электроны вращаются по своим орбитам вокруг этого
Слева – модель атома, созданная Томсоном. Положительные и отрицательные заряды распределены равномерно. Справа – модель атома, созданная Резерфордом. Положительные заряды атома сосредоточены в центре ядра атома.
ядра. Примерно так же, как планеты вокруг Солнца. Отсюда и произошло название – планетарная модель.
При этом, как установил Резерфорд, ядро в 10 000 раз меньше всего атома. Заряд ядра уравновешивается зарядами вращающихся вокруг ядра электронов, которые находятся в так называемой электронной оболочке. Поэтому в целом атом нейтрален. Сколько электронов, столько и положительных зарядов в ядре.
Загадка положительных зарядов
Действительно, что это за таинственные положительные заряды в ядре? Об этом и спросил себя Резерфорд после
создания своей планетарной модели атома. И он решил разгадать эту загадку. Бомбардируя электронами атомы водорода, ученый обнаружил, что нейтральные атомы водорода превратились в положительно заряженные. Но было известно, что атомы водорода имеют один электрон и один положительный заряд в центре. Значит, решил Резерфорд, этот один положительный заряд и является ядром атома водорода. Он назвал частицу, несущую положительный заряд, протоном.
Это произошло в 1914 г., через три года после создания планетарной модели и спустя 17 лет после открытия Томсоном первой элементарной частицы, входящей в состав атома. Теперь их стало две – электрон и протон.
Учитель и ученик: Томсон (слева) и Резерфорд,
Тяжелый карлик
Когда Резерфорд определил массу протона, то оказалось, что он неимоверно «тяжел». Разумеется, по отношению к другой элементарной частице – электрону. Масса протона примерно в 1840 раз больше массы электрона. В то же время заряды у них равны. Отрицательный заряд маленького электрона полностью нейтрализует положительный заряд протона.
1919 год
Триумф Резерфорда
В 1919 г. Резерфорд сделал еще одно открытие, которое смело может считаться триумфом его научной деятельности. Он осуществил, казалось бы, фантастическую мечту средневековых алхимиков о превращении одних элементов в другие: из азота получил кислород.
Открытие протона во многом прояснило картину строения атома и расположение элементов в таблице Менделеева. Через год после открытия протона, т. е. в 1915 г., один из учеников Резерфорда, Генри Мозли, установил, что числом положительных зарядов в ядре, т. е. числом протонов, определяется порядковый номер элемента в таблице Менделеева. Водород имеет один протон в ядре. Он и стоит на первом месте в таблице. Уран стоит в таблице на последнем, 92-м месте. Значит, он имеет 92 протона. Числом протонов в ядре определяется, какой это элемент.
Значит, рассуждал Резерфорд, если каким-либо способом изменить число протонов в ядре, то один элемент превратится в другой! Но как изменить число протонов в ядре атома? Нужен какой-то снаряд, который ударился бы в ядро и отколол от него протон. В то время такими снарядами могли быть только альфа-частицы, т. е. ядра атомов гелия. Скорость этих частиц, испускаемых радием, составляет 19 200 километров в секунду. Эта скорость очень велика, и можно было надеяться, что некоторые из альфа-частиц, испускаемых в огромном количестве радием, проникнут внутрь атомов азота и столкнутся с его ядром. В результате изменится число протонов в ядре и, следовательно, один элемент превратится в другой.
Резерфорд так и сделал. После тщательных опытов он установил, что при обстреле альфа-частицами атомов азота число протонов в их ядрах изменяется на единицу. Новый получившийся элемент был кислородом, а это элемент, стоящий в таблице Менделеева в соседней клетке с азотом. Предположение Резерфорда блестяще подтвердилось.
Нет нужды говорить о том, какая это была сенсация. Впервые в истории человек искусственно превратил один элемент в другой. В течение нескольких лет Резерфорд таким же путем осуществил искусственное превращение 17 других элементов! Это были бор, фтор, натрий, алюминий, литий, фосфор и др.
Поэтому не случайно много лет спустя Резерфорд одну из своих лекций студентам назвал «Современная алхимия».
Учитель и ученики
Рассказывая о Резерфорде, нельзя не сказать еще об одной стороне его деятельности. Он вырастил целую плеяду талантливых физиков. Резерфорда невозможно представить без его учеников. «Ученики заставляют меня быть молодым»,– говорил Резерфорд. Насколько неудачной оказалась для него роль преподавателя средней школы, настолько исключительные педагогические способности он проявил в обучении и подготовке научных работников, стажировавшихся в его лабораториях.
Молодые физики съезжались к нему из всех стран мира. Многие из них потом сделали замечательные открытия, вписавшие не одну блестящую страницу в биографию атома. Среди учеников Резерфорда есть и советские ученые: академики Ю. Б. Харитон, П. Л. Капица, действительный член АН УССР А. И. Лейпунский.
Особенно ценил Резерфорд в своих учениках смелость в идеях и инициативу в опытах, оригинальность мышления, законченность в выводах и четкость в изложении мыслей.
Вот что о нем рассказывает Ю. Б. Харитон: «Резерфорд был учителем в самом высоком смысле слова. Он никогда не навязывал ученикам свои идеи и точки зрения и всячески поддерживал все проявления самостоятельного образа мышления. Многие работы, не носящие его имени, обязаны ему своим происхождением.
Резерфорд не любил входить в детали работы молодых учеников, считая, что слишком глубокое участие в работе подавляет инициативу. Но он чрезвычайно внимательно анализировал и обсуждал результаты, проявляя ко всем вопросам неисчерпаемый интерес и увлекал каждого, кто имел с ним дело».
Академик П. Л. Капица вспоминает: «Он был подвижен, голос у него был громкий, он плохо умел его модулировать, вполголоса он говорить не мог. Когда профессор входил в лабораторию, все знали об этом, и по интонации можно было судить, в духе он или нет. Во всей его манере обращаться с людьми сразу, с первого слова, бросались в глаза его искренность и непосредственность. Своей приветливостью он быстро располагал к себе людей. Проводить время в его обществе было исключительно приятно».
Резерфорд умер в 1937 г. в возрасте 66 лет. Он похоронен в Вестминстерском аббатстве рядом с Ньютоном, Фарадеем и Дарвином.
Как-то раз...
...Резерфорд делал обход лабораторий института. По укоренившейся привычке, при хорошем настроении он напевал очень энергично песню «Вперед, солдаты Христа» (у Резерфорда был очень плохой музыкальный слух, и он безбожно перевирал мотив песни). Услышав голос Резерфорда, один из его учеников, впоследствии неплохой физик, немедленно спрятался под стел и просидел там до окончания посещения лаборатории профессором.
Дело в том, что у этого ученика долгое время не ладилась работа. А он знал, что Резерфорд считает неспособным к дальнейшей научной деятельности человека, который в течение двух-трех лет не выработал собственной линии в исследованиях. Поэтому, чтобы не портить Резерфорду хорошего настроения и не давать лишнего повода к плохому мнению о себе, ученику пришлось прибегнуть к такой форме «общения» со своим учителем.
...Резерфорд зашел вечером в одну из своих лабораторий. Несмотря на позднее время, в лаборатории склонился над приборами один из его многочисленных учеников.
–Что вы делаете так поздно?– спросил Резерфорд.
–Работаю,– последовал ответ.
–А что вы делаете днем?
–Конечно, работаю,– отвечал ученик.
–И рано утром тоже работаете?
–Да, профессор, и утром работаю,– с подобострастием подтвердил ученик, рассчитывая на похвалу знаменитого ученого.
Но Резерфорд помрачнел и коротко бросил:
–Послушайте, а когда же вы думаете?
И, недовольный учеником, вышел из лаборатории.
1932 год
Почему была пауза?
И вот наступил 1932 год – дата следующего важного открытия в биографии атома. Прошло 13 лет Я/Ш с последнего крупного открытия, сделанного Резерфордом в 1919 г. Пауза в открытиях, как видите, большая. Если период с 1895 по 1919 г. был густо насыщен очень важными открытиями в ядерной физике, то после 1919 г., казалось, развитие экспериментальной науки об атоме затормозилось. И это было не случайно.
Вспомним, что для исследования атома физики использовали явление радиоактивности. Вернее, альфа-частицы, испускаемые радиоактивными веществами. Альфа-частицы были теми снарядами, которыми ученые бомбардировали атом, пытаясь проникнуть в его тайны.
Но подходящие ли это снаряды для зондирования глубин атома? Нет, не очень. И главным образом потому, что альфа-частицы заряжены положительно. Ядро атома, как мы уже знаем, тоже заряжено положительно. Вот это-то и не позволяло продвинуться ученым дальше в исследованиях.
Лишь очень немногие альфа-частицы достигали ядра и производили изменения в его строении. Подавляющее же большинство альфа-частиц отталкивалось электрическими зарядами ядра. Из многих миллионов альфа-частиц, которые испускаются радиоактивными веществами, только считанные единицы достигали цели. Другими словами, обстрел ими ядер атомов был очень неэффективен.
Нужен был какой-то другой снаряд, который мог бы свободно проникать в глубь атома. Но таким снарядом ученые не располагали. И они были вынуждены пользоваться для исследований по-прежнему альфа-частицами. Однако в эти годы значительно продвинулось вперед теоретическое обоснование ранее обнаруженных явлений. Но скачка, в смысле открытия новых закономерностей в строении вещества, не было. Поэтому наступил период относительного затишья, затишья перед бурей. 1932 год принес такое открытие, которое в конечном итоге и привело к практическому использованию атомной энергии.
Расчеты не сходятся
Итак, ученые установили, что порядковый номер элементов в таблице Менделеева определяется числом протонов в ядре атома. Например, у углерода шесть протонов в ядре, он и стоит на шестом месте. А атомный вес, т. е. вес атома по отношению к атому водорода, равен двенадцати. Это было непонятно. Еще пример. Гелий стоит на втором месте. Значит, в ядре атома гелия два протона. Но атомный вес гелия в четыре раза больше, чем атомный вес водорода, содержащего один протон. Почему же атомный вес гелия в четыре раза больше, чем атомный вес водорода? Никаких объяснений этому не было. И такая кажущаяся ненормальность наблюдалась по отношению к атомам всех элементов, кроме водорода.
Первые предположения
Оставалось предположить, что в ядре атома имеются еще какие-то неизвестные частицы, которые и утяжеляют ядро. Впервые такое предположение сделал все тот же Резерфорд еще в 1920 г. Доклад об этом ученый сделал на одном из заседаний Королевского общества. Он сообщил, что в ядре атома должны существовать нейтральные частицы с массой, равной массе протона.
Правда, Резерфорд сделал сообщение на основе работ своего талантливого ученика Генри Мозли, исследованиями которого он руководил. В то время Мозли уже не было в живых. Во время первой мировой войны он был призван в армию и погиб в одном из сражений.
Странное поведение бериллия
Двое немецких физиков, Боте и Беккер, однажды облучали альфа-частицами ряд элементов. Когда они взяли для этой цели бериллий, то обнаружили, что из бериллия исходят какие-то лучи, обладающие огромной проникающей способностью. Проницаемость лучей Рентгена, альфа– и гамма-лучей по сравнению с ними была просто ничтожной. Если известные до сих пор ученым лучи целиком задерживались относительно небольшим слоем свинца, то лучи, исходящие из бериллия, свободно проходили через самые толстые стены лаборатории. Так появилась новая загадка – бериллиевое излучение.
Ученые предположили, что бериллиевые лучи, или, как их еще назвали, излучение Боте—Беккера, есть новый вид электромагнитных волн.
Великое открытие
В 1931 г. излучением Боте—Беккера заинтересовались двое молодых французских ученых. Оба они незадолго до этого начали работать в Институте радия в Париже под руководством Марии Кюри. Это были Ирен Кюри, дочь Марии и Пьера Кюри, и ее муж Фредерик Жолио. Когда они поженились, то решили, чтобы не прерывать знаменитую родословную, принять двойную фамилию – Жолио– Кюри.
Фредерик и Ирен Жолио-Кюри попробовали пропускать лучи Боте—Беккера через вещества, содержащие водород (например, парафин). Они обнаружили, что под действием этих лучей ядра атомов водорода, т. е. протоны, начинают двигаться так быстро, что величина их скорости не может быть объяснена воздействием электромагнитных волн. Об этом явлении они и сообщили на заседании Парижской академии наук 18 января 1932 г.
Сообщением супругов Жолио-Кюри очень заинтересовался английский ученый Джеймс Чедвик, работавший в лаборатории Резерфорда в Кембридже. Он чувствовал, что стоит на пороге нового великого открытия. Немедленно были поставлены опыты, проведены измерения, проверены и повторены опыты Жолио-Кюри. И вот через пять недель, 27 февраля 1932 г. Чедвик делает сообщение о результатах своих экспериментов.
Он утверждает, что излучение Боте—Беккера – совсем не электромагнитные волны. Это новые виды элементарных
частиц. И главный вывод – эти частицы не имеют электрического заряда. Они нейтральны.
Теперь стало понятным, почему они свободно проходят сквозь толстые слои веществ. Ведь электрические заряды ядра и электронные оболочки атомов на них не действуют. Следовательно, они свободно проходят сквозь атом.
Так была открыта еще одна элементарная частица – нейтрон – с массой, примерно равной массе протона. Теперь ученые получили в свои руки снаряд, которым они могли с гораздо большей эффективностью обстреливать атом.
Джеймс Чедвик, доказавший 27 февраля 1932 г. существование нейтрона, стал днем рождения новой отрасли физики – нейтронной физики. Развитие ее привело в конечном итоге к практическому использованию атомной энергии.
Теперь расчеты сошлись
В этом же знаменательном году советский физик Дмитрий Иваненко и независимо от него немецкий физик Вернер Гайзенберг разработали теорию атомного ядра. Основным выводом их теории было то, что нейтроны входят в состав ядра атома.
Теперь все оказалось на своем месте. Стал понятен атомный вес элемента. Он определяется суммой нейтронов и протонов в ядре атома. Гелий стоит на втором месте в таблице Менделеева. Значит, в его ядре два протона. Но атом гелия вчетверо тяжелее атома водорода и его атомный вес равен четырем. Значит, в его ядре, кроме двух протонов, имеются
еще два нейтрона, масса которых примерно такая же, как и масса протонов. Теперь расчеты сошлись.
Стало также понятным странное поведение излучения бериллия. Альфа-частицы при попадании в его ядра выбивали из них нейтроны. Эти нейтроны и были замечены учеными.
С 1932 г. все дальнейшие достижения в области изучения атома неразрывно связаны с изучением и использованием свойств нейтронов. Поэтому в биографию атома 1932 год вошел как одна из самых важных дат.
1934 год. 15 января
«Великое научное событие – открытие в 1934 г. господином и госпожой Жолио-Кюри искусственных радиоэлементов – было одним из решающих и крупнейших по своему значению этапов в развитии современной физики»
Французский физик МОРИС де БРОЙЛЬ
Удивительный магазин
Тот, кто въезжал в Москву со стороны Внуковского аэропорта, наверно, обратил внимание на магазин с очень необычным названием, расположенный по дороге к центру Москвы. На вывеске магазина огромными буквами выведено:
И З О Т О П Ы
Этот магазин открылся недавно, в конце 1959 г. Но он уже приобрел широкую известность во всем мире. Здесь все необычно. Начнем с того, как покупаются товары в этом магазине. В обычном магазине вас никто не спрашивает, кто вы, где вы работаете и имеете ли право покупать ту или иную понравившуюся вам вещь. А здесь вас обязательно спросят. Более того, потребуют справку о том, что вы имеете право покупать товары в этом магазине. Не бюрократизм ли это? Нет, все правильно; иначе и не может быть.
А покупатели? Они тоже необычные. Это представители заводов, фабрик, научно-исследовательских институтов. Нередко здесь можно встретить и иностранных покупателей. Они тоже приехали в СССРза продукцией, продаваемой в магазине.
А сотрудники магазина? Ни в каком другом магазине вы не встретите такую должность, как научный руководитель магазина. А здесь она есть. Подавляющее большинство продавцов – инженеры и техники. И это тоже необычно.
Так что же такое изотопы? Рассказывая биографию атома, мы пока о них не упоминали. Но, даже не зная еще, что это такое, можно с уверенностью сказать, что раз существует магазин, значит, существует и рынок сбыта его товаров. Значит, продукция, продаваемая в магазине, широко используется потребителями. Ведь бессмысленно же открывать магазин без уверенности, что будут покупатели! Другими словами, только один факт существования такого магазина говорит о широком использовании изотопов в Советском Союзе и других странах.
Но при чем здесь магазин? И какое он имеет отношение к биографии атома? Самое непосредственное. Существование этого магазина, широкое использование человеком изотопов стало возможным благодаря следующему в биографии атома открытию, сделанному за 25 лет до открытия магазина, в 1934 г. Это открытие принадлежит знаменитому французскому ученому-физику, пламенному борцу за мир – Фредерику Жолио-Кюри. Об этом открытии мы и хотим рассказать.
Почему не целые числа?
Мы уже знаем, что атомный вес элементов определяется суммой нейтронов и протонов в их ядрах. А в таблице у большинства элементов атомные веса не целые, а дробные. Например, у калия точный атомный вес 39,1, у урана– 238,07. На первый взгляд это непонятно. Ведь не может же быть в ядре, например, одна десятая протона или семь сотых нейтрона?
Этот вопрос давно уже мучил ученых. Даже когда они не знали о существовании нейтронов и протонов, дробные атомные веса элементов вызывали у них недоумение. Химики, определявшие атомные веса элементов, вначале думали, что дробные числа объясняются неточностью опытов по определению атомного веса элементов. Но постепенно они убедились в том, что дело не в точности измерений, а в чем-то другом.
Современник Менделеева, выдающийся русский ученый Бутлеров, выдвинул предположение, что у каждого химического элемента имеется несколько разновидностей атомов, отличающихся только атомным весом. Поскольку эти разновидности атомов встречаются с разной вероятностью, то в среднем и получаются у элементов дробные числа. Химические же свойства у этих разновидностей элементов абсолютно одинаковые. Поэтому они и стоят в одной клетке в таблице Менделеева.
Предположение Бутлерова было правильным. Но объяснить и доказать его Бутлеров не мог. Ведь тогда не знали о существовании нейтронов и протонов.
Позднее, в 1910 г., ученик Резерфорда английский ученый Содди, изучавший явление радиоактивности, высказал фактически ту же мысль, что и Бутлеров. Он предложил эти разновидности атомов называть изотопами (по-гречески изотоп означает «занимающий то же место»). Так родился этот термин, который в настоящее время прочно вошел в наш язык.
Но загадка дробных чисел у атомных весов элементов стала ясной только после того, как советский ученый Дмитрий Иваненко разработал теорию нейтронно-протонной структуры ядра атома. Исходя из этой теории, все можно было объяснить очень просто. Если разновидности элементов стоят в одной клетке таблицы Менделеева, значит, число протонов в ядре у этих элементов одинаковое. Следовательно, и химические свойства, определяемые зарядом ядра, у них одинаковые. Но каждая разновидность данного элемента – изотоп – имеет отличное от остальных изотопов число нейтронов в ядре. Поэтому каждый элемент, состоящий из смеси изотопов, и имеет дробный атомный вес.
Например, хлор. В ядре атома хлора 17 протонов. Он поэтому и стоит на 17-м месте в таблице Менделеева. Но атомный вес хлора в точности равен 35,457, а не 35, как мы раньше для простоты писали, рассказывая о Дальтоне. Это получается потому, что есть две разновидности ядер хлора. В одних ядрах 18 нейтронов, а в других – 20 нейтронов. Число же протонов в обоих сортах ядер одинаково. Вот и получается, что атомный вес хлора в среднем 35,457.
Так теория советского ученого Дмитрия Иваненко о нейтронно-протонной структуре атомных ядер позволила разгадать еще одну загадку атома.
Радиоактивность можно создать!
Мы уже говорили о том, что радиоактивность – это внутриатомный процесс. Замедлить или ускорить излучение радиоактивных элементов невозможно ни теплом, ни холодом, ни химическими реакциями, ни светом, ни звуком, ни механическим воздействием. И тем более никто из ученых не предполагал, что радиоактивность можно создать, вызвать искусственно.
Но вот открытие Чедвика дало в руки ученых идеальный снаряд для обстрела атомных ядер – нейтрон. Он свободно проникал в глубь атомного ядра.